JPH02157179A - Image furnace - Google Patents

Image furnace

Info

Publication number
JPH02157179A
JPH02157179A JP31116488A JP31116488A JPH02157179A JP H02157179 A JPH02157179 A JP H02157179A JP 31116488 A JP31116488 A JP 31116488A JP 31116488 A JP31116488 A JP 31116488A JP H02157179 A JPH02157179 A JP H02157179A
Authority
JP
Japan
Prior art keywords
heat source
dimensional
power value
image
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31116488A
Other languages
Japanese (ja)
Inventor
Takao Yokota
孝夫 横田
Toru Shimizu
透 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31116488A priority Critical patent/JPH02157179A/en
Publication of JPH02157179A publication Critical patent/JPH02157179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine the adequate supply electric power value to a heat source and to well control the temp. of the heat source with the image furnace to be utilized for crystal growth, etc., by providing a two-dimensional visible sensor or two-dimensional IR sensor and measuring the change in the two-dimensional shape of a melt zone part. CONSTITUTION:The following constitution is added to the image furnace which is provided with the heat source in the 1st focus part of a rotary elliptical reflecting mirror 101 and parts 102, 108, 103 to be heated in the 2nd focus part of the reflecting mirror 101 and forms the melt zone part 108 by concentrating the IR rays emitted from the above-mentioned heat source to the parts 102, 108, 103 to be heated to heat these parts: An image processing section which converts the shape of the melt zone part 108 obtd. from the two-dimensional visible sensor or two-dimensional IR sensor for receiving the light emitted from the above-mentioned melt zone part 108 to the time series of the two-dimensional image patterns and an electric power value determining section 13 which determines the supply electric power value to the heat source by using the prescribed computation equation based on plural pieces of the shape characteristic quantities (i.e., area, peripheral length, distribution of longitudinal and transverse lengths, etc.) of the melt zone part 108 obtd. from the above-mentioned time series of the two-dimensional image patterns are provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶成長等に利用されるイメージ炉に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an image furnace used for crystal growth, etc.

〔従来の技術〕[Conventional technology]

イメージ炉は、回転楕円面から成る反射鏡の第1の焦点
部分に熱源を置き、第2の焦点部分に試料を置いてその
赤外線を集中し、試料を加熱するものである。この装置
には、反射鏡が1個の回転楕円面のみで構成される単槽
円型、反射鏡が2個の回転楕円面の組合せで構成され第
2の焦点を共有する構造の双楕円型、更に反射鏡が3個
以上の回転楕円面の組合せで構成され第2の焦点を共有
する構造の多種円型がある。
In an image furnace, a heat source is placed at the first focal point of a reflecting mirror made of an ellipsoid of revolution, a sample is placed at the second focal point, and the infrared rays are concentrated to heat the sample. This device has a single-vessel circular type in which the reflecting mirror consists of only one spheroidal surface, and a bi-elliptic type in which the reflecting mirror consists of a combination of two spheroidal surfaces and shares a second focal point. Furthermore, there are various circular types in which the reflecting mirror is composed of a combination of three or more spheroidal surfaces and shares a second focal point.

次に、従来のイメージ炉の構造を図面を参照して説明す
る。第5図は従来の双楕円型のイメージ炉主要部の一例
を示す断面図である。このイメーシ炉は、同図に示すよ
うに外側に配置された反射鏡101の焦点部分に一体化
された被加熱部102.108,103か配置されてい
る。被加熱物は上チャック104.下チャック105に
よって上シャフト106.下シャフl−107に取り付
けられる。被加熱物を加熱して溶融させると、102と
1.03との間即ちイメージ炉の第2の焦点部分に溶融
帯部108が形成される。炉心管109は、被加熱物を
外部から遮断して、管内を不活性カス等の雰囲気ガスて
満たしたり、管内を真空にしたり、あるいは被加熱物か
ら発生するガスから反射鏡の鏡面を保護するためのもの
である。また、溶融帯部108を観察するためイメージ
炉の一部に開けた観察窓であり、結晶成長等を行なう作
業者は、この観察窓110から溶融帯部108の映像を
見なから、変化や以上があれはそれに応じて熱源(図示
せず)の温度を制御していた。しかしなから、このよう
な方法では作業者が常時監視し、作業しなければならな
いという問題があった。第6図は従来の数構円型のイメ
ージ炉主要部の他の例を示す断面図である。ここて、例
えば、特公昭60−200889号公報に提案されてい
るように、溶融帯部の直径を計測し、溶融帯部の直径に
変化があれは、それに応して自動的に熱源の温度を制御
する装置か提案されている。すなわち、このイメージ炉
の前述の例と違うところは、第6図に示すように、観察
窓110の先にラインセンサ31を接続し、溶融帯部の
直径を計測する。また、電力値決定部]3でその値を演
算処理し熱源に供給する電力値を計算する。そして、電
極コントローラ14が、その電力値に相当する電極を熱
源に供給することで、熱源の温度制御を行われている。
Next, the structure of a conventional image furnace will be explained with reference to the drawings. FIG. 5 is a sectional view showing an example of the main part of a conventional bielliptical image furnace. As shown in the figure, this image furnace has heated parts 102, 108, and 103 integrated with the focal point of a reflecting mirror 101 placed on the outside. The object to be heated is placed on the upper chuck 104. Upper shaft 106. by lower chuck 105. Attached to lower shaft l-107. When the object to be heated is heated and melted, a molten zone 108 is formed between 102 and 1.03, that is, at the second focal point of the image furnace. The furnace core tube 109 isolates the object to be heated from the outside, fills the inside of the tube with atmospheric gas such as inert scum, creates a vacuum inside the tube, or protects the mirror surface of the reflecting mirror from the gas generated from the object to be heated. It is for. Furthermore, this is an observation window opened in a part of the image furnace to observe the molten zone 108, and an operator who performs crystal growth etc. should not watch the image of the molten zone 108 through this observation window 110 to observe changes. In this case, the temperature of the heat source (not shown) was controlled accordingly. However, this method has a problem in that the operator must constantly monitor the work. FIG. 6 is a sectional view showing another example of the main part of a conventional several-circular image furnace. For example, as proposed in Japanese Patent Publication No. 60-200889, the diameter of the molten zone is measured, and if there is a change in the diameter of the molten zone, the temperature of the heat source is automatically adjusted accordingly. A device has been proposed to control the That is, the difference between this image furnace and the above-mentioned example is that, as shown in FIG. 6, a line sensor 31 is connected to the end of the observation window 110 to measure the diameter of the molten zone. Further, the power value determination unit] 3 performs arithmetic processing on the value to calculate the power value to be supplied to the heat source. Then, the electrode controller 14 controls the temperature of the heat source by supplying an electrode corresponding to the power value to the heat source.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、上述のラインセンサによって溶融帯部の
直径を計測する従来の方法では、溶融帯部の直径が変化
せずに長さが変化したような場合や、計測していない部
分の直径が変化した場合等は、熱源への適切な供給電力
値を決定することができず、熱源の温度の良好な制御が
行なわれながった。
However, with the conventional method of measuring the diameter of the melted zone using the line sensor described above, there are cases where the diameter of the melted zone does not change but the length changes, or when the diameter of the part that is not measured is When the temperature of the heat source changes, an appropriate power supply value to the heat source cannot be determined, and the temperature of the heat source cannot be properly controlled.

また、可視センサのみを用いた従来の方法では、溶融さ
せると可視領域の輝度が低下もしくはほとんと変化しな
いような被加熱物の場合、被加熱物の溶融していない部
分と、溶融帯部の区別が困難であることから、熱源への
適切な供給電力値を決定することができず、熱源の温度
の良好な制御が行なわれなかった。
In addition, in the conventional method using only visible sensors, in the case of a heated object whose brightness in the visible region decreases or hardly changes when melted, it is possible to detect the unmelted part of the heated object and the melted zone. Since the distinction is difficult, it has not been possible to determine an appropriate power supply value to the heat source, and the temperature of the heat source has not been well controlled.

さらに、従来の方法では、溶融帯部の形状から決定され
た供給電力値を直接用いて熱源への電力制御を行なって
いるので、溶融帯部の形状に依存しないで熱源の温度を
設定することができす、また、微妙な温度調節も不可能
であった。
Furthermore, in the conventional method, the power supply to the heat source is controlled directly using the supplied power value determined from the shape of the melting zone, so it is possible to set the temperature of the heat source without depending on the shape of the melting zone. However, it was also impossible to make delicate temperature adjustments.

本発明の目的は、このような従来の欠点を除去するため
のものである。
The object of the present invention is to eliminate these conventional drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

第1の発明のイメージ炉は、回転楕円反射鏡の第1の焦
点部分に熱源を設け、前記回転楕円反射鏡の第2の焦点
部分に被加熱部を設け、前記熱源から発する赤外線を集
中して前記被加熱部を加熱し溶融帯部を形成させるイメ
ージ炉において、前記被加熱部から発する光を受光する
2次元可視センサあるいは2次元赤外センサから得られ
る溶融帯部の形状を2次元画像パターン時系列に変換す
る画像処理部と、前記2次元画像パターン時系列から求
められる溶融帯部の複数個の形状特徴量を基に所定の演
算式を用いて熱源への供給電力を決定する電力値決定部
より構成される。
The image furnace of the first invention provides a heat source at a first focal point of a spheroidal reflector, a heated portion at a second focal point of the spheroidal reflector, and concentrates infrared rays emitted from the heat source. In an image furnace that heats the heated part to form a molten zone, a two-dimensional image of the shape of the molten zone is obtained from a two-dimensional visible sensor or a two-dimensional infrared sensor that receives light emitted from the heated part. an image processing unit that converts into a pattern time series; and an electric power that determines the power to be supplied to the heat source using a predetermined calculation formula based on a plurality of shape features of the melted zone obtained from the two-dimensional image pattern time series. Consists of a value determining section.

第2の発明のイメージ炉は、2次元センサから得られる
溶融帯部の形状を2次元画像パターン時系列に変換する
画像処理部と、前記2次元画像バタン時系列から求めら
れる溶融帯部の複数個の形状特徴量を基に所定の演算式
を用いて熱源への供給電力を決定する電力値決定部と、
前記電力値決定部において決定された熱源への供給電力
値を用いる場合と用いない場合とに切り換える制御切り
換え部より構成される。
The image furnace of the second invention includes an image processing unit that converts the shape of the melted zone obtained from the two-dimensional sensor into a two-dimensional image pattern time series, and a plurality of melted zone parts determined from the two-dimensional image pattern time series. a power value determination unit that determines the power to be supplied to the heat source using a predetermined calculation formula based on the shape feature values;
It is comprised of a control switching section that switches between using and not using the power value to be supplied to the heat source determined by the power value determining section.

〔実施例〕 次に、本発明について図面を参照して説明する。〔Example〕 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例を示すイメージ炉主要部
の断面図である。このイメージ炉は、第1図に示すよう
に、観察窓110の先に2次元可視センサ12か接続さ
れている。2次元可視センザとしては、例えは、CCD
カメラか考えられる。ここて、溶融帯部108から発す
る光は、観察窓1]0を通過し、2次元可視センサ12
によって2次元画像データに変換され、逐次、電力値決
定部13に送られる。電力値決定部1Bは2次元画像デ
ータを基に熱源に供給する電力値を決定し、その値は電
力コントローラ]4に送られる。
FIG. 1 is a sectional view of the main part of an image furnace showing a first embodiment of the present invention. As shown in FIG. 1, this image furnace has a two-dimensional visible sensor 12 connected to the end of an observation window 110. An example of a two-dimensional visible sensor is a CCD.
Possibly a camera. Here, the light emitted from the melted zone 108 passes through the observation window 1]0, and the two-dimensional visible sensor 12
The image data is converted into two-dimensional image data by , and sequentially sent to the power value determining section 13 . The power value determining unit 1B determines the power value to be supplied to the heat source based on the two-dimensional image data, and the value is sent to the power controller]4.

電力コントローラ14は受(つ取った値に相当する電力
を熱源に供給する。これ以外は従来例と同じである。ま
た、電力コントローラ14については、自動制御の分野
ては周知の技術であり、本発明の本質とは異なるのて詳
細な説明は省く。更に、電力値決定部13の説明は、後
述する。
The power controller 14 supplies power corresponding to the received value to the heat source.Other than this, the power controller 14 is the same as the conventional example.The power controller 14 is a well-known technology in the field of automatic control. A detailed explanation will be omitted since it is different from the essence of the present invention.Furthermore, a description of the power value determination unit 13 will be given later.

第2図は本発明の第2の実施例を示すイメージ炉主要部
の断面図である。このイメージ炉は、前述の実施例に示
す2次元可視センサ12を2次元赤外センサ21に置き
換えたものである。それ以外は従来例と同じである。こ
の2次元赤外センザとしては、例えは、赤外線カメラが
考えられる。
FIG. 2 is a sectional view of the main part of an image furnace showing a second embodiment of the present invention. In this image furnace, the two-dimensional visible sensor 12 shown in the previous embodiment is replaced with a two-dimensional infrared sensor 21. Other than that, it is the same as the conventional example. An example of this two-dimensional infrared sensor is an infrared camera.

たたし、炉心管109が、多々にして赤外線を吸収する
性質を持っているので、溶融帯部の形状を判別し難いあ
るいはできない場合がある。この場合は炉心管109は
用いなくてよい。
However, since the core tube 109 has the property of absorbing a lot of infrared rays, it may be difficult or impossible to determine the shape of the molten zone. In this case, the furnace core tube 109 does not need to be used.

第3図は本発明の第3の実施例を示すイメージ炉主要部
の断面図である。第1の実施例のイメージ炉に電力値決
定部13と電力コントローラ14の間に、制御切り換え
スイッチ部15とそれに接続された電力値指定部16を
加えたものである。
FIG. 3 is a sectional view of the main part of an image furnace showing a third embodiment of the present invention. This image furnace of the first embodiment is provided with a control changeover switch section 15 and a power value designation section 16 connected thereto between the power value determination section 13 and the power controller 14.

この制御切り換えスイッチ部15で、電力コントローラ
14に送るデータを、電力値決定部13からの電力値か
それとも電力値指定部16からの電力値とするかを切り
換える。電力指定部16は、例えば、電力値の入力可能
な操作キーボード、前もって電力値を記憶しである記憶
装置等が考えられる。
This control changeover switch section 15 switches whether the data to be sent to the power controller 14 is the power value from the power value determining section 13 or the power value from the power value specifying section 16. The power specifying unit 16 may be, for example, an operation keyboard capable of inputting power values, a storage device that stores power values in advance, or the like.

つぎに、電力決定部13の説明をする。第4図は電力値
決定部]3を示すフロック図である。2次元画像データ
は、順次、画像前処理部において、デジタル化、雑音除
去、2値化等の前処理が行われ、2次元画像パターン時
系列に変換され、特徴量抽出部132に送られる。特徴
量抽出部132ては、2次元画像パターン時系列から、
溶融帯部]08の形状性微量、例えは、面積Sを計算し
、演算処理部133に送る。演算処理部133では、パ
タメータ記憶部134に前もって記憶しである定数を用
いて演算処理を行い、電力値Eを計算する。演算処理と
しては、例えは、(1)式%式% ΔSはSの時間変化)・・・(1) この(1)式により計算された電力値Eは、電力コント
ローラ14へ送られる。画像前処理部]−31、特徴量
抽出部]32については、画像処理の分野ては周知の技
術であり、本発明の本質とは異なるので詳細な説明は省
く。
Next, the power determining section 13 will be explained. FIG. 4 is a block diagram showing the power value determination unit]3. The two-dimensional image data is sequentially subjected to pre-processing such as digitization, noise removal, and binarization in the image pre-processing unit, converted into a two-dimensional image pattern time series, and sent to the feature extraction unit 132. The feature extraction unit 132 extracts the two-dimensional image pattern time series from the two-dimensional image pattern time series.
A trace amount of shape, for example, an area S, of the melted zone [08] is calculated and sent to the arithmetic processing section 133. The arithmetic processing section 133 performs arithmetic processing using constants stored in advance in the parameter storage section 134 to calculate the power value E. As an example of the calculation process, the power value E calculated by the equation (1) is sent to the power controller 14. The image preprocessing unit]-31 and the feature extraction unit 32 are well-known techniques in the field of image processing, and are different from the essence of the present invention, so a detailed explanation will be omitted.

なお、形状性微量として本実施例では面積を用いたが、
他の特徴量、例えば、周囲具、縦横の分布、モーメン1
へ、重心から外側輪郭までの距離等を複数個用いても良
いのは明白である。また、演算処理として線形1次式で
ある(])式を用いたが、2次式、3次式を用いても良
く、非線形な演算を行っても良いことは明白である。
In this example, area was used as the shape property trace amount, but
Other features, such as surrounding equipment, vertical and horizontal distribution, moment 1
It is obvious that a plurality of distances from the center of gravity to the outer contour may be used. Further, although the equation (]), which is a linear linear equation, is used as the calculation process, it is obvious that a quadratic equation, a cubic equation, or a nonlinear calculation may be performed.

さらに、本実施例ては数構円型のイメージ炉について説
明してきたか、単相円型あるいは多路円型のイメージ炉
についても、本発明は同様に実施できる。
Further, although the present embodiment has been described with respect to a several-circular image furnace, the present invention can be implemented in the same manner with a single-phase circular type or a multi-path circular type image furnace.

なお、自動制御技術に関しては、例えば昭和46年に実
教出版株式会社から発行された「自動制御の基礎と応用
」、画像処理技術に関しては、例えば昭和56年に共立
出版株式会社から発行された「応用画像解析」に詳しく
記載されている。
Regarding automatic control technology, for example, "Basics and Applications of Automatic Control" published by Jikkyo Publishing Co., Ltd. in 1970, and regarding image processing technology, for example, published by Kyoritsu Publishing Co., Ltd. in 1980. It is described in detail in "Applied Image Analysis".

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

第1の発明のイメージ炉は、2次元可視センザを設は溶
融帯部の2次元形状の変化を計測するこ]0 とにより、熱源への適切な供給電力値を決定でき、熱源
の温度の良好な制御が可能となった。
The image furnace of the first invention is equipped with a two-dimensional visible sensor that measures changes in the two-dimensional shape of the molten zone.By this, an appropriate power supply value to the heat source can be determined, and the temperature of the heat source can be adjusted. Good control became possible.

第2の発明のイメージ炉は、2次元赤外センサを設は可
視性ては計測不可能な被加熱物の2次元形状を計測する
により、熱源への適切な供給電力値を決定でき、熱源の
温度の良好な制御が可能となった。
The image furnace of the second invention is equipped with a two-dimensional infrared sensor to measure the two-dimensional shape of the object to be heated, which cannot be measured visually, to determine an appropriate power supply value to the heat source. It is now possible to better control the temperature.

第3の発明のイメージ炉は、電力制御に用いる値を、電
力値決定部で決定された電力値とするか、それとも手動
等の他の手段で決定された値とするかを指定できる制御
切り換え部を設けることで溶融帯部の形状に依存しない
熱源の温度も設定できるようになり、また微妙な温度調
節も可能となった。
The image furnace of the third invention has a control switching function that allows specifying whether the value used for power control is the power value determined by the power value determining section or the value determined manually or by other means. By providing this section, it became possible to set the temperature of the heat source independent of the shape of the melting zone, and it also became possible to finely adjust the temperature.

101・・・反射鏡、102,108.103・・・被
加熱物、108・・・溶融帯部、1.04,105・・
上下チャック、106,107・・上下シャフト、10
9・・・炉心管、110・・観察窓、12・・・2次元
可視センサ、]3・・・電力値決定部、14・・電力コ
ントローラ、15 ・制御切り換えスイッチ部、16・
・電力値指定部、21・・・2次元赤外センサ、131
・・・画像前処理部、132・・・特徴量抽出部、13
3・・・演算処理部、134・パラメータ記憶部、31
・・ラインセンサ。
101... Reflecting mirror, 102, 108. 103... Heated object, 108... Melting zone, 1.04, 105...
Upper and lower chucks, 106, 107... Upper and lower shafts, 10
9... Furnace core tube, 110... Observation window, 12... Two-dimensional visible sensor,] 3... Power value determination unit, 14... Power controller, 15 - Control changeover switch unit, 16...
- Power value designation section, 21... two-dimensional infrared sensor, 131
...Image preprocessing unit, 132...Feature amount extraction unit, 13
3... Arithmetic processing unit, 134/Parameter storage unit, 31
...Line sensor.

Claims (1)

【特許請求の範囲】 1、回転楕円反射鏡の第1の焦点部分に熱源を設け、前
記回転楕円反射鏡の第2の焦点部分に被加熱部を設け、
前記熱源から発する赤外線を集中して前記被加熱部を加
熱し溶融帯部を形成させるイメージ炉において、前記被
加熱部から発する光を受光する2次元可視センサあるい
は2次元赤外センサから得られる溶融帯部の形状を2次
元画像パターン時系列に変換する画像処理部と、前記2
次元画像パターン時系列から求められる溶融帯部の複数
個の形状特徴量を基に所定の演算式を用いて熱源への供
給電力値を決定する電力値決定部とを有することを特徴
とするイメージ炉。 2、前記電力値決定部において決定された熱源への供給
電力値を用いる場合と用いない場合とに切り換える制御
切り換え部とを有する特許請求の範囲第1項記載のイメ
ージ炉。
[Claims] 1. A heat source is provided at a first focal point of the spheroidal reflecting mirror, and a heated portion is provided at a second focal point of the spheroidal reflecting mirror;
In an image furnace that concentrates infrared rays emitted from the heat source to heat the heated part and form a molten zone, melting obtained from a two-dimensional visible sensor or a two-dimensional infrared sensor that receives light emitted from the heated part an image processing unit that converts the shape of the band portion into a two-dimensional image pattern time series;
An image characterized by having a power value determination unit that determines the power value to be supplied to the heat source using a predetermined calculation formula based on a plurality of shape feature values of the melted zone portion obtained from the dimensional image pattern time series. Furnace. 2. The image furnace according to claim 1, further comprising a control switching unit that switches between using and not using the power value to be supplied to the heat source determined by the power value determining unit.
JP31116488A 1988-12-08 1988-12-08 Image furnace Pending JPH02157179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31116488A JPH02157179A (en) 1988-12-08 1988-12-08 Image furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31116488A JPH02157179A (en) 1988-12-08 1988-12-08 Image furnace

Publications (1)

Publication Number Publication Date
JPH02157179A true JPH02157179A (en) 1990-06-15

Family

ID=18013863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31116488A Pending JPH02157179A (en) 1988-12-08 1988-12-08 Image furnace

Country Status (1)

Country Link
JP (1) JPH02157179A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112687A (en) * 1983-11-21 1985-06-19 Nichiden Mach Ltd Method for controlling melting condition of molten zone in infrared heating manufacturing device of single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112687A (en) * 1983-11-21 1985-06-19 Nichiden Mach Ltd Method for controlling melting condition of molten zone in infrared heating manufacturing device of single crystal

Similar Documents

Publication Publication Date Title
CN100552685C (en) Use image imaging and the real-time method and system of monitoring and controlling deposition height of image processing techniques in laser cladding and the laser-assisted direct metal manufacturing process
EP0092753A2 (en) Infrared sensor for arc welding
JP2001191187A (en) Method and device for measuring process parameter in material working process
CN103134599A (en) Method and system for real-time monitoring of molten bath state in direct molding process of laser metal
US5314248A (en) Laser device for simultaneous industrial processing and monitoring of temperature
KR100448334B1 (en) A laser welding head-controlling system, a laser welding head and a method for controlling a laser welding head
JPH02157179A (en) Image furnace
JP3223416B2 (en) Processing position detection device and automatic processing system
EP0791818A3 (en) Method and device for photothermal testing a workpiece
EP0184590A1 (en) Method of continuously analyzing fluidized body by laser
US5641419A (en) Method and apparatus for optical temperature control
Li et al. Machine vision analysis of welding region and its application to seam tracking in arc welding
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
JPH07232290A (en) Focus adjusting device for laser beam machine
Maldague et al. Dual imager and its applications to active vision robot welding, surface inspection, and two-color pyrometry
JPS56102375A (en) Welding method
JPS5761905A (en) Measuring device of surface coarseness
JPH026093A (en) Automatic focal length adjusting device
JPH06167377A (en) Level measuring method for molten tin in float bath
JPH06294685A (en) Molten level detector
JP2669695B2 (en) Laser processing equipment
Hutflesz et al. Mathematical means of the process data acquisition for sensor engineering
JPS6448686A (en) Laser beam trimming device
Raghavan et al. Adaptive control of arc welding using infrared sensing
Bohrer et al. Managing quality control of laser machining