JPH02157038A - Packing element for use in heat conduction or chemical tower - Google Patents
Packing element for use in heat conduction or chemical towerInfo
- Publication number
- JPH02157038A JPH02157038A JP1264117A JP26411789A JPH02157038A JP H02157038 A JPH02157038 A JP H02157038A JP 1264117 A JP1264117 A JP 1264117A JP 26411789 A JP26411789 A JP 26411789A JP H02157038 A JPH02157038 A JP H02157038A
- Authority
- JP
- Japan
- Prior art keywords
- packing
- filling element
- portions
- surface area
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012856 packing Methods 0.000 title claims abstract description 86
- 239000000126 substance Substances 0.000 title claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 15
- 238000011049 filling Methods 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 12
- 229910052573 porcelain Inorganic materials 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 23
- 238000004140 cleaning Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 238000002485 combustion reaction Methods 0.000 description 21
- 239000011449 brick Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 235000019645 odor Nutrition 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/30—Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
- F23G7/061—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
- F23G7/065—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
- F23G7/066—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
- F23G7/068—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/302—Basic shape of the elements
- B01J2219/30223—Cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30408—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30416—Ceramic
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は熱伝導用又は化学塔の充填材料として使用する
充填要素に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a packing element for use in heat transfer or as packing material for chemical columns.
化学塔充填要素及び熱伝導用充填要素は従来から公知で
ある。熱伝導用充填要素の場合は、熱伝導用充填要素層
を構成するために非常に多くの充填要素が用いられる。Chemical column packing elements and heat transfer packing elements are known in the art. In the case of heat-conducting packing elements, a large number of packing elements are used to form a layer of heat-conducting packing elements.
例えばある種の熱伝導用充填要素はセラミック又は石造
物で作られ、蒸気又は臭気を燃焼室に送りこむ場合に使
用される。蒸気や臭気は燃焼室内において高温で燃焼さ
れ、その殆んど大部分が二酸化炭素と水滴に変えられた
上で大気中に排出される。このようなガス体が燃焼室に
送りこまれる途中で通常先ず石造物の層を通過する。こ
の層は予備加熱されていて、送られてきたガスを予備加
熱し、該ガスが燃焼室に入ると直ちに燃焼が行なわれる
ようにもくろまれている。上記のような熱伝導用充填要
素の使用時にガスの流れ方向は周期的に逆転される。即
ちガスは、燃焼成品が大気に向けて排出される途上にお
いて石造物即ち室内の充填要素を予備加熱するために、
燃焼室から石造物の室を外方に向けて通過する。For example, some heat transfer packing elements are made of ceramic or masonry and are used to channel steam or odors into the combustion chamber. Steam and odors are burned at high temperatures in the combustion chamber, and most of them are converted into carbon dioxide and water droplets before being discharged into the atmosphere. On the way to the combustion chamber, such a gaseous body usually first passes through a layer of masonry. This layer is preheated and is designed to preheat the incoming gas so that combustion can take place as soon as it enters the combustion chamber. When using a heat transfer packing element as described above, the direction of gas flow is periodically reversed. That is, the gas is used to preheat the masonry or chamber filling elements on the way to the exhaust of the combustion products to the atmosphere.
From the combustion chamber it passes outward through the masonry chamber.
このような装置では充填要素を収容した熱回収室を通る
ガス流は交互に向きが変る。従って充填要素は流入して
来るガスの予備加熱と流出して行くガスによる充填要素
自体の加熱とを交互に行なう。In such devices, the gas flow through the heat recovery chamber containing the packing elements is alternately directed. The filling element thus alternately preheats the incoming gas and heats the filling element itself by the outgoing gas.
上記の装置は例えば1975年7月22日にJames
H。The above-mentioned device was, for example, published by James on July 22, 1975.
H.
Mueller に付与されたアメリカ特許箱3.89
5.918号に開示されている。US Patent Box 3.89 granted to Mueller
No. 5.918.
又ガスの清浄化或いは他の産業的設備等の化学塔充填に
充填要素を使用することが知られている。It is also known to use packing elements for packing chemical columns, such as in gas purification or other industrial installations.
例えば液体−ガス接触装置、液体接触装置及び流体−流
体接触装置において、充填要素は通常無作為に投込まれ
、充填要素層を通して流体が流れ、通常これと同時に流
体が逆方向に流れるように構成されている。しばしば上
記の装置は大気に排出するよりも煤塵状放出物等の不純
物の集収用に使用される。鞍形化学塔用充填要素の例は
アメリカ特許箱4.155.960号に、他の化学塔用
充填要素の例はアメリカ特許箱4.333.892号、
4.303.599号及び4.316.863号に開示
されている。For example, in liquid-gas contacting devices, liquid contacting devices, and fluid-fluid contacting devices, the packing elements are typically randomly dumped and configured to allow fluid to flow through the layer of packing elements, usually at the same time as fluid flowing in the opposite direction. has been done. Frequently, such devices are used to collect impurities such as particulate emissions rather than to discharge them to the atmosphere. Examples of packing elements for saddle-shaped chemical columns can be found in U.S. Pat. No. 4.155.960, and other examples of packing elements for chemical columns can be found in U.S. Pat.
No. 4.303.599 and No. 4.316.863.
充填要素を化学塔の充填に用いる場合も、或は熱保持・
熱伝導に用いる場合も以下に列記するように両型式に共
通な幾つかの配慮すべき事項がある。Packing elements can also be used to pack chemical columns, or for heat retention and
When used for heat conduction, there are some considerations common to both types, as listed below.
・充填要素によって与えられる表面積の大きさ、・充填
要素の体積の大きさ、
・充填要素の幾何学的形状、
・充填要素を配列した室又は塔を通しての圧力降下、
・室内又は塔内に充填された充填要素が相互に支えるた
めの固有の強度、
・室又は塔に充填するために充填要素を上方から投下し
た時にも無傷のままで残る性質、・製造費が低価である
こと、
〔発明が解決しようとする課題〕
本発明は熱伝導用又は化学塔、好ましくは投下型充填を
する塔又は室の充填材料として使用する充填要素を供給
するものである。- the amount of surface area provided by the packing elements; - the size of the volume of the packing elements; - the geometry of the packing elements; - the pressure drop across the chamber or column in which the packing elements are arranged; - the packing within the chamber or column. the inherent strength of the packed elements to support each other; the ability to remain intact when the packing elements are dropped from above to fill a chamber or column; the low cost of production; OBJECTS OF THE INVENTION The present invention provides a packing element for use as a packing material in heat transfer or chemical columns, preferably columns or chambers with drop-filling.
本発明の主たる目的は熱伝導用又は化学塔の充填要素に
適した新規の充填要素の形状を提供することである。The main object of the invention is to provide a new packing element shape suitable for heat transfer or for packing elements of chemical columns.
上記の目的は本発明によれば、熱伝導用又は化学塔の充
填材料として使用する充填要素であって、多数の充填要
素を室内に配設し、該充填要素と接触状に酸室に流体を
通過させたものにおいて、上記充填要素は、長手方向に
延びた芯部分と、該芯部分から略半径方向外方に延びた
複数同形の放射状部分と、夫々の放射状部分の末端部と
して接続した複数の縁部分とからなる一体物の三次元体
の無機質成分からなり、夫々の上記放射状部分とそれに
接続する縁部分とは、上記芯部分の拡がり部として長手
方向に延びて略T形断面形に形成され、すべての上記縁
部分の半径方向外周面は協働して略円筒状輪郭を画定し
た充填要素によって解決される。According to the present invention, the above-mentioned object is a packing element used for heat conduction or as a packing material for a chemical column, in which a large number of packing elements are arranged in a chamber, and a fluid is supplied to an acid chamber in contact with the packing elements. The filling element is connected to a longitudinally extending core portion and a plurality of identically shaped radial portions extending substantially radially outward from the core portion as an end portion of each radial portion. It is made of an inorganic component of an integral three-dimensional body consisting of a plurality of edge portions, and each of the radial portions and the edge portions connected thereto extend in the longitudinal direction as an extension of the core portion and have a substantially T-shaped cross section. The radially outer circumferential surface of all said edge portions is defined by a filling element which cooperates to define a generally cylindrical contour.
本発明によればT形断面形部分に長手方向の溝が設けら
れている。又充填要素の材料は少なくとも金属、磁器、
セラミック等の鉱物質であり、場合によってはグラスフ
ァイバーで強化したプラスチック又は他の合成材料で成
形してもよい。又、ft2/1bsで測った充填要素の
表面積/重量比は約1.20から1.56の範囲である
。又、円柱状部の断面積の約65%を開口して、該開口
部を流体が通過するようにしている。According to the invention, the T-shaped section is provided with a longitudinal groove. The material of the filling element is at least metal, porcelain,
Mineral materials such as ceramics may be molded from plastic or other synthetic materials, optionally reinforced with glass fibers. Also, the surface area/weight ratio of the packing element, measured in ft2/1bs, ranges from about 1.20 to 1.56. Further, approximately 65% of the cross-sectional area of the cylindrical portion is opened to allow fluid to pass through the opening.
又、使用目的に応じて充填要素の直径/長さの比を変化
させている。Also, the diameter/length ratio of the filling element is varied depending on the intended use.
本発明の他の目的と利益とは、特許請求の範囲、実施例
の詳細な説明及び図面の簡単な説明を読めば明らかにな
るであろう。Other objects and advantages of the invention will become apparent from the claims, the detailed description of the embodiments, and the brief description of the drawings.
本発明の充填要素の構成の説明に先立ち、第9図を参照
して全体的に符号10で表した焼却装置について説明す
る。焼却装置10は高温の燃焼室11を備え、該燃焼室
の周囲には炉壁13で燃焼室から隔てられた複数の熱エ
ネルギ回収室12が配設されている。第9図に示ず炉壁
13は中高の表面15と中低の表面16とを有する。回
収室12内の充填要素17は炉壁13の中高面15に重
力を働かせて個々の煉瓦18を圧縮下に維持する。煉瓦
18は図示せぬパーホレーションを有し、後述するよう
に中低面16から中高面15の方向に及びこれと反対の
方向にガスを通過させる。又煉瓦は熱反射性の材料から
なり、複数の煉瓦を含んだ水平の列に配設されると共に
上下に隣接する列は互に喰違い状になっている。Prior to describing the structure of the filling element of the present invention, an incinerator generally designated by the reference numeral 10 will be described with reference to FIG. The incinerator 10 includes a high-temperature combustion chamber 11, and a plurality of thermal energy recovery chambers 12 are arranged around the combustion chamber and separated from the combustion chamber by a furnace wall 13. The furnace wall 13, not shown in FIG. 9, has a medium-high surface 15 and a medium-low surface 16. A packing element 17 in the recovery chamber 12 exerts a gravitational force on the raised surface 15 of the furnace wall 13 to maintain the individual bricks 18 under compression. The brick 18 has perforations (not shown), and allows gas to pass from the mid-low surface 16 to the mid-high surface 15 and in the opposite direction, as will be described later. The bricks are made of a heat-reflective material and are arranged in horizontal rows containing a plurality of bricks, with vertically adjacent rows staggered from each other.
燃焼室11の内部には第9図に示すように、その下部を
通して一つ以上のバーナー22が立上っている。上記の
バーナーは燃焼室内でガスの成分によって1093℃(
2000’F ) までの燃焼を行なうことが可能で
ある。As shown in FIG. 9, one or more burners 22 rise inside the combustion chamber 11 through its lower part. The burner above can reach a temperature of 1093℃ (
It is possible to carry out combustion up to 2000'F.
通常適宜の工場、設備等から入口23に送られて来たガ
スは多岐管の分配装置24に入り、垂直ダクト19を介
して、既に予備加熱されたエネルギ回収室12のあるも
のに入り、該エネルギ回収室内に積重ねられた充填要素
を通過する。従って該ガスが多孔性の炉壁部分を通して
燃焼室11内に入ると該燃焼室内で直ちに燃焼する。次
いてガスは多孔性の炉壁13を外方に向けて通過し、エ
ネルギ回収室12内の他の充填要素層を通過し、排出ダ
クト27に向けて外方に通過移動中に該エネルギ回収室
中の充填要素を加熱する。排出ダクト27に送られたガ
スはファン又はポンプで作動するダクト28を介して好
ましくは二酸化炭素及び水滴にして大気中に排出される
。Gas, normally delivered to the inlet 23 from a suitable plant, facility, etc., enters the manifold distribution device 24 and, via the vertical duct 19, enters some of the energy recovery chambers 12, which are already preheated. It passes through the filling elements stacked in the energy recovery chamber. Therefore, when the gas enters the combustion chamber 11 through the porous furnace wall portion, it is immediately combusted within the combustion chamber. The gas then passes outwardly through the porous furnace wall 13, passes through another layer of packing elements in the energy recovery chamber 12, and recovers the energy during its outward passage towards the exhaust duct 27. Heating the filling elements in the chamber. The gas sent to the exhaust duct 27 is exhausted to the atmosphere via a duct 28 operated by a fan or pump, preferably as carbon dioxide and water droplets.
図示のように種々の弁装置30を使用してガスの流れを
、必要に応じである時は内方に向けてエネルギ回収室1
2を通して燃焼室11に送り込み、又ある時は外方に向
けてエネルギ回収室12を通して燃焼室11から送り出
す。即ち上述の従来技術から判るようにある特定の時間
には、エネルギ回収室12のあるものはガスが内方に向
けて通過し、父性のあるものはガスが外方に向けて通過
する。Various valve arrangements 30 are used as shown to direct the flow of gas inwardly into the energy recovery chamber 1 as required.
2 into the combustion chamber 11, and sometimes outwardly from the combustion chamber 11 through the energy recovery chamber 12. That is, as can be seen from the prior art described above, at a particular time, some of the energy recovery chambers 12 will have gas passing through them inwardly, and gas will be passing outwards through some of the energy recovery chambers 12.
炉壁13を構成する煉瓦18は通過孔を有する意味で多
孔性であることが好ましく、該孔率は各煉瓦(q)
の体積の30〜40%でまたある場合には50〜70%
に達する。The bricks 18 constituting the furnace wall 13 are preferably porous in the sense that they have passage holes, and the porosity is 30 to 40% of the volume of each brick (q), and in some cases 50 to 70%.
reach.
このように構成した本発明の装置は、多枝管分配装置2
4の人口23から汚染した蒸気や臭気が侵入するような
場所で作動される。従って弁装置30は蒸気等を含んだ
ガスを熱エネルギ回収室12に振向け、充填要素17を
通過させて該ガスを燃焼室11に送る。この際ガスは燃
焼温度に極めて近い温度になった充填要素層を通過する
。予め定められた燃焼温度を維持したガスバーナー又は
オイルバーナーによって酸化作用は完全に行なわれる。The device of the present invention configured in this way has a multi-branch pipe distribution device 2.
It is operated in areas where contaminated steam and odors may enter from 23 people with a population of 4. The valve arrangement 30 therefore directs the gas containing steam or the like into the thermal energy recovery chamber 12 and passes it through the filling element 17 to the combustion chamber 11 . In this case, the gas passes through a bed of packed elements whose temperature is very close to the combustion temperature. The oxidation action is carried out completely by means of a gas burner or an oil burner, which maintains a predetermined combustion temperature.
燃焼室11内での燃焼が終ると清浄化されたガスは、こ
の際には取出しモードとなったある充填要素層を通して
エネルギ回収室から引抜かれて、該ガスが含んでいた熱
を充填要素に引渡し、該充填要素はこの熱を吸収する。After combustion in the combustion chamber 11, the purified gas is withdrawn from the energy recovery chamber through a layer of packing elements, this time in extraction mode, transferring the heat it contained to the packing elements. Upon delivery, the packing element absorbs this heat.
このように作動条件がその都度逆転するので、弁装置3
0の作動設定に応じて充填要素層は交互に作動して、排
出されて行くガスから熱を吸収し或はガスを予備加熱す
る。Since the operating conditions are reversed each time, the valve device 3
Depending on the operating setting of 0, the packing element layers are activated alternately to absorb heat from the exiting gas or to preheat the gas.
第1〜3図について説明すると、充填要素17は運搬の
慣習上無作為にどさっと置かれているものである。即ち
充填要素17はエネルギ回収室内に正確に幾何学的に配
列されるのではなくて重力落下を利用してエネルギ回収
室に供給される。従って充填要素は層内において不規則
な向きをとる。しかし−船釣にではないが、充填要素の
寸法が小さい場合には必要があれば正確に配列ずろこと
がある。Referring to FIGS. 1-3, the filling elements 17 are randomly scattered as is customary for transportation. That is, the filling elements 17 are not arranged precisely geometrically within the energy recovery chamber, but are fed into the energy recovery chamber using gravity fall. The filling elements therefore assume an irregular orientation within the layer. However - although not for boat fishing - if the dimensions of the filling elements are small, it may be necessary to misalign them precisely.
充填要素17は好ましくは押出し工程によって幾何学的
形状に製作されていて、一端面51から他端面52に向
けて延びた長い芯部分50と、該芯部分50から半径方
向外方に突出した複数の放射状部分52とを備える。こ
の実施例には6個の放射状部分が示されているが、必要
があれば6個より多く或は6個より少なくすることがで
きる。また放射状部分52は約60°の角度的間隔をお
いて等間隔に示されているが必要があれば不等間隔にす
ることができる。The filling element 17 is preferably made into a geometric shape by an extrusion process and includes an elongated core portion 50 extending from one end face 51 to the other end face 52 and a plurality of radially outwardly projecting portions from the core portion 50. radial portion 52. Although six radial sections are shown in this example, more or less than six can be used if desired. Also, although the radial portions 52 are shown equally spaced with angular spacing of approximately 60 degrees, they may be unevenly spaced if desired.
各放射状部分52は縁部分53に接続していて、第2図
の端面図に示すように、放射状部分52と縁部分53は
協働してT形断面形を形成する。第2図に示す上記T形
断面形群は第2図の破線54で示されるように全体とし
て略円形の輪郭を画く。第1〜3図に示す実施例の縁部
分53で形成される外周面55は実際の断面形が円形で
ある。しかし夫々の縁部分の外周面55は必ずしも円で
なくてもよく、通常種々の輪郭に形成することができる
が充填要素の外形はほぼ円柱形である。また充填要素1
7のT形断面形の隣接縁部分53間には長手方向に延び
た流路が画定されていて、ガス又は其他の流体が充填要
素を通して流れる時に流体との接触面積を増大するよう
に形成される。Each radial portion 52 is connected to an edge portion 53 such that the radial portions 52 and edge portions 53 cooperate to form a T-shaped cross-section as shown in the end view of FIG. The T-shaped cross-section group shown in FIG. 2 has an overall generally circular outline as indicated by dashed line 54 in FIG. The outer circumferential surface 55 formed by the edge portion 53 of the embodiment shown in FIGS. 1-3 has a circular cross-section. However, the outer circumferential surface 55 of each edge portion does not necessarily have to be circular, and usually the outer shape of the filling element is generally cylindrical, although it can be formed with various contours. Also, filling element 1
A longitudinally extending passageway is defined between adjacent edge portions 53 of the T-shaped cross section of 7 and is configured to increase the contact area with the gas or other fluid as it flows through the filling element. Ru.
第1〜3図に示す充填要素の輪郭はワゴン車の断面輪郭
に似ている。The profile of the filling element shown in Figures 1-3 resembles the cross-sectional profile of a wagon.
第4図に示す別の実施態様では、芯部分58の略中心部
において該芯部分を通って長手方向に延びた貫通孔60
を設けて、接触面積と通過流体量の増大を計っている。In another embodiment, shown in FIG. 4, a through hole 60 extends longitudinally through the core portion 58 at approximately the center thereof.
is installed to increase the contact area and the amount of fluid passing through.
第5図に示す別の実施態様では第2図の実施例に示す急
激な交差面とは異なり、図示のように充填要素の縁部分
61には、弯曲したコーナ一部分63に緩かに溶は込ん
だ弯曲外周面62が設けられている。In an alternative embodiment shown in FIG. 5, unlike the sharp intersection shown in the embodiment of FIG. A deeply curved outer peripheral surface 62 is provided.
第6図に示す別の実施態様では、充填要素17の接触面
積を増大するために、縁部分64の外周面65には長手
方向の溝が形成されている。In another embodiment shown in FIG. 6, longitudinal grooves are formed in the outer peripheral surface 65 of the edge portion 64 in order to increase the contact area of the filling element 17.
第7図に示す別の実施態様は、依然としてその放射状部
分67と協働してT形断面形に形成されているが、縁部
分と放射状部分間の強度を増ししかも縁部分の外面積を
増すために溝付きの外周面68を備えた略三角形断面形
を備えている。Another embodiment shown in FIG. 7 is still formed in a T-shaped cross-section in cooperation with its radial portion 67, but increases the strength between the edge portion and the radial portion and increases the external area of the edge portion. It has a generally triangular cross-sectional shape with a grooved outer circumferential surface 68 for this purpose.
第8図には放射状部分と縁部分との別の形状が示されて
いる。この実施態様では縁部分70は第5図の縁部分と
略類似であるが、放射状部分は71の場所で波状に弯曲
していて放射状部分の領域における接触面積を増してい
る。An alternative configuration of the radial portion and the edge portion is shown in FIG. In this embodiment, the edge portion 70 is generally similar to the edge portion of FIG. 5, but the radial portion is curved in a wavy manner at 71 to increase the contact area in the region of the radial portion.
上述した種々のT形断面形を維持しながら本発明の充填
要素の種々の変形が可能である。Various variations of the filling element of the invention are possible while maintaining the various T-shaped cross-sectional shapes described above.
本発明の充填要素のある実施態様において、より詳しく
は直径25.4mm (1in)長さ25.4mm (
1in)の充填要素の表面積は一充填要素当り10.7
cut(0,053ft2)になる。この場合第2図に
示す端面図における開口面積は円柱状部の断面積の約6
5%である。このような充填要素は充填塔又は熱回収室
に供給することができ、多数の充填要素を使用すると流
体が通過する充填要素の28317cn((ft’)当
り85000cn((92ft2)にも達する表面積カ
得うレル。In certain embodiments of the filling element of the present invention, more particularly, the filling element has a diameter of 25.4 mm (1 in) and a length of 25.4 mm (1 in.).
The surface area of a 1in) packing element is 10.7 per packing element.
cut (0,053ft2). In this case, the opening area in the end view shown in Figure 2 is approximately 6 of the cross-sectional area of the cylindrical part.
It is 5%. Such packing elements can be fed into packed columns or heat recovery chambers, and the use of a large number of packing elements provides a surface area as high as 85,000 cn ((92 ft)) per 28,317 cn ((ft)) of packing elements through which the fluid passes. Get it.
化学塔の充填の場合、本発明の表面積増大能力によって
大きな表面積から大きな清浄効果が得られ、また熱回収
用充填要素として使用した場合大量の熱回収が得られる
。In the case of chemical column packing, the surface area enhancement capability of the present invention provides greater cleaning efficiency from the larger surface area, and also provides greater heat recovery when used as a heat recovery packing element.
上述した充填要素の形状は、境界層の面積を増大する小
さな流路と、該流路を通過する流体の乱流増加と、接触
表面積を増大することによって、清浄、熱伝導のいずれ
の能力も増大させる。The packing element shape described above improves both cleaning and heat transfer capabilities by providing small channels that increase the area of the boundary layer, increasing turbulence of the fluid passing through the channels, and increasing the contact surface area. increase
本発明によれば、従来の充填要素の約37%の体積でか
つ充填要素を通過する流体の圧力降下が従来の充填要素
のよりも10〜15%減少させて同一の熱伝導が得られ
た。また本発明の充填要素によれば、充填要素層に亘っ
た圧力降下を路間−にし、又熱伝導性を同一にするには
従来の約半分の充填要素の体積があれば足りることが判
明している。According to the present invention, the same heat transfer is obtained with about 37% of the volume of the conventional packing element and with a pressure drop of the fluid passing through the packing element being reduced by 10-15% compared to the conventional packing element. . Furthermore, according to the packing element of the present invention, it has been found that the volume of the packing element, which is about half of that of the conventional one, is sufficient to minimize the pressure drop across the packing element layers and to maintain the same thermal conductivity. are doing.
このため設備費を大幅に節減することができる。Therefore, equipment costs can be significantly reduced.
またT形状の放射状部分を充填要素の要求強度に応じて
種々変形することができる。充填要素を柱状に積重ねた
場合に基部にある充填要素がつぶれることなく15m
(50ft)の柱状体を支えることができる。また基部
にある充填要素は2844kg/cut(2000]b
S/1n2)までの圧力を支持することができる。Furthermore, the T-shaped radial portion can be modified in various ways depending on the required strength of the filling element. When the filling elements are stacked in a columnar manner, the filling element at the base can reach up to 15 m without collapsing.
(50ft) can support a columnar body. In addition, the filling element at the base weighs 2844 kg/cut (2000] b
Pressures up to S/1n2) can be supported.
充填要素を構成する材料は、金属、非金属(セラミック
、アルミニウム、シリコン、プラスチック、ガラス繊維
補強のプラスチック等)を含む。The materials constituting the filling elements include metals and non-metals (ceramics, aluminum, silicon, plastics, glass fiber reinforced plastics, etc.).
通常上記の材料は使用目的によって選ばれる。例えば第
9図に示すような熱回収等の高温条件で使用する場合に
は1204℃(2200’F )以上の高温に堪えるセ
ラミック、陶土等で出来た充填要素が望ましい。この場
合充填要素は石造物状の構造にすることができる。例え
ば充填塔には鋼等の金属製充填要素の使用が望ましい。The above materials are usually selected depending on the intended use. For example, when used under high-temperature conditions such as heat recovery as shown in FIG. 9, it is desirable to use a filling element made of ceramic, china clay, etc. that can withstand high temperatures of 1204°C (2200'F) or higher. In this case, the filling element can be a masonry-like structure. For example, it is desirable to use metal packing elements, such as steel, in packed columns.
この場合充填要素は260℃(500’F)程度の高温
を受ける。上述した成分及び本文に開示しなかった成分
も、無機質成分のものであれば使用することができる。In this case, the filling element is subjected to high temperatures on the order of 260°C (500'F). The components mentioned above and components not disclosed in the text can also be used as long as they are inorganic components.
上記の無機質成分はさらに磁器、化学的石造物、各種の
鋼、合金、チタン、ニッケル等の硬質金属を含み、場合
によってはテフロン、ポリプロピレン等で成形してもよ
い。細部の成分・構成は使用目的によって定まる。上記
の使用目的は例えば蒸溜、ガス吸収、熱回収及び関連し
た作動である。特に再生型の熱回収においては、充填要
素をスケルトン状に形成して個々の充填要素間の隙間を
ガスが通過する際の熱回収を容易にする。即ち各充填要
素をガスが通過する際にガスの流れが細分されてガスと
充填要素間の熱伝導が行なわれる。The above inorganic components further include porcelain, chemical stonework, various steels, alloys, hard metals such as titanium, nickel, etc., and may optionally be molded with Teflon, polypropylene, etc. The detailed components and composition are determined by the purpose of use. The above-mentioned uses are, for example, distillation, gas absorption, heat recovery and related operations. Particularly in regenerative heat recovery, the packing elements are formed in a skeleton shape to facilitate heat recovery when gas passes through the gaps between the individual packing elements. That is, as the gas passes through each packing element, the flow of gas is subdivided to effect heat transfer between the gas and the packing element.
本発明は熱伝導比を向上するために最大の表面積/体積
比が得られる充填要素の物性を向上させることを目的と
する。この目的は熱伝導性を向上するために、充填要素
層を通しての圧力降下を最小に保って高度の乱流を導く
ことにより達成される。The present invention aims to improve the physical properties of the filling element to obtain a maximum surface area/volume ratio in order to improve the heat transfer ratio. This objective is achieved by keeping the pressure drop through the packing element layer to a minimum and introducing a high degree of turbulence in order to improve thermal conductivity.
又本発明は充填要素の長さ/直径比を限定して、無作為
投下時に該充填要素を所望の方向に向けることができる
。長さ/直径比を大きくすると、該充填要素は水平にな
る傾向を有して、無作為落下すると大部分の充填要素が
水平方向を向くようになる。これと反対の条件即ち直径
を長さよりも大きくすると、該充填要素は垂直になる傾
向を有して、無作為落下すると大部分の充填要素が垂直
方向を向くようになる。このようにして充填要素層を通
る流体の流れの方向が水平か垂直かによって、それに応
じた所望の長さ/直径比を付与して、流体の流れが充填
要素層を通過中における熱伝導効率を最大にすると共に
圧力降下を最小にすることができる。The present invention also limits the length/diameter ratio of the packing elements to orient the packing elements in a desired direction during random dropping. When the length/diameter ratio is increased, the packing elements tend to be horizontal, such that a random fall will cause most of the packing elements to be oriented horizontally. The opposite condition, ie, the diameter is greater than the length, will cause the packing elements to have a tendency to be vertical, such that a random fall will cause most of the packing elements to be oriented vertically. In this way, depending on whether the direction of fluid flow through the packing element layer is horizontal or vertical, a desired length/diameter ratio can be given accordingly to improve the heat transfer efficiency during the fluid flow passing through the packing element layer. can be maximized while minimizing pressure drop.
第10図は充填要素の種々の長さ及び直径に対する相対
的な表面積/重量比を示す表である。例えば上方に向け
て垂直方向に19+nm (0,75in)径の充填要
素の表面積/重量比は、充填要素の長さが50、8mm
(2in) から38.1m+++ (1,5
in) 、 31.75mm(1,25in) 、2
5.4mm (1in) 、19mm (0,75in
)に減少すると、約1.22から1.33の範囲で変化
することを表している。従って充填要素の長さに対する
直径の効果がわかる。他方断面形状は、直径/長さ比に
無関係に大きな表面積/重量比を生ずる。FIG. 10 is a table showing the relative surface area/weight ratios for various lengths and diameters of packing elements. For example, the surface area/weight ratio of a packing element with a diameter of 19+ nm (0,75 in) in the upward vertical direction is
(2in) to 38.1m+++ (1,5
in), 31.75mm (1,25in), 2
5.4mm (1in), 19mm (0.75in)
) represents a change in the range of approximately 1.22 to 1.33. The effect of diameter on the length of the filling element is thus seen. The cross-sectional shape, on the other hand, yields a large surface area/weight ratio regardless of the diameter/length ratio.
この表内にある表面積/重量比はft2/LBで測定す
ると1.20から1.56までの範囲内にある。The surface area/weight ratios in this table range from 1.20 to 1.56 as measured in ft2/LB.
上記の説明から本発明の充填要素の細部構造の種々の変
形及び該充填要素の使用法が明らかになるであろう。From the above description, various variations in the detailed construction of the filling element of the invention and its use will become clear.
第1図は本発明の充填要素の斜視図、第2図は第1図の
充填要素の端面図、第3図は第2図の充填要素の左側断
面図、第4〜8図は充填要素のT形部分の夫々別の実施
態様を部分破断して示した拡大断面図、第9図は本発明
の充填要素を熱伝導媒体として用いた焼却装置を部分破
断して示した概略斜視図、第10図は直径/長さの比に
対する本発明の充填要素の表面積/重量の比を示した表
である。
17・・・充填要素、 50・・・芯部分、52・
・・放射状部分、 53・・・縁部分、56・・・流
路、 60・・・貫通孔。FIG. 1 is a perspective view of the filling element of the present invention, FIG. 2 is an end view of the filling element of FIG. 1, FIG. 3 is a left sectional view of the filling element of FIG. 2, and FIGS. FIG. 9 is a partially cutaway schematic perspective view of an incinerator using the packing element of the present invention as a heat transfer medium; FIG. 10 is a table showing the surface area/weight ratio of the packing elements of the present invention relative to the diameter/length ratio. 17... Filling element, 50... Core portion, 52...
... Radial portion, 53... Edge portion, 56... Channel, 60... Through hole.
Claims (1)
要素であって、多数の充填要素を室内に配設し、該充填
要素と接触状に該室に流体を通過させたものにおいて、 上記充填要素(17)は、長手方向に延びた芯部分(5
0)と、該芯部分から略半径方向外方に延びた複数同形
の放射状部分(52)と、夫々の放射状部分の末端部と
して接続した複数の縁部分(53)とからなる一体物の
三次元体の無機質成分からなり、 夫々の上記放射状部分とそれに接続する縁部分とは、上
記芯部分の拡がり部として長手方向に延びて略T形断面
形に形成され、すべての上記縁部分の半径方向外周面は
協働して略円筒状輪郭を画定したことを特徴とする熱伝
導用又は化学塔に使用する充填要素。 2、隣接した上記縁部分は互に離隔されていて、該縁部
分間に長手方向に延びる流路(56)が画定された請求
項1に記載の充填要素。 3、上記縁部分の断面形が略弓形である請求項1に記載
の充填要素。 4、上記芯部分はその略中心部に、長手方向に延びる貫
通孔(60)を備えた請求項1に記載の充填要素。 5、隣接した上記縁部分は互に離隔されていて、該縁部
分間に長手方向に延びる流路が画定され、又上記縁部分
の断面形は略弓形に形成され、さらに上記芯部分はその
中心部に、長手方向に延びる貫通孔を備えた請求項1に
記載の充填要素。 6、無機質成分は磁器、アルミナ、亜鉛及び其他の材料
群から選択された材料を含む請求項1に記載の充填要素
。 7、熱伝導用又は化学塔の充填材料として使用する充填
要素であって、多数の充填要素を室内に配設し、該室に
流体を通過させて該充填要素に接触させたものにおいて
、 上記充填要素は一体物の三次元体の無機質成分からなり
、又長手方向に延びる複数の開口部を有して略円柱状輪
郭に形成され、ft^2/1bsで測った該充填要素の
表面積/重量比は約1.2から1.56の範囲であるこ
とを特徴とする充填要素。 8、上記の表面積/重量比が約1.4から1.5の範囲
である請求項7に記載の充填要素。 9、上記開口部の断面積が円柱状部の断面積の約65%
である請求項7に記載の充填要素。 10、ft^2/1bsで測った表面積/重量比が約1
.4から1.5の範囲で、又円柱状部の断面積の約65
%が開口した請求項7に記載の充填要素。 11、ft^2/1bsで測った表面積/重量比が約1
.20から1.56の範囲である請求項1から5までの
いずれか1項に記載の充填要素。 12、ft^2/LBで測った表面積/重量比が約1.
4から1.5である請求項11に記載の充填要素。 13、円柱状部の断面積の約65%が開口した請求項1
1に記載の充填要素。[Claims] 1. A packing element used for heat conduction or as a packing material for a chemical column, in which a large number of packing elements are arranged in a chamber, and a fluid is passed through the chamber in contact with the packing elements. in which the filling element (17) includes a core portion (5) extending in the longitudinal direction.
0), a plurality of radial portions (52) of the same shape extending substantially radially outward from the core portion, and a plurality of edge portions (53) connected as the end portions of the respective radial portions. Each of the radial portions and the edge portions connected thereto extend in the longitudinal direction as an extension of the core portion and are formed into a substantially T-shaped cross section, and the radius of all the edge portions is A packing element for use in a heat conduction or chemical column, characterized in that the outer circumferential surfaces cooperate to define a substantially cylindrical profile. 2. The filling element of claim 1, wherein adjacent said edge portions are spaced apart from each other and define a longitudinally extending channel (56) between said edge portions. 3. The filling element according to claim 1, wherein the cross-sectional shape of the edge portion is substantially arcuate. 4. The filling element according to claim 1, wherein the core portion is provided with a longitudinally extending through hole (60) substantially in the center thereof. 5. Adjacent said edge portions are spaced apart from each other, defining a longitudinally extending flow path between said edge portions, and said edge portions have a generally arcuate cross-sectional shape; 2. A filling element according to claim 1, comprising a longitudinally extending through hole in the center. 6. Packing element according to claim 1, wherein the inorganic component comprises a material selected from the group of porcelain, alumina, zinc and other materials. 7. In a packing element used for heat conduction or as a packing material for a chemical column, in which a large number of packing elements are arranged in a chamber, and a fluid is passed through the chamber and brought into contact with the packing elements, the above-mentioned The filling element is composed of an inorganic component of a monolithic three-dimensional body and is formed into a generally cylindrical profile with a plurality of longitudinally extending openings, the surface area of the filling element measured in ft^2/1 bs/ A filling element characterized in that the weight ratio ranges from about 1.2 to 1.56. 8. The packing element of claim 7, wherein said surface area/weight ratio is in the range of about 1.4 to 1.5. 9. The cross-sectional area of the opening is about 65% of the cross-sectional area of the cylindrical part.
A filling element according to claim 7. 10, surface area/weight ratio measured in ft^2/1bs is approximately 1
.. 4 to 1.5, and about 65 of the cross-sectional area of the cylindrical part.
8. A filling element according to claim 7, wherein % is open. 11.The surface area/weight ratio measured in ft^2/1bs is approximately 1.
.. 6. A filling element according to any one of claims 1 to 5, wherein the filling element ranges from 20 to 1.56. 12.The surface area/weight ratio measured in ft^2/LB is approximately 1.
12. Packing element according to claim 11, wherein the filling element is between 4 and 1.5. 13. Claim 1 in which about 65% of the cross-sectional area of the cylindrical part is open.
1. The filling element according to 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25750788A | 1988-10-13 | 1988-10-13 | |
US257507 | 1988-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02157038A true JPH02157038A (en) | 1990-06-15 |
Family
ID=22976584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1264117A Pending JPH02157038A (en) | 1988-10-13 | 1989-10-12 | Packing element for use in heat conduction or chemical tower |
Country Status (9)
Country | Link |
---|---|
JP (1) | JPH02157038A (en) |
AU (1) | AU4255889A (en) |
DE (1) | DE3934032A1 (en) |
DK (1) | DK506789A (en) |
FR (1) | FR2637969A1 (en) |
GB (1) | GB2224341B (en) |
IT (1) | IT1232445B (en) |
NL (1) | NL8902410A (en) |
SE (1) | SE8903213L (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012517347A (en) * | 2009-02-16 | 2012-08-02 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Container containing fluid dispersion medium |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0871842A4 (en) * | 1995-06-07 | 2000-02-02 | Megtec Sys Inc | Heat exchange media in regenerative thermal oxidizers |
DE102005019596A1 (en) * | 2005-04-27 | 2006-11-02 | Süd-Chemie AG | Cylindrical catalyst body, used for steam reforming hydrocarbons, comprises extent surface, which is parallel to longitudinal axis of catalyst body running grooves and between grooves exhibiting running webs |
WO2017065970A1 (en) * | 2015-10-15 | 2017-04-20 | Saint-Gobain Ceramics & Plastics, Inc. | Catalyst carrier |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH87746A (en) * | 1920-03-17 | 1921-05-02 | Petzel Gustav | Packing for absorption and reaction columns. |
DE380995C (en) * | 1920-03-17 | 1923-09-14 | Gustav Weinmann Fa | Filler |
US2212932A (en) * | 1938-10-28 | 1940-08-27 | Fairlie Andrew Miller | Filling material for reaction spaces |
GB859298A (en) * | 1958-04-11 | 1961-01-18 | David Geoffrey Randall | Improvements in tower packings for distillation, absorption or like processes |
GB1385672A (en) * | 1970-12-18 | 1975-02-26 | Mass Transfer Ltd | Fluid-fluid contact apparatus |
GB1439745A (en) * | 1972-05-23 | 1976-06-16 | Hydronyl Ltd | Biological filter packing element |
-
1989
- 1989-09-22 GB GB8921426A patent/GB2224341B/en not_active Expired - Fee Related
- 1989-09-28 NL NL8902410A patent/NL8902410A/en not_active Application Discontinuation
- 1989-09-29 IT IT8967829A patent/IT1232445B/en active
- 1989-09-29 SE SE8903213A patent/SE8903213L/en not_active Application Discontinuation
- 1989-10-04 AU AU42558/89A patent/AU4255889A/en not_active Withdrawn
- 1989-10-10 FR FR8913185A patent/FR2637969A1/en active Pending
- 1989-10-12 JP JP1264117A patent/JPH02157038A/en active Pending
- 1989-10-12 DE DE3934032A patent/DE3934032A1/en not_active Withdrawn
- 1989-10-12 DK DK506789A patent/DK506789A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012517347A (en) * | 2009-02-16 | 2012-08-02 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Container containing fluid dispersion medium |
Also Published As
Publication number | Publication date |
---|---|
FR2637969A1 (en) | 1990-04-20 |
DK506789D0 (en) | 1989-10-12 |
SE8903213D0 (en) | 1989-09-29 |
AU4255889A (en) | 1990-04-26 |
DE3934032A1 (en) | 1990-06-28 |
GB8921426D0 (en) | 1989-11-08 |
NL8902410A (en) | 1990-05-01 |
DK506789A (en) | 1990-04-14 |
GB2224341B (en) | 1992-08-05 |
IT8967829A0 (en) | 1989-09-29 |
GB2224341A (en) | 1990-05-02 |
IT1232445B (en) | 1992-02-17 |
SE8903213L (en) | 1990-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5637283A (en) | Method and afterburner apparatus for control of highly variable flows | |
US5620668A (en) | Annular air distributor for regenerative thermal oxidizers | |
US6715740B2 (en) | Fill packs for use in heat and mass transfer devices | |
US6302188B1 (en) | Multi-layer heat exchange bed containing structured media and randomly packed media | |
JPH0569561B2 (en) | ||
FR2552857A1 (en) | AIR PREHEATER TYPE DEVICE FOR PREHEATING COMBUSTION AIR IN A COMBUSTION PROCESS, WITH SIMULTANEOUS REDUCTION OF THE NOx CONTENT IN BURNED GASES | |
US6699562B2 (en) | Ceramic packing element | |
US5643538A (en) | Heat transfer and thermal cleaning rotary device applied to gaseous effluents | |
KR960014820A (en) | Gas-Combusted, Porous Matrix, Surface Combustor-Fluid Heaters | |
US6547222B2 (en) | Packing element | |
US5531593A (en) | Regenerative thermal oxidizer with heat exchanger columns | |
JP2006300399A (en) | Rotary regenerative combustion type deodorizing apparatus | |
JPH02157038A (en) | Packing element for use in heat conduction or chemical tower | |
US4310046A (en) | Regenerative heat exchanger | |
US20200003502A1 (en) | Heat transfer media | |
JP3509695B2 (en) | Rapid cooling apparatus and method | |
CA2423911A1 (en) | Pollution abatement reactor system having nonprismatic structured media | |
US4535551A (en) | Transfer apparatus | |
JPH04251190A (en) | Honeycomb type heat accumulating body | |
CN210373477U (en) | Heat accumulating type incinerator gas flow guide structure | |
US5770165A (en) | Regenerative thermal oxidizer with floor-mounted media support | |
US20070160943A1 (en) | Monolith for use in regenerative oxidizer systems | |
US2593345A (en) | Pebble heating chamber | |
US3220713A (en) | Refractory heat exchanger | |
JP3106124B2 (en) | Combustion air preheating method and honeycomb-shaped heat storage body |