JPH02157047A - Combustion gas cleanup catalyst - Google Patents

Combustion gas cleanup catalyst

Info

Publication number
JPH02157047A
JPH02157047A JP63312299A JP31229988A JPH02157047A JP H02157047 A JPH02157047 A JP H02157047A JP 63312299 A JP63312299 A JP 63312299A JP 31229988 A JP31229988 A JP 31229988A JP H02157047 A JPH02157047 A JP H02157047A
Authority
JP
Japan
Prior art keywords
catalyst
combustion gas
coating layer
hollow cylindrical
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63312299A
Other languages
Japanese (ja)
Other versions
JP2553678B2 (en
Inventor
Ichiro Tanahashi
棚橋 一郎
Hironao Numamoto
浩直 沼本
Yukiyoshi Ono
之良 小野
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63312299A priority Critical patent/JP2553678B2/en
Publication of JPH02157047A publication Critical patent/JPH02157047A/en
Application granted granted Critical
Publication of JP2553678B2 publication Critical patent/JP2553678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To permit an economical and easy manufacture of a catalyst for cleaning up combustion gas by forming the film layer consisting of the alumina containing platinum group metal on a metal honeycomb or foil carrier. CONSTITUTION:In a catalyst for cleaning up combustion gas emitted from an oilstove, the film layer of an activated alumina containing platinum group metal such as platinum and palladium is formed on a hollow cylindrical metal honeycomb 1 consisting of iron, chromium, aluminum, etc. The base material which is made of metal is easy to shape for bending, etc., large in heat conductivity and easy to form a catalyst layer on its surface. Therefore, this provides a catalyst excellent in workability to attain combustion gas cleanup purposes and good in cleanup efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石油ストーブの燃焼ガスなどの民生用あるい
は産業用の各種燃焼排ガスの浄化用に用いる触媒に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalyst used for purifying various types of combustion exhaust gas for civilian or industrial use, such as combustion gas from kerosene stoves.

従来の技術 従来の排ガス浄化用触媒は、特開昭61−234935
号公報に開示されているように耐火性セラミックス例え
ば、コーディエライト、アルミナ、ムライト、スボデュ
メンのハニカム状基祠に、ウオ、ソシュコトと呼ばれる
ガンマアルミナ等の被覆層を形成することにより比表面
積を通常10〜30m2/gに増大させ、これに触媒金
属、例えば白金、ロジウム、ノ々ラジウム、ルテニウム
等を担持して調製しても)た。
Conventional technology A conventional catalyst for purifying exhaust gas is disclosed in Japanese Patent Application Laid-Open No. 61-234935.
As disclosed in the above publication, the specific surface area can be increased by forming a coating layer of gamma alumina, etc. called wo or soshkot on a honeycomb-shaped base of refractory ceramics such as cordierite, alumina, mullite, and subodumen. 10 to 30 m2/g, and a catalytic metal such as platinum, rhodium, nonoradium, ruthenium, etc. was supported thereon).

発明が解決しようとする課題 上記の材料ではハニカム基材を触媒担体に用℃)るには
次のような課題がある。
Problems to be Solved by the Invention With the above-mentioned materials, there are the following problems when using a honeycomb base material as a catalyst carrier.

(a)従来のコーディエライト、アルミナ、ムライト、
スボデュメンからなる基材を湾曲させることが製造上極
めて困難である。
(a) Conventional cordierite, alumina, mullite,
It is extremely difficult in manufacturing to curve a base material made of subodumene.

(b)ハニカム基材の熱伝導率が小さい。(b) The thermal conductivity of the honeycomb base material is low.

(C)ハニカムの目が細かくなるに従い被覆層の形成が
困難となる。
(C) As the honeycomb mesh becomes finer, it becomes difficult to form a coating layer.

本発明は上記問題点に鑑み、加工性に優れた、また熱伝
導率の大きな金属ノ\ニカム触媒を提供することを目的
とする。
In view of the above problems, an object of the present invention is to provide a metal nicomb catalyst which has excellent processability and high thermal conductivity.

課題を解決するための手段 上記の目的を達成するため、請求項1の発明は中空円筒
状金属ハニカム体に白金族金属を含んだ活性アルミナか
らなる被覆層を形成したことを特徴とする請求項2の発
明は、中空円筒形で貫通孔のある金属箔体に白金族金属
を含んだ活性アルミナからなる被覆層を形成したことを
特徴とする請求項4の発明は中空円筒形でスリットのあ
る金属箔体に白金族金属を含んだ活性アルミナからなる
被覆層を形成したことを特徴とする。
Means for Solving the Problems In order to achieve the above object, the invention of claim 1 is characterized in that a coating layer made of activated alumina containing a platinum group metal is formed on a hollow cylindrical metal honeycomb body. The invention according to claim 2 is characterized in that a coating layer made of activated alumina containing a platinum group metal is formed on a metal foil body having a hollow cylindrical shape and having through holes. It is characterized in that a coating layer made of activated alumina containing a platinum group metal is formed on the metal foil body.

作用 本発明によれば、中空円筒形金属ハニカムあるいは金属
箔はその基材が金属であることから湾曲等成形か容易て
しかも熱伝導率が大きく、その表面への白金族金属を含
んだ活性アルミナ被覆層の形成が容易となる。したがっ
て、燃焼ガス浄化用として加工性にすぐれ、浄化効率の
きわめて良い触媒が得られる。
According to the present invention, since the hollow cylindrical metal honeycomb or metal foil is made of metal, it is easy to form into curves, etc., and has high thermal conductivity. Formation of the coating layer becomes easy. Therefore, a catalyst with excellent processability and extremely high purification efficiency can be obtained for combustion gas purification.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

〈第1実施例〉 厚みが3 m ITh  セル数が200セル/インチ
の第1図に示すような取り付は金具2のついた直径15
0mmの中空円筒状金属ハニカム体1に以下に示す方法
で白金とパラジウムを含んだ活性アルミナ被覆層を形成
した。金属ハニカム体に用いた金属は鉄、クロム、アル
ミニウムがそれぞれ85.10.5wt%から成るステ
ンレス鋼である。活性アルミナ(比表面積200m2/
gN  粒径300ミクロン以下が99%)と市販のベ
ーマイトからなるバインダーとが90対10の重量比で
、また白金族金属として塩化白金酸と塩化ロジウムがハ
ニカム触媒体積当りそれぞれ30mg/リットルと15
mg/リットル含まれるように混合し、比重1.50の
水溶液スラリーとした。金属ハニカム基材を上記スラリ
に浸漬、乾燥し被覆層を形成する。さらに150℃の温
度で30分間熱風乾燥を行い、被覆層と基体との接着強
度を高めるため500°Cで1時間焼成する。
〈First Example〉 The thickness is 3 m and the number of ITh cells is 200 cells/inch as shown in Fig. 1.
An activated alumina coating layer containing platinum and palladium was formed on a 0 mm hollow cylindrical metal honeycomb body 1 by the method shown below. The metal used for the metal honeycomb body is stainless steel containing 85.10.5 wt% of iron, chromium, and aluminum, respectively. Activated alumina (specific surface area 200m2/
gN (99% particle size less than 300 microns) and a binder consisting of commercially available boehmite in a weight ratio of 90:10, and platinum group metals chloroplatinic acid and rhodium chloride at 30 mg/liter and 15 mg/liter, respectively, per honeycomb catalyst volume.
The mixture was mixed so as to contain mg/liter to form an aqueous slurry with a specific gravity of 1.50. A metal honeycomb base material is immersed in the slurry and dried to form a coating layer. Further, hot air drying is performed at a temperature of 150° C. for 30 minutes, and baking is performed at 500° C. for 1 hour to increase the adhesive strength between the coating layer and the substrate.

以上の工程を2回繰り返すことによりセラミックハニカ
ム基体に厚み100ミクロン、付着量80g被覆層/1
リットル担体、形成した。
By repeating the above process twice, the ceramic honeycomb substrate was coated with a thickness of 100 microns and a coating weight of 80 g/1.
liter carrier, formed.

本実施例の中空円筒形金属ハニカム触媒6を第7図に示
すように石油ストーブ(燃焼筒7)に取り付はストーブ
の天板の上方2cmのガス組成を測定し、その測定結果
を第1表に示す。測定したガスは一酸化炭素、炭化水素
と一酸化炭素窒素である。
As shown in FIG. 7, the hollow cylindrical metal honeycomb catalyst 6 of this embodiment was installed in a kerosene stove (combustion cylinder 7), and the gas composition was measured 2 cm above the top plate of the stove. Shown in the table. The gases measured were carbon monoxide, hydrocarbons and carbon monoxide and nitrogen.

一方、比較例とし本発明の触媒を取り付けていない石油
ストーブの前記と同様な場所におけるガス組成を同じく
第1表に示す。第1表に示す結果より明らかなように、
本発明の触媒を用いるとクリーンな燃焼を行うことがで
きる。さらに本発明の触媒による熱の輻射(遠赤外線放
射)があるため従来品より暖かかった。
On the other hand, Table 1 also shows the gas composition at the same location as above in a comparative example of an kerosene stove in which the catalyst of the present invention was not installed. As is clear from the results shown in Table 1,
Clean combustion can be achieved using the catalyst of the present invention. Furthermore, because of the heat radiation (far-infrared radiation) caused by the catalyst of the present invention, it was warmer than conventional products.

第1表 〈第2実施例〉 第2図に示すような取り付は金具2のついた厚みが1 
m fTh  直径2mmの貫通孔3を有する直径15
0mmの中空円筒状の金属箔4に第1実施例と同様な方
法で同量の白金とパラジウムを含んた活性アルミナ被覆
層を形成した。用いた金属は鉄、クロム、アルミニウム
がそれぞれ85.10.5wt%から成るステンレス鋼
である。
Table 1 (Second Example) For installation as shown in Figure 2, the thickness of the metal fitting 2 is 1
m fTh Diameter 15 with through hole 3 having a diameter of 2 mm
An activated alumina coating layer containing the same amounts of platinum and palladium was formed on a hollow cylindrical metal foil 4 of 0 mm in the same manner as in the first example. The metal used was stainless steel containing 85.10.5 wt% of iron, chromium, and aluminum, respectively.

本実施例の中空円筒形金属ハニカム触媒を第7図に示す
ように石油ストーブに取り付はストーブの天板の上方2
cmのガス組成を測定しその測定結果を第2表に示す。
The hollow cylindrical metal honeycomb catalyst of this example was attached to the kerosene stove at the upper part of the top plate of the stove as shown in Fig. 7.
The gas composition of cm was measured and the measurement results are shown in Table 2.

測定したガスは一酸化炭素、炭化水素と一酸化炭素窒素
である。
The gases measured were carbon monoxide, hydrocarbons and carbon monoxide and nitrogen.

比較例とし本発明の触媒を取り付けていない石油ストー
ブの前記と同様な場所におけるガス組成を同じく第2表
に示す。第2表に示す結果より明らかなように本発明の
触媒を用いるとクリーンな燃焼を行うことができる。さ
らに本発明の触媒による熱の輻射(遠赤外線放射)があ
るため従来品より暖かかった。
Table 2 also shows the gas composition at the same location as described above in a kerosene stove as a comparative example in which the catalyst of the present invention was not installed. As is clear from the results shown in Table 2, clean combustion can be achieved using the catalyst of the present invention. Furthermore, it was warmer than conventional products because of the heat radiation (far-infrared radiation) caused by the catalyst of the present invention.

第2表 く第3実施例〉 第3図に示すように厚みが1 m ITh  貫通孔3
の直径が燃焼炎から離れるにつれ2mmから8mmへと
しだいに大きくなっている金属箔に第1実施例と同様な
方法で同量の白金とパラジウムを含んだ活性アルミナ被
覆層を形成した。用いた金属は鉄、クロム、アルミニウ
ムがそれぞれ85.10.5wt%から成るステンレス
鋼である。
Third embodiment shown in Table 2> As shown in Fig. 3, the thickness is 1 m ITh through hole 3
An activated alumina coating layer containing the same amount of platinum and palladium was formed on the metal foil, whose diameter gradually increases from 2 mm to 8 mm as it moves away from the combustion flame, in the same manner as in the first example. The metal used was stainless steel containing 85.10.5 wt% of iron, chromium, and aluminum, respectively.

本実施例の中空円筒形金属ハニカム触媒を第7図に示し
たように石油ストーブに取り付はストーブの天板の上方
2cmのガス組成を測定し、その測定結果を第3表に示
す。測定したガスは一酸化炭素、炭化水素と一酸化炭素
窒素である。
The hollow cylindrical metal honeycomb catalyst of this example was attached to a kerosene stove as shown in FIG. 7, and the gas composition was measured 2 cm above the top of the stove. The measurement results are shown in Table 3. The gases measured were carbon monoxide, hydrocarbons and carbon monoxide and nitrogen.

一方、比較例とし本発明の触媒を取り付けていない石油
ストーブの前記と同様な場所におけるガス組成を同じ(
第3表に示す。第3表に示す結果より明らかなように、
本発明の触媒を用いるとクリーンな燃焼を行うことがで
きる。さらに本発明の触媒による熱の輻射(遠赤外線放
射)があるため従来品より暖かかった。
On the other hand, as a comparative example, the gas composition at the same location as above of a kerosene stove without the catalyst of the present invention was
It is shown in Table 3. As is clear from the results shown in Table 3,
Clean combustion can be achieved using the catalyst of the present invention. Furthermore, it was warmer than conventional products because of the heat radiation (far-infrared radiation) caused by the catalyst of the present invention.

第3表 〈第4実施例〉 第4図に示すように取り付は金具2のついた厚みが1m
rrh  幅2 m rrh  長さ50mmのスリッ
ト5を有する金属箔に第1実施例と同様な方法で同量の
白金とパラジウムを含んだ活性アルミナ被覆層を形成し
た。用いた金属は鉄、クロム、アルミニウムがそれぞれ
85.1015wt%から成るステンレス鋼である。
Table 3 (Fourth Example) As shown in Figure 4, the thickness of the metal fitting 2 is 1 m.
An activated alumina coating layer containing the same amount of platinum and palladium was formed on a metal foil having a slit 5 having a width of 2 m and a length of 50 mm in the same manner as in the first example. The metal used was stainless steel containing 85.1015 wt% of each of iron, chromium, and aluminum.

本実施例の中空円筒形金属ハニカム触媒を第7図に示す
ように石油ストーブに取り付はストーブの天板の」三方
2cmのガス組成を測定し第4表に示す。測定したガス
は一酸化炭素、炭化水素と一酸化炭素窒素である。
The hollow cylindrical metal honeycomb catalyst of this example was attached to a kerosene stove as shown in FIG. 7, and the gas composition was measured at 2 cm on each side of the top plate of the stove, and the results are shown in Table 4. The gases measured were carbon monoxide, hydrocarbons and carbon monoxide and nitrogen.

一方、比較例とし本発明の触媒を取り付けていない石油
ストーブの前記と同様な場所におけるガス組成を同じく
第4表に示す。第4表に示す結果より明らかなように本
発明の触媒を用いるとクリーンな燃焼を行うことができ
る。さらに本発明の触媒による熱の輻射(遠赤外線放射
)があるため従来品より暖かかった。
On the other hand, Table 4 also shows the gas composition at the same location as described above in a kerosene stove as a comparative example in which the catalyst of the present invention was not installed. As is clear from the results shown in Table 4, clean combustion can be achieved using the catalyst of the present invention. Furthermore, because of the heat radiation (far-infrared radiation) caused by the catalyst of the present invention, it was warmer than conventional products.

第4表 く第5実施例〉 第1.2実施例と同様な中空円筒状金属ハニカム体ある
いは箔に以下に示す方法で白金とパラジウムを含んだ活
性アルミナ被覆層を形成した。本実施例では活性アルミ
ナに酸化セリウムを加えた。
Fifth Example in Table 4> An activated alumina coating layer containing platinum and palladium was formed on a hollow cylindrical metal honeycomb body or foil similar to Example 1.2 by the method shown below. In this example, cerium oxide was added to activated alumina.

用いた金属は鉄、クロム、アルミニウムがそれぞれ85
.10.5wt%から成るステンレス鋼である。
The metals used were iron, chromium, and aluminum with 85% each.
.. It is a stainless steel consisting of 10.5 wt%.

活性アルミナ(比表面積200m2/ gl  粒径3
00ミクロン以下が99%)と硝酸セリウムとを混合、
1000°Cで焼成するアルミナと酸化セリウムとが重
量比で5対1で構成されている粉末を得た。この粉末と
市販のベーマイトからなるバインダーとが90対10の
重量比で、また白金族金属として塩化白金酸と塩化ロジ
ウムがハニカム触媒体積当りそれぞれ30mg/リット
ルと15mg/リットル含まれるように混合し、比重1
.50の水溶液スラリーとした。金属ハニカム基材を上
記スラリーに浸漬、乾燥し被覆層を形成する。さらに+
50°Cの温度で30分間熱風乾燥を行い、被覆層と基
体との接着強度を高めるため500°Cで1時間焼成す
る。
Activated alumina (specific surface area 200m2/gl particle size 3
00 microns or less) and cerium nitrate,
A powder composed of alumina and cerium oxide in a weight ratio of 5:1 was obtained which was fired at 1000°C. This powder and a binder made of commercially available boehmite are mixed in a weight ratio of 90:10, and chloroplatinic acid and rhodium chloride as platinum group metals are mixed in an amount of 30 mg/liter and 15 mg/liter, respectively, per honeycomb catalyst volume, Specific gravity 1
.. 50 was made into an aqueous slurry. A metal honeycomb substrate is immersed in the slurry and dried to form a coating layer. Further +
Hot air drying is performed at a temperature of 50°C for 30 minutes, and baking is performed at 500°C for 1 hour to increase the adhesive strength between the coating layer and the substrate.

以上の工程を2回繰り返すことによりセラミックハニカ
ム基体に厚み100ミクロン、付着ft80g被覆層/
1リットル担体、形成した。
By repeating the above process twice, the ceramic honeycomb substrate was coated with a coating layer of 100 microns thick and an attached 80 g coating layer.
A 1 liter carrier was formed.

本実施例の中空円筒形金属ハニカム触媒Aあるいは中空
円筒形金属箔触媒Bを第7図に示すように石油ストーブ
に取り付はストーブの天板の」1方2cmのガス組成を
測定し、その測定結果を第5表に示す。測定したガスは
一酸化炭素、炭化水素と一酸化炭素窒素である。
The hollow cylindrical metal honeycomb catalyst A or the hollow cylindrical metal foil catalyst B of this example was attached to a kerosene stove as shown in FIG. The measurement results are shown in Table 5. The gases measured were carbon monoxide, hydrocarbons and carbon monoxide and nitrogen.

一方、比較例とし本発明の触媒A、  Bを取り付けて
いない石油ストーブの前記と同様な場所におけるガス組
同じく第5表に示す。第5表に示す測定結果より明らか
なように、本発明の触媒を用いるとクリーンな燃焼を行
うことができる。さらに本発明の触媒による熱の輻射(
遠赤外線放射)があるため従来品より暖かかった。また
本実施例の触媒は実施例1.2のものに比べ800°C
以上での高温耐熱性に優れ触媒寿命も30%以上良好で
あった。
On the other hand, as a comparative example, the gas set of a kerosene stove in which catalysts A and B of the present invention were not installed at the same location as above is also shown in Table 5. As is clear from the measurement results shown in Table 5, clean combustion can be achieved using the catalyst of the present invention. Furthermore, heat radiation (
It was warmer than conventional products because of the far infrared radiation. Moreover, the catalyst of this example was heated at 800°C compared to that of Example 1.2.
It was excellent in high temperature heat resistance and the catalyst life was also good by 30% or more.

第5表 〈第6実施例〉 実施例2.3の貫通孔あるいはスリットを有する直径1
50mmの中空円筒状の金属箔を第5図、第6図に示す
ように波状に加工した担体に第1実施例と同様な方法で
同量の白金とパラジウムを含んだ活性アルミナ被覆層を
形成した。用いた金属は鉄、クロム、アルミニウムがそ
れぞれ85.10.5wt%から成るステンレス鋼であ
る。
Table 5 (Sixth Example) Diameter 1 with through hole or slit of Example 2.3
An activated alumina coating layer containing the same amount of platinum and palladium was formed on a carrier made by processing a 50 mm hollow cylindrical metal foil into a corrugated shape as shown in FIGS. 5 and 6 in the same manner as in the first example. did. The metal used was stainless steel containing 85.10.5 wt% of iron, chromium, and aluminum, respectively.

本実施例の中空円筒形金属ハニカム触媒A(貫通孔)、
B(スリット)を第7図に示すように石油ストーブに取
り付はストーブの天板の上方2cmのガス組成を測定し
第6表に示す。測定したガスは一酸化炭素、炭化水素と
一酸化炭素窒素である。
Hollow cylindrical metal honeycomb catalyst A (through holes) of this example,
When B (slit) was attached to a kerosene stove as shown in FIG. 7, the gas composition was measured 2 cm above the top of the stove and is shown in Table 6. The gases measured were carbon monoxide, hydrocarbons and carbon monoxide and nitrogen.

一方、比較例とし本発明の触媒を取り付けていない石油
ストーブの前記と同様な場所におけるガス組成を同じく
第6表に示す。第6表に示す測定結果より明らかなよう
に、本発明の触媒を用いると実施例2.3に示したもの
より燃焼ガスとの接触面積が増大しさらにクリーンな燃
焼を行うことができる。また本発明の触媒による熱の輻
射(遠赤外線放射)効果も大き〈従来品より暖かかった
On the other hand, Table 6 also shows the gas composition at the same location as above in a kerosene stove as a comparative example in which the catalyst of the present invention was not installed. As is clear from the measurement results shown in Table 6, when the catalyst of the present invention is used, the contact area with combustion gas is increased compared to that shown in Example 2.3, and cleaner combustion can be performed. In addition, the heat radiation (far-infrared radiation) effect of the catalyst of the present invention is large (warmer than conventional products).

第6表 く第7実施例〉 第1.2実施例と同様な中空円筒状金属ハニカム体ある
いは箔に以下に示す方法で白金とパラジウムを含んだ活
性アルミナ被覆層を形成した。本実施例では活性アルミ
ナに酸化セリウムを加えた。
Seventh Example in Table 6> An activated alumina coating layer containing platinum and palladium was formed on a hollow cylindrical metal honeycomb body or foil similar to Example 1.2 by the method shown below. In this example, cerium oxide was added to activated alumina.

用いた金属は鉄、クロム、アルミニウムがそれぞれ85
.1015wt%から成るステンレス鋼である。
The metals used were iron, chromium, and aluminum with 85% each.
.. It is stainless steel consisting of 1015wt%.

まずプラズマ溶射法を用い金属担体表面に第1被覆層で
あるアルミナ層を10ミクロン形成した。
First, an alumina layer of 10 microns as a first coating layer was formed on the surface of a metal carrier using a plasma spraying method.

その後は第5実施例と同様な方法で第2被覆層を形成し
た。すなわち活性アルミナ(比表面積200 m 2/
 g 1  粒径300ミクロン以下が99%)と硝酸
セリウムとを混合、1ooo°Cで焼成するアルミナと
酸化セリウムとが重量比で5 刻1で構成されている粉
末を得た。この粉末と市販のベーマイトからなるバイン
ダーとか90対10の重量比で、また白金族金属として
塩化白金酸と塩化ロジウムがハニカム触媒体積当りそれ
ぞれ30mg/リットルと15mg/リットル含まれる
ように混合し、比重1.50の水溶液スラリーとした。
Thereafter, a second coating layer was formed in the same manner as in the fifth example. That is, activated alumina (specific surface area 200 m2/
g1 (99% having a particle size of 300 microns or less) was mixed with cerium nitrate and fired at 100°C to obtain a powder composed of alumina and cerium oxide in a weight ratio of 5:1. This powder and a binder made of commercially available boehmite were mixed at a weight ratio of 90:10, and platinum group metals such as chloroplatinic acid and rhodium chloride were mixed at a concentration of 30 mg/liter and 15 mg/liter, respectively, per honeycomb catalyst volume. It was made into an aqueous slurry of 1.50.

金属ハニカム基材を上記スラリーに浸漬、乾燥し被覆層
を形成する。さらに150’Cの温度で30分間熱風乾
燥を行い、被覆層と基体との接着強度を高めるため50
0℃で1時間焼成する。以」二の工程を2回繰り返すこ
とによりセラミックハニカム基体に厚み100ミクロン
、付着!80g被覆層/1リッ)・ル担体、形成した。
A metal honeycomb substrate is immersed in the slurry and dried to form a coating layer. Further, hot air drying was performed at a temperature of 150'C for 30 minutes, and the
Bake at 0°C for 1 hour. By repeating step 2 twice, a thickness of 100 microns is adhered to the ceramic honeycomb substrate! 80 g coating layer/1 liter carrier was formed.

本実施例の中空円筒形金属ハニカム触媒Aあるいは中空
円筒形金属箔触媒Bを第7図に示すように石油ス)・−
ブに取りイ」けスト−ブの天板の」1方2cmのカス組
成を測定し第7表に示す。測定したカスは一酸化炭素、
炭化水素と一酸化炭素窒素である。
The hollow cylindrical metal honeycomb catalyst A or the hollow cylindrical metal foil catalyst B of this example is shown in FIG.
The residue composition of 2 cm on each side of the top plate of the stove was measured and shown in Table 7. The measured residue is carbon monoxide,
These are hydrocarbons and carbon monoxide and nitrogen.

一方、比較例とし本発明の触媒を取り付けていない石油
ストーブの前記と同様な場所におけるガス組成を同じく
第7表に示す。第7表に示す測定結果より明らかなよう
に、本発明の触媒を用いるとクリーンな燃焼を行うこと
ができる。さらに本発明の触媒による熱の輻射(遠赤外
線放射)があるため従来品より暖かかった。また本実施
例の触媒はアルミナの被覆層が極めて強固に金属担体に
接着しており第5実施例に比べさらに800 ’C以」
二での高温耐熱性に優れ触媒寿命も良好であった。
On the other hand, Table 7 also shows the gas composition at the same location as above in a kerosene stove as a comparative example in which the catalyst of the present invention was not installed. As is clear from the measurement results shown in Table 7, clean combustion can be achieved using the catalyst of the present invention. Furthermore, because of the heat radiation (far-infrared radiation) caused by the catalyst of the present invention, it was warmer than conventional products. In addition, the alumina coating layer of the catalyst of this example adheres extremely firmly to the metal carrier, and the temperature is even higher than that of 80'C compared to the fifth example.
It had excellent high-temperature heat resistance and a good catalyst life.

第7表 G− 発明の効果 以」二のように、本発明によれば金属ノへ二カム担体あ
るいは金属箔担体に白金族金属を含んたアルミナからな
る耐熱性、接着性に優れた被覆層を有する燃焼ガス浄化
用触媒を容易にかつ経済的に得ることができる。
As shown in Table 7 G-Effects of the Invention (2), according to the present invention, a coating layer having excellent heat resistance and adhesiveness is made of alumina containing a platinum group metal on a metal foil carrier or a metal foil carrier. A catalyst for purifying combustion gas having the following properties can be easily and economically obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図はそれぞれ本発明の実施例の燃焼ガス浄
化用触媒の外観図、第7図は本発明の触媒を石油ストー
ブに設置した図である。 1・Φ拳中空円筒状金属/Sニカム体、3拳・・貫通孔
、4・・・金属箔。 代理人の氏名 弁理士 粟野重孝 ほか1名第 区 第 図 八
FIGS. 1 to 6 are external views of combustion gas purifying catalysts according to embodiments of the present invention, and FIG. 7 is a diagram showing the catalyst of the present invention installed in a kerosene stove. 1. Φ fist hollow cylindrical metal/S nicum body, 3 fists... through hole, 4... metal foil. Name of agent: Patent attorney Shigetaka Awano and one other person No. 8, Ward No. 8

Claims (8)

【特許請求の範囲】[Claims] (1)中空円筒状金属ハニカム体に白金族金属を含んだ
活性アルミナからなる被覆層を形成したことを特徴とす
る燃焼ガス浄化用触媒。
(1) A catalyst for purifying combustion gas, characterized in that a coating layer made of activated alumina containing a platinum group metal is formed on a hollow cylindrical metal honeycomb body.
(2)中空円筒形で貫通孔のある金属箔体に白金族金属
を含んだ活性アルミナからなる被覆層を形成したことを
特徴とする燃焼ガス浄化用触媒。
(2) A catalyst for purifying combustion gas, characterized in that a coating layer made of activated alumina containing a platinum group metal is formed on a hollow cylindrical metal foil body having through holes.
(3)貫通孔の直径が燃焼炎から離れるにつれてしだい
に大きくすることを特徴とする請求項2記載の燃焼ガス
浄化用触媒。
(3) The combustion gas purifying catalyst according to claim 2, wherein the diameter of the through hole gradually increases as the distance from the combustion flame increases.
(4)中空円筒形でスリットのある金属箔体に白金族金
属を含んだ活性アルミナからなる被覆層を形成したこと
を特徴とする燃焼ガス浄化用触媒。
(4) A catalyst for purifying combustion gas, characterized in that a coating layer made of activated alumina containing a platinum group metal is formed on a hollow cylindrical metal foil body with slits.
(5)白金族金属を含んだ被覆層が活性アルミナと酸化
セリウムからなることを特徴とする請求項1〜4のいず
れかに記載の燃焼ガス浄化用触媒。
(5) The combustion gas purifying catalyst according to any one of claims 1 to 4, wherein the coating layer containing a platinum group metal is composed of activated alumina and cerium oxide.
(6)中空円筒状金属ハニカム体あるいは箔体が鉄、ク
ロム、アルミニウムから成るステンレス鋼であることを
特徴とする請求項1〜5のずれかに記載の燃焼ガス浄化
用触媒。
(6) The combustion gas purifying catalyst according to any one of claims 1 to 5, wherein the hollow cylindrical metal honeycomb body or foil body is made of stainless steel made of iron, chromium, or aluminum.
(7)中空円筒状金属箔体が波状であることを特徴とす
る請求項1〜6のいずれかに記載の燃焼ガス浄化用触媒
(7) The combustion gas purifying catalyst according to any one of claims 1 to 6, wherein the hollow cylindrical metal foil body is wavy.
(8)中空円筒状金属ハニカム体あるいは箔体に溶射法
によりアルミナからなる第1被覆層を形成し、さらに白
金族金属を含んだ活性アルミナからなる第2被覆層を形
成したことを特徴とする請求項1〜7のいずれかに記載
の燃焼ガス浄化用触媒。
(8) A first coating layer made of alumina is formed on a hollow cylindrical metal honeycomb body or a foil body by thermal spraying, and a second coating layer made of activated alumina containing a platinum group metal is further formed. The combustion gas purifying catalyst according to any one of claims 1 to 7.
JP63312299A 1988-12-09 1988-12-09 Oil stove combustion gas purification catalyst Expired - Fee Related JP2553678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63312299A JP2553678B2 (en) 1988-12-09 1988-12-09 Oil stove combustion gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63312299A JP2553678B2 (en) 1988-12-09 1988-12-09 Oil stove combustion gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH02157047A true JPH02157047A (en) 1990-06-15
JP2553678B2 JP2553678B2 (en) 1996-11-13

Family

ID=18027578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63312299A Expired - Fee Related JP2553678B2 (en) 1988-12-09 1988-12-09 Oil stove combustion gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2553678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201356B2 (en) * 1996-06-20 2008-12-24 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
US6596243B1 (en) 1996-06-20 2003-07-22 Honda Giken Kogyo Kabushiki Kaisha Catalyst element for purifying exhaust gases from internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541812A (en) * 1978-09-18 1980-03-24 Lundholms Verksteder Ab Liquid filter
JPS5550706A (en) * 1978-10-06 1980-04-12 Eichi Ueruzu Donarudo Mutual transductance variable tuning antenna
JPS5613631U (en) * 1979-07-10 1981-02-05
JPS6291244A (en) * 1985-05-23 1987-04-25 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPS63162045A (en) * 1986-12-25 1988-07-05 Toyota Motor Corp Production of catalyst deposited on metallic carrier for cleaning exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541812A (en) * 1978-09-18 1980-03-24 Lundholms Verksteder Ab Liquid filter
JPS5550706A (en) * 1978-10-06 1980-04-12 Eichi Ueruzu Donarudo Mutual transductance variable tuning antenna
JPS5613631U (en) * 1979-07-10 1981-02-05
JPS6291244A (en) * 1985-05-23 1987-04-25 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPS63162045A (en) * 1986-12-25 1988-07-05 Toyota Motor Corp Production of catalyst deposited on metallic carrier for cleaning exhaust gas

Also Published As

Publication number Publication date
JP2553678B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
JP3037348B2 (en) Laminated support for catalytic combustion reactor beds
JPH11503661A (en) Thermal spraying method for bonding catalyst materials to metal substrates
JPH03295184A (en) Resistance adjustment type heater and catalyst converter
JPH02157047A (en) Combustion gas cleanup catalyst
JPS6026211A (en) Combustion burner
JPH04366584A (en) Resistance regulating type heater and heater unit
JPH02119939A (en) Exhaust gas purification catalyst
JPH03154637A (en) Flat catalyst
JPH04145946A (en) Catalyst for purification of exhaust gas
JPH0464736B2 (en)
JPH03193141A (en) Preparation of self-heating type catalyst
JPH08196906A (en) Catalyst member
JPH04110045A (en) Catalyst body for purification of exhaust gas and its production
JP4531169B2 (en) Metal carrier catalyst for exhaust gas purification
JPH0438454B2 (en)
JPH04349935A (en) Oxidation catalyst
JPH0457367B2 (en)
JPS63267805A (en) Oxidizing catalyst for high temperature service
JP5325079B2 (en) Metal carrier catalyst for exhaust gas purification
JPH01164444A (en) Carrier for exhaust gas purification catalyst
JPH0545294B2 (en)
JPH04104838A (en) Waste gas purifying catalytic body
JPH05309272A (en) Production of oxidation catalyst
JPWO2004004894A1 (en) Exhaust gas purification catalyst carrier
JPH03296438A (en) Catalyst for waste gas purification

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees