JPH0215679B2 - - Google Patents

Info

Publication number
JPH0215679B2
JPH0215679B2 JP17599886A JP17599886A JPH0215679B2 JP H0215679 B2 JPH0215679 B2 JP H0215679B2 JP 17599886 A JP17599886 A JP 17599886A JP 17599886 A JP17599886 A JP 17599886A JP H0215679 B2 JPH0215679 B2 JP H0215679B2
Authority
JP
Japan
Prior art keywords
copolymer
mol
paper strength
polymerization
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17599886A
Other languages
Japanese (ja)
Other versions
JPS62177297A (en
Inventor
Tohei Morya
Junnosuke Yamauchi
Makoto Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP17599886A priority Critical patent/JPS62177297A/en
Publication of JPS62177297A publication Critical patent/JPS62177297A/en
Publication of JPH0215679B2 publication Critical patent/JPH0215679B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

(A) 産業䞊の利甚分野 本発明はカチオン倉性ポリビニルアルコヌルか
らなる玙力増匷剀に関する。 (B) 埓来の技術 ポリビニルアルコヌル以䞋PVAず略蚘する
は埓来より代衚的な合成氎溶性高分子ずしお知ら
れ合成繊維ビニロンの原料ずしおあるいは糊剀ず
しお広範囲な工業的甚途で甚いられおきた。殊
に、玙の衚面サむゞング、繊維の経糞サむゞング
ではPVAの造膜性、匷床が有効に利甚されおい
る。しかしたた䞀方、玙の匷床の向䞊を目的ずし
お抄玙時に内添方匏で䜿甚する糊剀すなわち玙力
増匷剀ずしおもPVAが有効であるこずが期埅さ
れおいるにもかかわずこれたで応甚されおいない
のが実状である。 これは、PVAは本来むオン基を含たぬ所謂ノ
ニオン系の高分子であり、仮にPVA氎溶液を抄
玙系に添加しおもパルプに実質的に吞着されない
ためである。 PVAにカルボキシル基などアニオン性基を導
入倉性しお、硫酞バン土を䜵甚しおパルプに吞着
させる方法により玙力増匷剀ずしお甚いる提案が
されおいる特公昭46−401号、同46−38601号
が、工業的に利甚されるには至぀おいない。これ
は硫酞バン土を䜵甚した酞性条件䞋では倉性
PVA䞭のアニオン基が氎酞基ず分子内゚ステル
を圢成しお有効な掻性点ずしお䜜甚しおいないた
めパルプぞの定着が意図したように向䞊させ埗な
いこずに぀いお垰因するものず思われる。 アニオン基に代わ぀おカチオン基もパルプぞの
定着䜜甚があり、しかもこの堎合は硫酞バン土を
䜵甚する必芁にないこずが知られおおり、カチオ
ン基を導入した柱粉あるいはポリアクリルアミド
が工業生産されおいる。埓぀おPVAにもカチオ
ン基を導入すればパルプぞの定着を可胜ならし
め、PVA本来の優れた匷床性胜を発揮せしめよ
うずする詊みが考えられるずころであるが、これ
たで知られおきたPVAのカチオン化の方法には
それぞれ困難な問題があり未だ、工業的に実斜可
胜な方策は芋出されおいないのが実状である。 (C) 発明が解決しようずする問題点 本発明者らはこの様な状況䞋、安定か぀有効に
PVAにカチオン基を導入せしめる工業的に安䟡
な補造方法を確立するこずにより、カチオン倉性
PVAを䞻成分ずする玙力増匷剀を埗るこずを目
的ずしお鋭意怜蚎した結果、本発明を完成したも
のである。 即ち、本発明の目的はビニルアルコヌル単䜍ず
カチオン基を含むカチオン倉性PVAを䞻剀ずす
る玙力増匷剀を埗るこずにあり、PVAが本来有
しおいる匷床、造膜性を生かしながら、これにカ
チオン電荷を付䞎しお、パルプ等ぞの優れた吞着
性胜を䞎えるこずにより、新芏な、優れた玙力増
匷剀を補造するこずにある。 (D) 問題点を解決するための手段 本発明の玙力増匷剀は、䞀般匏 で衚される共重合単䜍を0.01〜20モル含有し、
ビニル゚ステル単䜍のケン化床が70モル以䞊
で、か぀氎溶液の20℃におけるブルツクフむ
ヌルド粘床がセンチポむズ以䞊であるカチオン
基倉性ポリビニルアルコヌルからなるこずを特城
ずしおいる。 R1は氎玠原子たたはメチル基であり、 は
(A) Industrial Application Field The present invention relates to a paper strength enhancer made of cation-modified polyvinyl alcohol. (B) Conventional technology Polyvinyl alcohol (hereinafter abbreviated as PVA)
has been known as a typical synthetic water-soluble polymer and has been used in a wide range of industrial applications as a raw material for synthetic fiber vinylon or as a sizing agent. In particular, PVA's film-forming properties and strength are effectively used for paper surface sizing and fiber warp sizing. However, on the other hand, although PVA is expected to be effective as a sizing agent, that is, a paper strength enhancer, which is used internally during paper making to improve the strength of paper, it has not been applied to date. This is the actual situation. This is because PVA is essentially a so-called nonionic polymer that does not contain ionic groups, and even if a PVA aqueous solution is added to the papermaking system, it will not be substantially adsorbed by the pulp. It has been proposed to use PVA as a paper strength enhancer by modifying it by introducing anionic groups such as carboxyl groups and adsorbing it to the pulp using sulfuric acid (Japanese Patent Publication No. 46-401, No. 46-38601). issue)
However, it has not yet been used industrially. This is denatured under acidic conditions when combined with sulfuric acid.
This seems to be attributable to the fact that the anionic groups in PVA form intramolecular esters with hydroxyl groups and do not function as effective active sites, so that the fixation to the pulp cannot be improved as intended. It is known that instead of anionic groups, cationic groups also have the effect of fixing to pulp, and in this case, it is not necessary to use sulfuric acid together, and starch or polyacrylamide into which cationic groups have been introduced has been industrially produced. There is. Therefore, it is possible to consider introducing cationic groups into PVA to make it possible to fix it in pulp and to demonstrate the excellent strength properties of PVA. Each of these methods has its own difficult problems, and the reality is that no industrially viable solution has yet been found. (C) Problems to be solved by the invention Under these circumstances, the inventors have found a stable and effective solution.
By establishing an industrially inexpensive manufacturing method that introduces cationic groups into PVA, we have achieved cationic modification.
The present invention was completed as a result of intensive studies aimed at obtaining a paper strength enhancer containing PVA as a main component. That is, the purpose of the present invention is to obtain a paper strength enhancer whose main ingredient is cationically modified PVA containing vinyl alcohol units and cationic groups. The object of the present invention is to produce a novel and excellent paper strength enhancer by imparting a cationic charge and imparting excellent adsorption performance to pulp and the like. (D) Means for solving the problems The paper strength enhancer of the present invention has the general formula Contains 0.01 to 20 mol% of copolymerized units represented by
It is characterized by being composed of a cationic group-modified polyvinyl alcohol having a degree of saponification of vinyl ester units of 70 mol% or more and a Bruckfield viscosity of 4% aqueous solution at 20°C of 4 centipoise or more. R 1 is a hydrogen atom or a methyl group, and A is

【匏】 R6、R7、R8は氎玠原子たたは炭玠数
〜のアルキル基を瀺し、は〜
の敎数を瀺す。であり、 は
[Formula] (R 6 , R 7 , R 8 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is 0 to 2
indicates an integer. ), and B is

【匏】たたは[expression] or

【匏】 R2、R3、R4は眮換基を含んでいおも
よい䜎玚アルキル基、X-はアンモニり
ム窒玠ず塩を圢成する陰性の基を瀺す。
である。 なかでも、䞀般匏䞭のが −CH2−CH2−CH2−で、か぀が−CH32
である堎合が奜たしく、が−CH2−CH2−CH2
−で、か぀が−N+CH33・Cl-である堎合が
より奜たしい。 さらに、が−CH32−CH2−CH2−で、
か぀が−CH32たたは−N+CH33・Cl-で
ある堎合がより䞀局奜たしい。 䞊蚘の本発明の玙力増匷剀の䞻成分であるカチ
オン倉性PVAは、䟋えばビニル゚ステルず䞀般
匏 匏䞭、 R1氎玠原子たたはメチル基 
[Formula] (R 2 , R 3 , and R 4 are lower alkyl groups that may contain substituents, and X - represents a negative group that forms a salt with ammonium nitrogen.)
It is. Among them, A in the general formula () is (-CH 2 -CH 2 -CH 2 )-, and B is -N(CH 3 ) 2
It is preferable that A is (-CH 2 -CH 2 -CH 2
)- and B is -N + (CH 3 ) 3.Cl - . Furthermore, A is (-C( CH3 ) 2 - CH2 - CH2 )-,
It is even more preferable that B is -N( CH3 ) 2 or -N + ( CH3 ) 3.Cl- . The cation-modified PVA, which is the main component of the paper strength agent of the present invention, is, for example, vinyl ester and the general formula [In the formula, R 1 : hydrogen atom or methyl group A:

【匏】 R6、R7、R8は氎玠原子たたは炭玠数
〜のアルキル基を瀺し、は〜
の敎数を瀺す。 
[Formula] (R 6 , R 7 , R 8 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is 0 to 2
indicates an integer. ) B:

【匏】たたは[expression] or

【匏】 R2、R3、R4は眮換基を含んでいおも
よい䜎玚アルキル基、X-はアンモニり
ム窒玠ず塩を圢成する陰性の基を瀺す。 をそれぞれ意味する。 で瀺される重合性単量䜓ずをラゞカル重合開始剀
の存圚䞋に共重合させ、しかる埌にが
[Formula] (R 2 , R 3 , and R 4 are lower alkyl groups that may contain substituents, and X - represents a negative group that forms a salt with ammonium nitrogen.) ] is copolymerized with the polymerizable monomer represented by B in the presence of a radical polymerization initiator, and then B is copolymerized with

【匏】である堎合には四玚化剀で四玚化せし めるあるいはせしめないで、該共重合䜓のアルコ
ヌル溶液にアルカリあるいは酞觊媒を䜜甚させお
共重合䜓䞭のビニル゚ステル単䜍を郚分的にある
いは高床にケン化せしめおビニルアルコヌル単䜍
ずし、たたが
In the case of [Formula], vinyl ester units in the copolymer are partially converted by applying an alkali or acid catalyst to an alcohol solution of the copolymer, with or without quaternizing with a quaternizing agent. Alternatively, it can be highly saponified to form vinyl alcohol units, and B can be

【匏】である堎合でありか぀ 前蚘の四玚化を実斜しおいない堎合にケン化反応
の埌で四玚化剀で
[Formula] and if the above-mentioned quaternization is not carried out, a quaternizing agent is used after the saponification reaction.

【匏】を四玚化せしめある いはせしめないこずにより補造される。 たた本発明の共重合䜓を補造する別の方法ずし
お、ビニル゚ステルず䞀般匏 匏䞭、R1およびは䞀般匏における堎
合ず同じ意味を有し、はハロゲン原子を意味す
る。 で瀺される重合性単量䜓ずを共重合させ、しかる
埌に、該共重合䜓にアルカリあるいは酞觊媒を䜜
甚させお共重合䜓䞭のビニル゚ステル単䜍を郚分
的あるいは高床にケン化せしめおビニルアルコヌ
ル単䜍ずし、このケン化反応の前あるいは埌にお
いお共重合䜓にゞアルキルアミンあるいはトリア
ルキルアミンを䜜甚させる方法を挙げるこずがで
きる。しかし、この方法ず比范し、前蚘の方法す
なわち、単量䜓を甚いる方法が工業的に優
れおおり、以䞋、この堎合を䟋にずり説明する。 本発明の共重合䜓を補造する際に䜿甚し埗るビ
ニル゚ステルずしおは、酢酞ビニル、プロピオン
酞ビニル、ギ酞ビニル等があげられるが、経枈的
にみお酢酞ビニルが奜たしい。 たた、本発明で甚いられるアミノ基を含有した
カチオン性の重合性モノマヌは䞊述した䞀般匏
で瀺される。䞀般匏䞭のR1は氎玠原
子たたはメチル基であり、曎に、共重合反応にお
ける重合速床が倧である点で氎玠原子であるこず
が奜たしい。は玚アミノ基
It is produced by quaternizing or not quaternizing the formula. In addition, as another method for producing the copolymer of the present invention, vinyl ester and the general formula (In the formula, R 1 and A have the same meanings as in the general formula (), and Y means a halogen atom.) The vinyl ester units in the copolymer are partially or highly saponified by acting on the polymer with an alkali or acid catalyst to form vinyl alcohol units, and before or after this saponification reaction, dialkylamine or A method in which a trialkylamine is used can be mentioned. However, compared to this method, the above-mentioned method, ie, the method using monomer (), is industrially superior, and this case will be explained below as an example. Vinyl esters that can be used in producing the copolymer of the present invention include vinyl acetate, vinyl propionate, vinyl formate, etc., but vinyl acetate is preferred from an economical standpoint. Further, the cationic polymerizable monomer containing an amino group used in the present invention is represented by the above-mentioned general formula (). R 1 in the general formula () is a hydrogen atom or a methyl group, and is preferably a hydrogen atom since the polymerization rate in the copolymerization reaction is high. B is a tertiary amino group

【匏】たたは 玚アンモニりム塩[expression] or Quaternary ammonium salt

【匏】であり、 R2、R3、R4は眮換基を含んでいおもよい䜎玚ア
ルキル基を、はアンモニりム窒玠ず塩を圢成す
る陰性の基を瀺しおいる。R2、R3、R4は通垞の
目的ではすべおメチル基が奜たしいが、特殊な目
的にぱチル基、プロピル基等の䜎玚アルキル基
あるいは反応性を付䞎する目的でメチロヌル基、
あるいはカチオン基の密床を向䞊させる目的でア
ミノアルキル基など眮換基を含有した䜎玚アルキ
ル基も甚いられおいる。ずしおは塩玠、シナり
玠、ペり玠などのハロゲン原子、たたは
CH3OSO3あるいはCH3C6H4SO3が奜たしいが、
ずりわけ塩玠原子が経枈䞊、安党䞊、あるいは共
重合䜓の物性䞊奜たしい。アミノ基は四玚アンモ
ニりム塩の圢であるこずが系の氎玠むオン濃床に
かかわらずカチオン性胜を瀺す点で倚くの堎合奜
たしいが、玚アミンの圢぀たりが
[Formula], R 2 , R 3 and R 4 represent a lower alkyl group which may contain a substituent, and X represents a negative group that forms a salt with ammonium nitrogen. R 2 , R 3 , and R 4 are all preferably methyl groups for normal purposes, but for special purposes, they may be lower alkyl groups such as ethyl or propyl groups, or methylol groups for the purpose of imparting reactivity.
Alternatively, lower alkyl groups containing substituents such as aminoalkyl groups are also used for the purpose of improving the density of cationic groups. X is a halogen atom such as chlorine, silium, iodine, or
CH 3 OSO 3 or CH 3 C 6 H 4 SO 3 is preferred, but
In particular, a chlorine atom is preferred from the viewpoint of economy, safety, or physical properties of the copolymer. In many cases, it is preferable for the amino group to be in the form of a quaternary ammonium salt since it exhibits cationic performance regardless of the hydrogen ion concentration of the system, but it is preferred that the amino group be in the form of a tertiary amine, that is, B.

【匏】 の圢の重合性単量䜓を甚いるこずが必芁である堎
合もある。䞉玚アミンの単量䜓を甚いた堎合共重
合埌にアルコヌル溶液䞭でハロゲン化アルキル、
ゞメチル硫酞、−トル゚ンスルホン酞メチルな
どの四玚化剀で四玚化しおもよく、特に塩化メチ
ルガスを溶液䞭にバブリングするこずにより100
の四玚化が可胜である。四玚化された共重合䜓
のアルコヌル溶液はそのたた埌述するケン化反応
を実斜でき、四玚アンモニりム塩を含む共重合䜓
ずするこずができる。䞉玚アミンの単量䜓を甚い
た堎合、四玚化せずに、ケン化反応を実斜し、生
成した共重合䜓を氎溶液ずし、この䞭に前述の四
玚化剀ずりわけ塩化メチルを甚いお四玚化しおも
よい。たた、䞉玚アミンの単量䜓を甚いる堎合重
合時に、適圓な酞の塩、䟋えば塩酞塩、硫酞塩、
酢酞塩ずしお甚いおもよく、この堎合、四玚化反
応の実斜埌の適圓な時点で氎玠むオン濃床が奜た
しくは䞭性に調節される。䞉玚アミンの単量䜓を
甚いお、共重合およびケン化反応を実斜し、四玚
化をしないたたの共重合䜓も本発明に含たれる
が、この堎合にはカチオン性を効果的に発揮させ
るために倚くの堎合氎溶液を酞性状態で甚いる。 アミノ基䞭の窒玠原子ずアミド基の窒玠原子
を連結する基であるは
It may be necessary to use polymerizable monomers of the form. When using a tertiary amine monomer, alkyl halide,
Quaternization may be carried out using a quaternizing agent such as dimethyl sulfate or methyl P-toluenesulfonate, particularly by bubbling methyl chloride gas into the solution.
% quaternization is possible. The alcohol solution of the quaternized copolymer can be directly subjected to the saponification reaction described below, and can be made into a copolymer containing a quaternary ammonium salt. When a tertiary amine monomer is used, a saponification reaction is carried out without quaternization, the resulting copolymer is made into an aqueous solution, and the above-mentioned quaternizing agent, especially methyl chloride, is added to the solution. May be quaternized. In addition, when using a tertiary amine monomer, an appropriate acid salt such as hydrochloride, sulfate,
It may also be used as an acetate salt, in which case the hydrogen ion concentration is preferably adjusted to neutrality at a suitable point after carrying out the quaternization reaction. The present invention also includes a copolymer obtained by carrying out copolymerization and saponification reaction using a tertiary amine monomer without quaternization, but in this case, the cationic property is effectively exhibited. In many cases, an aqueous solution is used in an acidic state. A, which is a group that connects the nitrogen atom in the amino group B and the nitrogen atom in the amide group, is

【匏】 R6、R7、R8は氎玠原子たたは炭玠数〜の
アルキル基を瀺し、は〜の敎数を瀺す。
であり、共重合性から、は−CH2−CH2−CH2
−が奜たしく、−CH32−CH2−CH2−がよ
り奜たしい。 以䞊に述べた構造䞊の特城を満足し目的に叶぀
た代衚的な単量䜓ずしお次のものがあげられる。 −−ゞメチル−−ゞメチルアミノ
プロピルアクリルアミド トリメチル−−−アクリルアミド−
−ゞメチル−プロピルアンモニりムクロリド 䞊の皮の単量䜓は工業的補造が比范的安䟡で
あるこず、ビニル゚ステルこずに酢酞ビニルずの
共重合速床が速くたた高重合床の共重合䜓の合成
が可胜であるこず、さらにアミド結合の安定性が
ずりわけ高いこずなど特に本発明の目的に合臎し
お奜たしい。この単量䜓は西独特蚱第2254905号
あるいは米囜特蚱第3666810号、同3883491号、同
3917594号、同3943114号などで公知であり酢酞ビ
ニル等のビニル゚ステルを含めた倚くの重合性単
量䜓ず共重合し埗るこずが瀺されおいるが、ビニ
ル゚ステルずの共重合䜓をケン化するこずにより
生成した共重合䜓に぀いおは知られおおらず、本
発明に瀺されおいるような工業的に重芁な優れた
性胜を有する共重合䜓が埗られるこずは党く知ら
れおいない。 たた曎に、本発明の目的に䜿甚され埗る他のモ
ノマヌずしお次のものが挙げられる。 −−ゞメチルアミノプロピルアクリル
アミド CH2CHCONH−CH2CH2CH2NCH32 トリメチル−−−アクリルアミドプロピ
ルアンモニりムクロリド CH2CHCONH−CH2CH2CH2N+
CH33・Cl- 䞊述したオチカン基を含む重合性単量䜓ずビニ
ル゚ステルずの共重合は塊状重合、溶液重合、懞
濁重合、乳化重合のいずれの重合圢匏を甚いおも
実斜され埗るが、本発明の倚くの目的には通垞溶
液重合が奜たしい。䜿甚する溶媒ずしおは䜎玚ア
ルコヌル殊にメタノヌルが工業的に望たしい。塊
状重合、溶液重合は回分方匏、連続方匏のいずれ
におも実斜可胜であり、懞濁重合、乳化重合は通
垞回分方匏で実斜される。回分方匏の堎合、共重
合単量䜓反応性比r1、r2に埓぀お重合率ず共
に単量䜓組成が倉動しおいくこずはよく知られお
いるが、単量䜓組成が䞀定ずなるように䞀方もし
くは䞡方の単量䜓を添加しおいく所謂半回分方匏
を採甚するこずが均䞀な共重合組成を有する共重
合䜓を埗るためには望たしい。この堎合の添加量
の算出方法の䞀぀ずしおはR.J.Hannaが
Ingustrial and Engineering Chemistry、
Vol.49、No.2、208−2091957に提出しおいる
匏が挙げられる。倚塔匏の連続共重合の堎合にも
同様の理由で、各塔内の単量䜓組成が䞀定になる
ように塔以埌の塔に単量䜓を添加するこずが望
たしい。重合開始剀ずしおは、2′−アゟビス
む゜ブチロニトリル、過酞化ベンゟむル、過酞化
アセチル等公知のラゞカル重合甚開始剀が䜿甚さ
れ埗る。重合反応枩床は通垞50℃〜沞点の範囲か
ら遞ばれる。単量䜓の反応率は、経枈性、重合床
の調節など目的に応じお適宜決められる。共重合
を完了した埌、反応液䞭にビニル゚ステルが残存
しおいる堎合には蒞留などにより分離陀去する必
芁がある。カチオン性単量䜓は陀去しおもよく、
たた残存させたたたでも支障がない堎合が倚い。 こうしお埗られた共重合䜓は次いでビニル゚ス
テル郚分がケン化される。ケン化反応は通垞共重
合䜓をアルコヌル溶液ずりわけメタノヌル溶液ず
しお実斜するのが有利である。アルコヌルは無氎
物のみならず少量の含氎系のものも目的に応じお
甚いられたた、酢酞メチル、酢酞゚チルなどの有
機溶媒を任意に含有せしめおもよい。ケン化觊媒
ずしおは、氎酞化ナトリりム、氎酞化カリりム等
のアルカリ金属の氎酞化物、ナトリりムメチラヌ
ト、カリりムメチラヌト等のアルコラヌトあるい
はアンモニア等のアルカリ性觊媒あるいは塩酞、
硫酞などの酞觊媒が䜿甚され埗る。このうち工業
的には氎酞化ナトリりムが経枈的に有利である。
ケン化枩床は通垞10〜50℃の範囲から遞ばれる。
匷アルカリ性、匷酞性の条件䞋で高枩に長時間攟
眮するず埐々にアミド結合の分解が進行するので
望たしくないが、通垞そのような条件䞋におく必
芁はなく、ケン化時にアミド結合は分解するこず
なく安定に保たれる。ケン化反応によりビニル゚
ステル単䜍は郚分的にあるいは高床にケン化され
おビニルアルコヌル単䜍に転換されるが、この転
化率぀たりケン化床は本カチオン倉性PVAの䜿
甚目的に応じお任意の倀ずするこずができるが、
工業的に有利に補造できるケン化床の範囲は通垞
70モル以䞊である。カチオン倉性PVA䞭のカ
チオン性単量䜓の含量が10モル以䞋の堎合に
は、アルコヌル䞭でケン化反応が進行するず通垞
のPVAの堎合ず同様に癜色のゲルあるいは沈柱
物が生成し、これを必芁に応じお粉砕、掗浄也燥
するこずによ぀お癜色の重合䜓粉末を埗るこずが
できる。共重合䜓䞭のカチオン性単量䜓の含量が
10モル以䞊の堎合あるいは10モル以䞋の含量
の堎合でも到達ケン化床が䜎い堎合には生成物が
析出しない堎合もあるが、この堎合は、酢酞メチ
ルなどの有機溶媒を沈柱物ずしお䜿甚し析出させ
る方法等が採甚される。 本発明のカチオン倉性PVAは䞀般にPVAず同
様に、粉䜓で保存、茞送が可胜であり、䜿甚時に
氎に分散埌、撹拌しながら加枩するこずにより均
䞀な糊液を埗るこずができる。 本発明のカチオン倉性PVAの各成分の構成比
率に関しおは、先ずカチオン性単量䜓成分は0.01
〜20モルずりわけ0.05〜モルの範囲から遞
ばれるこずが奜たしい。0.01モル以䞋では玙力
増匷剀ずしお甚いた堎合パルプぞの定着効果が充
分でなく、䞀方、20モル以䞊では定着効果がか
え぀お䜎䞋する。たたケン化床は70モル以䞊、
ずりわけ85モル以䞊の範囲のものがその物性䞊
奜たしい。70モル以䞋では匷床の䜎䞋が倧き
く、玙力増匷剀ずしおは適圓でない。たた本発明
のカチオン倉性PVAの重合床ずしおは、その
氎溶液の20℃におけるブルツクフむヌルド粘床
ずしおセンチポむズ以䞊ずりわけ20センチポむ
ズ以䞊のものが通垞遞ばれる。 (E) 䜜甚及び発明の効果 䞊述の構成成分を有する、玙力増匷剀ずしお有
甚な、本発明のカチオン倉性PVAは䞀芋PVAに
類䌌するものであるが、玙パルプに察する定着性
がPVAず比范にならないほど顕著に高いずいう
際立぀た性質によ぀お容易に他のPVAず区別さ
れる。すなわち、埓来のPVAのパルプスラリヌ
に察しお基本的に定着を瀺さないのに察し、本発
明の共重合䜓を䞻成分ずした玙力増匷剀ではパル
プに察し玄の添加率の領域で、通垞、共重合
䜓党量の80〜100の定着率を瀺し、条件の悪い
堎合でも50以䞊の定着率を瀺す。この際立぀た
性胜によ぀お、この共重合䜓をビヌタヌ添加法に
よる内添玙力増匷剀ずしお䜿甚し埗るのではある
が、その特城は次のずおりである。 也燥玙力向䞊効率が高い。 氎性に優れる。 顔料の歩留りが向䞊する。 排氎汚泥が䜎枛する。 䞭性抄造が可胜である。 埓来より知られおいるデンプン系、ポリアクリ
ルアミド系の玙力増匷剀ず比范しおも本発明の玙
力増匷剀は高性胜を有する。これは、その䞻なる
骚栌構造がPVAでありこれが高い玙力向䞊効果
を発珟させるものずな぀おいるものず考えられ
る。 本発明の玙力増匷剀はパルプの氎分散液に添加
し、パルプ繊維䞊に吞着せしめ、次いで通垞の抄
玙、也燥をするいわゆるビヌタヌ添加法で実斜す
るこずができる。その䞊、スプレヌあるいはサむ
ズプレスなどで含浞塗工する方法で䜿甚しおもよ
い。ビヌタヌ添加法で䜿甚する堎合の添加量は玙
の皮類、甚途により異なるが、也燥パルプ重量換
算で玙力増匷剀固圢分で0.05〜の範囲で添加
され、䞀般的には0.1〜の範囲で充分な効果
が埗られる。 (F) 実斜䟋 以䞋、実斜䟋によ぀お本発明を具䜓的に説明す
る。 実斜䟋  撹拌機、枩床蚈、滎䞋ロヌトおよび還流冷华噚
を付したフラスコ䞭に酢酞ビニル500、メ
タノヌル75および−−ゞメチルアミノプ
ロピルアクリルアミドを仕蟌み恒枩槜内に
据えお撹拌しながら系内を窒玠眮換した埌、内枩
を60℃たで䞊げた。 この系に2′−アゟビスむ゜ブチロニトリル
0.125をメタノヌル50ず共に添加し重合を開
始した。重合時間時間10分の間に−−ゞ
メチルアミノプロピルアクリルアミドの25メ
タノヌル溶液20を䞀定速床で滎䞋した。重合停
止時の系内の固圢分濃床は9.9であ぀た。フラ
スコにガス導入管および枛圧蒞留装眮を取付け、
枛圧䞋に重合反応液䞭にメタノヌル蒞気を吹きこ
み、未反応の酢酞ビニル単量䜓を远い出した埌、
共重合䜓の31メタノヌル溶液を埗た。この共重
合䜓は−−ゞメチルアミノプロピルアク
リルアミド単䜍を5.0モルず酢酞ビニル単䜍
95.0モルを含有するこずが栞磁気共鳎分析によ
り確認された。この共重合䜓のメタノヌル溶液80
を40℃で撹拌しながら、この䞭に1Nの苛性゜
ヌダメタノヌル溶液を5.8ml添加し、よく混合埌
攟眮した。分30秒埌系党䜓がゲル化した。曎に
20分埌に粉砕機におこのゲルを粉砕し、メタノヌ
ルで掗浄埌、也燥し癜色の重合䜓粉末を埗た。こ
の共重合䜓は氎ぞの溶解性に優れおおり、その
氎溶液の20℃のブルツクフむヌルド粘床は38セ
ンチポむズであ぀た。この共重合䜓の重氎溶液の
プロトン栞磁気共鳎スペクトルを第図に瀺し
た。2.79PPMの吞収は−−ゞメチルアミノ
プロピルアクリルアミド単䜍䞭のアミノ基の窒
玠原子に結合した個のメチル基のプロトンに垰
属され、その吞収匷床から−−ゞメチルア
ミノプロピルアクリルアミド単䜍は5.0モル
含有されるず分析された。たた、酢酞ビニル単䜍
のケン化床は99.9モルであ぀た。぀たり、埗ら
れた共重合䜓は実質的に−−ゞメチルアミ
ノプロピルアクリルアミド−ビニルアルコヌル
の共重合䜓である。 実斜䟋  撹拌機、ガス導入管および還流冷华噚を備えた
フラスコ内に実斜䟋で共重合した−−ゞ
メチルアミノプロピルアクリルアミド−酢酞ビ
ニル共重合䜓のメタノヌル溶液3180を入
れ、撹拌し぀぀、塩化メチルガスを時間バブリ
ングした。40℃で撹拌しながら、1Nの苛性゜ヌ
ダメタノヌル溶液を5.8ml添加しよく混合埌攟眮
したずころ分埌に系党䜓がゲル化した。20分攟
眮埌粉砕しおメタノヌルで掗浄埌也燥しお癜色の
共重合䜓粉末を埗た。この粉末は氎ぞの溶解性に
優れおおり、その氎溶液の20℃におけるフル
ツクフむヌルド粘床は35センチポむズであ぀た。
埗られた共重合䜓のプロトン栞磁気共鳎スペクト
ルを第図に瀺す。2.79PPMの吞収が無くなり
代わ぀お3.13PPMに玚アンモニりム塩の窒玠
原子に結合した個のメチル基のプロトンに垰属
される吞収が芋出された。埓぀お、−−ゞ
メチルアミノプロピルアクリルアミド単䜍のア
ミノ基はすべお玚化されトリメチル−−
−アクリルアミノプロピルアンモニりムクロリ
ド単䜍にな぀おおり、その含量は3.13PPMの吞
収匷床から5.0モルである。たた酢酞ビニル単
䜍のケン化床は99.9モルず求められた。 実斜䟋  撹拌機、枩床蚈、滎䞋ロヌトおよび還流冷华噚
を付したのフラスコ䞭に酢酞ビニル2500、
メタノヌル697およびトリメチル−−−ア
クリルアミド−−ゞメチル−プロピルア
ンモニりムクロリドの癜色粉末4.8を仕蟌み恒
枩槜内に据えお撹拌しながら系内を窒玠眮換し、
内枩を60℃たで昇枩埌2′−アゟビスむ゜ブチ
ロニトリル3.5をメタノヌル50ず共に添加し
重合を開始した。重合時間時間の間にトリメチ
ル−−−アクリルアミド−−ゞメチ
ル−プロピルアンモニりムクロリドの50メタ
ノヌル溶液362を䞀定速床で滎䞋した。重合停
止時の系内の固圢分濃床は49.8であ぀た。フラ
スコにガス導入管および枛圧蒞留装眮をずり぀け
枛圧䞋に重合反応液䞭にメタノヌル蒞気を吹きこ
み未反応の酢酞ビニルモノマヌを远出したる埌、
共重合䜓の44.3メタノヌル溶液を埗た。この共
重合䜓はトリメチル−−−アクリルアミド
−−ゞメチル−プロピルアンモニりムク
ロリド単䜍を4.0モルず96.0モルの酢酞ビニ
ル単䜍を含有するこずが栞磁気共鳎分析により確
認された。この共重合䜓のメタノヌル溶液812
を35℃で撹拌しながらこの䞭に2Nの苛性゜ヌダ
メタノヌル溶液を42.1ml添加しよく混合埌攟眮し
た。分20秒埌に系党䜓がゲル化した。曎に20分
埌に粉砕機におこのゲルを粉砕し、メタノヌルで
掗浄埌、加熱也燥しお癜色の重合䜓粉末を埗た。
埗られた重合䜓の重氎溶液によるプロトン栞磁気
共鳎スペクトルを第図に瀺す。3.13PPMの吞
収はトリメチル−−−アクリルアミド−
−ゞメチル−プロピルアンモニりムクロリド
単䜍䞭の四玚アンモニりム窒玠原子に結合した
個のメチル基のプロトンに垰属され、その吞収匷
床からトリメチル−−−アクリルアミド−
−ゞメチル−プロピルアンモニりムクロ
リド単䜍は4.0モル含有しおいるこずが確認さ
れた。䞀方酢酞ビニル単䜍のケン化床は99.3モル
であり、たたケルダヌル法による窒玠の含有量
は2.17重量でありこれはトリメチル−−
−アクリルアミド−−ゞメチル−プロピ
ルアンモニりムクロリド単䜍4.0モルに盞圓
し先の栞磁気共鳎分析の結果ず䞀臎する。氎
溶液の20℃におけるブルツクフむヌルド粘床は
34.1センチポむズであ぀た。 実斜䟋  実斜䟋で共重合埌残存酢酞ビニル単量䜓を远
出したメタノヌル溶液700に酢酞メチルを154
、メタノヌルを150加えおよく混合均䞀化し
た埌40℃で撹拌しながらこの䞭に2Nの苛性゜ヌ
ダメタノヌル溶液を15.7ml添加し、よく混合埌攟
眮した。14分50秒埌に系党䜓がゲル化した。さら
に20分攟眮埌、粉砕機におゲルを粉砕し、メタノ
ヌルで掗浄埌也燥しお癜色の重合䜓粉末を埗た。
埗られた盟重合䜓はトリメチル−−−アク
リルアミド−−ゞメチル−プロピルアン
モニりムクロリド単䜍を4.0モル含有し、酢酞
ビニル単䜍のケン化床が88.0モルの共重合䜓で
あり、その氎溶液の20℃におけるブルツクフ
むヌルド粘床は30.4センチポむズであ぀た。 実斜䟋  実斜䟋ず同様の装眮䞭に酢酞ビニル3000、
メタノヌル108およびトリメチル−−−ア
クリルアミド−−ゞメチル−プロピルア
ンモニりムクロリド1.1を仕蟌み、0.15の
2′−アゟビスむ゜ブチロニトリルず50のメタノ
ヌルの添加により共重合を開始した。重合時間
1.0時間の間にトリメチル−−−アクリルア
ミド−−ゞメチル−プロピルアンモニり
ムクロリドの50メタノヌル溶液20を䞀定速床
で滎䞋した。重合停止時の系内の固圢分濃床は
15.7であ぀た。実斜䟋ず同様の操䜜により残
存する酢酞ビニル単量䜓を远出した埌、固圢分濃
床31.7の共重合䜓メタノヌル溶液を埗た。この
メタノヌル溶液960を40℃で撹幻しながら2Nの
苛性゜ヌダメタノヌル溶液を39.2ml添加しよく混
合埌攟眮した。分35秒埌に系党䜓がゲル化し
た。曎に20分埌に粉砕機におゲルを粉砕し、メタ
ノヌルで掗浄埌、加熱也燥しお癜色の共重合䜓粉
末を埗た。この共重合䜓の窒玠の含有量は0.492
重量で、これはトリメチル−−−アクリ
ルアミド−−ゞメチル−プロピルアンモ
ニりムクロリド単䜍が0.8モル含たれおいるこ
ずに盞圓する。酢酞ビニル単䜍のケン化床は99.4
モルであり氎溶液の20℃におけるブルツク
フむヌルド粘床は167センチポむズであ぀た。 実斜䟋  実斜䟋ず同様の装眮䞭に酢酞ビニル3000、
メタノヌル283および−−−ゞメチル
−−ゞメチルアミノプロピルアクリルアミド
å¡©é…žå¡©0.5を仕蟌み、0.3の2′−アゟビス
む゜ブチロニトリル0.3ず50のメタノヌルの
添加により共重合を開始した。重合時間2.5時間
の間に−−ゞメチル−−ゞメチルア
ミノプロピルアクリルアミド塩酞塩の25メタ
ノヌル溶液41を䞀定速床で滎䞋した。重合停止
時の系内の固圢分濃床は30.3であ぀た。実斜䟋
ず同様の操䜜により残存する酢酞ビニル単量䜓
を远出した埌、固圢分濃床33.0の共重合䜓メタ
ノヌル溶液を埗た。このメタノヌル溶液1061を
40℃で撹拌しながら2Nの苛性゜ヌダメタノヌル
溶液を51ml添加しよく混合埌攟眮した。分15秒
埌に系党䜓がゲル化した。20分攟眮埌、ゲルを粉
砕機にお粉砕し、メタノヌルで掗浄埌加熱也燥し
お癜色の共重合䜓粉末を埗た。この共重合䜓は
−−ゞメチル−−ゞメチルアミノプロ
ピルアクリルアミド単䜍が0.4モル含されお
いるず分析された。酢酞ビニル単䜍のケン化床は
99.7モルであり、氎溶液の20℃におけるブ
ルツクフむヌルド粘床は71.2センチポむズであ぀
た。 実斜䟋  実斜䟋で埗られた−−ゞメチル−
−ゞメチルアミノプロピルアクリルアミド−
ビニルアルコヌル−酢酞ビニル共重合䜓の氎
溶液1000をフラスコ䞭で撹拌しながら、こ
の䞭に塩化メチルガスをバブリングした。時間
バブリングした埌、氎溶液䞭の共重合䜓をプロト
ン栞磁気共鳎により分析したずころ、アミノ基は
すべお四玚化され、トリメチル−−−アク
リルアミド−−ゞメチル−プロピルアン
モニりムクロリドを0.4モル含む共重合䜓であ
るこずが確認された。 玙力増匷剀ずしおの詊隓 カナデむアン・スタンダヌド・フリヌネス565
mlのパルプNBKPの氎性スラリヌに前
述した各実斜䟋で合成した共重合䜓および比范䟋
の重合䜓の氎溶液を所定量添加混合した。次いで
分埌にタツピ・スタンダヌド抄玙機を甚いお坪
量が80±m2ずなるように抄玙し、3.5Kg
cm2で分間プレス脱氎埌、回転ドラム也燥機にお
110℃分間也燥し成玙ずしたる埌20℃、65
RHで48時間調湿した。 䞀方抄玙時の癜氎を採取濃瞮し、癜氎䞭の共重
合䜓の濃床をJ.H.Finley、Journal of Analitical
Chemistry、Vol.33、No.13、19251961幎に準
じたペヌド呈色法によ぀お求め、これから各添加
共重合䜓のパルプぞの定着率を求めた。 調湿埌の玙詊料に぀きJIS−8113に埓぀お匕匵
匷さ裂断長を、たたJIS−8112に埓぀お比砎
裂匷さを枬定した。枬定結果を第衚に瀺す。第
衚には比范䟋ずしお玙力増匷剀を添加しない系
およびカチオン基を含たぬ通垞のPVAクラレポ
バヌルPVA−177、ケン化床98.5、重合床
1750、およびアクリルアミド共重合倉性PVA
アクリルアミド倉性床モル、ケン化床98.3
、重合床1500、およびアクリルアミド共重合
倉性PVAアクリルアミド倉性床50モル、ケ
ン化床97.5、重合床1200に぀いお同様に抄玙
した詊料に぀いおの枬定結果も合わせお瀺した。
[Formula] (R 6 , R 7 and R 8 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 0 to 2.)
From copolymerizability, A is (-CH 2 -CH 2 -CH 2
)- is preferred, and (-C( CH3 ) 2 - CH2 - CH2 )- is more preferred. The following are representative monomers that satisfy the above-mentioned structural characteristics and meet the purpose. N-(1,1-dimethyl-3-dimethylaminopropyl)acrylamide Trimethyl-3-(1-acrylamide-1,
1-dimethyl-propyl)ammonium chloride The above two monomers are relatively inexpensive to produce industrially, have a fast copolymerization rate with vinyl esters, especially vinyl acetate, and can synthesize copolymers with a high degree of polymerization. It is particularly preferable because the stability of the amide bond is particularly high, which meets the purpose of the present invention. This monomer is disclosed in West German Patent No. 2254905 or US Patent No. 3666810, US Pat.
No. 3917594, No. 3943114, etc., and it has been shown that it can be copolymerized with many polymerizable monomers including vinyl esters such as vinyl acetate. There is no known copolymer produced by this method, and it is completely unknown that a copolymer having excellent industrially important performance as shown in the present invention can be obtained. Furthermore, other monomers that can be used for the purposes of the present invention include: N-(3-dimethylaminopropyl)acrylamide CH2 =CHCONH-CH2CH2CH2N( CH3 ) 2trimethyl -3-(1- acrylamidopropyl ) ammonium chloride CH2 = CHCONH - CH2CH2CH2 N +
(CH 3 ) 3 Cl - Copolymerization of the above-mentioned polymerizable monomer containing an oticane group and vinyl ester can be carried out using any polymerization method: bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization. Although solution polymerization is usually preferred for many purposes of this invention. As the solvent used, lower alcohols, particularly methanol, are industrially preferred. Bulk polymerization and solution polymerization can be carried out either batchwise or continuously, while suspension polymerization and emulsion polymerization are usually carried out batchwise. In the case of a batch method, it is well known that the monomer composition changes with the polymerization rate according to the comonomer reactivity ratio (r 1 , r 2 ), but when the monomer composition is constant, In order to obtain a copolymer having a uniform copolymerization composition, it is desirable to adopt a so-called semi-batch method in which one or both monomers are added so that the following is achieved. One way to calculate the amount added in this case is to use RJHanna.
Ingustrial and Engineering Chemistry;
The formula presented in Vol. 49, No. 2, 208-209 (1957) is mentioned. In the case of continuous multi-column copolymerization, for the same reason, it is desirable to add monomers to the second and subsequent columns so that the monomer composition in each column is constant. As the polymerization initiator, known initiators for radical polymerization such as 2,2'-azobisisobutyronitrile, benzoyl peroxide, and acetyl peroxide can be used. The polymerization reaction temperature is usually selected from the range of 50°C to the boiling point. The reaction rate of the monomers is appropriately determined depending on the purpose, such as economical efficiency and adjustment of the degree of polymerization. After the copolymerization is completed, if vinyl ester remains in the reaction solution, it is necessary to separate and remove it by distillation or the like. Cationic monomers may be removed,
Moreover, there are many cases where there is no problem even if it is left in place. The vinyl ester portion of the copolymer thus obtained is then saponified. It is usually advantageous to carry out the saponification reaction as a solution of the copolymer in alcohol, especially methanol. Not only anhydrous alcohols but also those containing a small amount of water can be used depending on the purpose, and organic solvents such as methyl acetate and ethyl acetate may be optionally contained. As saponification catalysts, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alcoholates such as sodium methylate and potassium methylate, alkaline catalysts such as ammonia, or hydrochloric acid,
Acid catalysts such as sulfuric acid may be used. Among these, sodium hydroxide is economically advantageous from an industrial standpoint.
The saponification temperature is usually selected from the range of 10 to 50°C.
It is undesirable to leave the product under strong alkaline or acidic conditions at high temperatures for a long time because the amide bond will gradually decompose, but it is usually not necessary to leave it under such conditions and the amide bond will decompose during saponification. It is kept stable without any problems. Through the saponification reaction, vinyl ester units are partially or highly saponified and converted into vinyl alcohol units, but this conversion rate, or degree of saponification, can be set to any value depending on the purpose of use of this cation-modified PVA. You can, but
The range of degree of saponification that can be produced industrially advantageously is usually
It is 70 mol% or more. If the content of cationic monomers in cation-modified PVA is 10 mol% or less, when the saponification reaction proceeds in alcohol, a white gel or precipitate will be formed as in the case of ordinary PVA. A white polymer powder can be obtained by crushing, washing and drying as necessary. The content of cationic monomer in the copolymer is
If the content is 10 mol% or more, or even if the content is 10 mol% or less, the product may not precipitate if the degree of saponification achieved is low, but in this case, an organic solvent such as methyl acetate is used as a precipitant. A method of precipitating it is adopted. The cation-modified PVA of the present invention can generally be stored and transported in powder form, similar to PVA, and when used, a uniform paste solution can be obtained by dispersing it in water and heating it while stirring. Regarding the composition ratio of each component of the cation-modified PVA of the present invention, firstly, the cationic monomer component is 0.01
It is preferably selected from the range of 0.05 to 5 mol%, particularly 0.05 to 5 mol%. If it is less than 0.01 mol%, the fixing effect on pulp will not be sufficient when used as a paper strength enhancer, while if it is more than 20 mol%, the fixing effect will be reduced. In addition, the degree of saponification is 70 mol% or more,
Particularly preferred is a content of 85 mol% or more in terms of physical properties. If it is less than 70 mol%, the strength decreases significantly and it is not suitable as a paper strength enhancer. In addition, the degree of polymerization of the cation-modified PVA of the present invention is 4.
% aqueous solution at 20° C. is usually selected to have a Bruckfield viscosity of 4 centipoise or more, especially 20 centipoise or more. (E) Action and Effects of the Invention The cationically modified PVA of the present invention, which has the above-mentioned components and is useful as a paper strength enhancer, looks similar to PVA at first glance, but its fixability to paper pulp is better than that of PVA. It is easily distinguished from other PVAs by its distinctive property of being extremely high. In other words, while conventional PVA basically does not show any fixation to pulp slurry, the paper strength agent based on the copolymer of the present invention shows no fixation in the range of approximately 1% addition to pulp. , usually shows a fixing rate of 80 to 100% of the total amount of copolymer, and shows a fixing rate of 50% or more even under bad conditions. Due to this outstanding performance, this copolymer can be used as an internal paper strength enhancer by the beater addition method, and its characteristics are as follows. 1) High efficiency in improving dry paper strength. 2) Excellent water resistance. 3) Pigment yield is improved. 4) Drainage sludge is reduced. 5) Neutral papermaking is possible. The paper strength enhancer of the present invention has high performance compared to conventionally known starch-based and polyacrylamide-based paper strength enhancers. This is thought to be due to the fact that its main skeleton structure is PVA, which provides a high paper strength improvement effect. The paper strength enhancer of the present invention can be carried out by a so-called beater addition method in which the paper strength enhancer is added to an aqueous pulp dispersion, adsorbed onto pulp fibers, and then subjected to conventional paper making and drying. In addition, it may be used by impregnating coating by spraying or size press. The amount added when using the beater addition method varies depending on the paper type and purpose, but it is added in the range of 0.05 to 5% of the paper strength enhancer solid content based on dry pulp weight, and generally 0.1 to 2%. A sufficient effect can be obtained within this range. (F) Examples The present invention will be specifically explained below using examples. Example 1 500 g of vinyl acetate, 75 g of methanol, and 3 g of N-(3-dimethylaminopropyl)acrylamide were placed in a flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser, and the flask was placed in a constant temperature bath and stirred. After purging the system with nitrogen, the internal temperature was raised to 60°C. In this system, 2,2'-azobisisobutyronitrile
0.125g was added together with 50g of methanol to initiate polymerization. During the polymerization time of 2 hours and 10 minutes, 20 g of a 25% methanol solution of N-(3-dimethylaminopropyl)acrylamide was added dropwise at a constant rate. The solid content concentration in the system at the time of termination of polymerization was 9.9%. Attach the gas introduction pipe and vacuum distillation device to the flask,
After blowing methanol vapor into the polymerization reaction solution under reduced pressure to drive out unreacted vinyl acetate monomer,
A 31% methanol solution of the copolymer was obtained. This copolymer contains 5.0 mol% of N-(3-dimethylaminopropyl)acrylamide units and vinyl acetate units.
It was confirmed by nuclear magnetic resonance analysis that it contained 95.0 mol%. Methanol solution of this copolymer80
While stirring the mixture at 40° C., 5.8 ml of 1N caustic soda methanol solution was added thereto, mixed well, and left to stand. After 8 minutes and 30 seconds, the entire system gelled. Furthermore
After 20 minutes, this gel was pulverized using a pulverizer, washed with methanol, and dried to obtain a white polymer powder. This copolymer has excellent solubility in water, and its 4
% aqueous solution at 20°C was 38 centipoise. The proton nuclear magnetic resonance spectrum of a heavy aqueous solution of this copolymer is shown in FIG. The absorption at 2.79PPM is attributed to the protons of the two methyl groups bonded to the nitrogen atom of the amino group in the N-(3-dimethylaminopropyl)acrylamide unit, and from the absorption intensity, it is determined that N-(3-dimethylaminopropyl) Acrylamide unit is 5.0 mol%
It was analyzed that it was contained. Furthermore, the degree of saponification of vinyl acetate units was 99.9 mol%. That is, the obtained copolymer is substantially a copolymer of N-(3-dimethylaminopropyl)acrylamide-vinyl alcohol. Example 2 80 g of a methanol solution (31%) of the N-(3-dimethylaminopropyl)acrylamide-vinyl acetate copolymer copolymerized in Example 1 was placed in a flask equipped with a stirrer, a gas inlet tube, and a reflux condenser. was added, and methyl chloride gas was bubbled therein for 3 hours while stirring. While stirring at 40°C, 5.8 ml of 1N caustic soda methanol solution was added, mixed well, and left to stand. After 6 minutes, the entire system gelled. After standing for 20 minutes, the mixture was crushed, washed with methanol, and dried to obtain a white copolymer powder. This powder has excellent solubility in water, and a 4% aqueous solution thereof had a Fulskfield viscosity of 35 centipoise at 20°C.
The proton nuclear magnetic resonance spectrum of the obtained copolymer is shown in FIG. The absorption at 2.79PPM disappeared, and instead, an absorption at 3.13PPM which was attributed to the protons of three methyl groups bonded to the nitrogen atom of the quaternary ammonium salt was found. Therefore, all the amino groups in the N-(3-dimethylaminopropyl)acrylamide unit are quaternized to form trimethyl-3-(1
-acrylaminopropyl) ammonium chloride unit, and its content is 5.0 mol% based on the absorption intensity of 3.13 PPM. In addition, the degree of saponification of vinyl acetate units was determined to be 99.9 mol%. Example 3 2500 g of vinyl acetate in a 5 flask equipped with a stirrer, thermometer, addition funnel and reflux condenser,
697 g of methanol and 4.8 g of white powder of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl) ammonium chloride were placed in a constant temperature bath, and the system was replaced with nitrogen while stirring.
After raising the internal temperature to 60°C, 3.5 g of 2,2'-azobisisobutyronitrile was added together with 50 g of methanol to initiate polymerization. During a polymerization time of 3 hours, 362 g of a 50% methanol solution of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl) ammonium chloride was added dropwise at a constant rate. The solid content concentration in the system at the time of termination of polymerization was 49.8%. A gas inlet pipe and a vacuum distillation device were attached to the flask, and methanol vapor was blown into the polymerization reaction solution under reduced pressure to drive out unreacted vinyl acetate monomer.
A 44.3% methanol solution of the copolymer was obtained. It was confirmed by nuclear magnetic resonance analysis that this copolymer contained 4.0 mol% of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl)ammonium chloride units and 96.0 mol% of vinyl acetate units. . 812g of methanol solution of this copolymer
While stirring the mixture at 35°C, 42.1 ml of 2N caustic soda methanol solution was added thereto, mixed well, and left to stand. The entire system gelled after 7 minutes and 20 seconds. After another 20 minutes, the gel was pulverized using a pulverizer, washed with methanol, and dried by heating to obtain a white polymer powder.
The proton nuclear magnetic resonance spectrum of the obtained polymer in a heavy aqueous solution is shown in FIG. The absorption of 3.13PPM is trimethyl-3-(1-acrylamide-1,
3 bonded to the quaternary ammonium nitrogen atom in the 1-dimethyl-propyl) ammonium chloride unit
trimethyl-3-(1-acrylamide-
It was confirmed that the content of 1,1-dimethyl-propyl) ammonium chloride units was 4.0 mol%. On the other hand, the degree of saponification of the vinyl acetate unit is 99.3 mol%, and the nitrogen content according to the Kjeldahl method is 2.17% by weight, which is trimethyl-3-(1
-Acrylamide-1,1-dimethyl-propyl)ammonium chloride units correspond to 4.0 mol%, which agrees with the results of the above nuclear magnetic resonance analysis. The Bruckfield viscosity of a 4% aqueous solution at 20℃ is
It was 34.1 centipoise. Example 4 154g of methyl acetate was added to 700g of methanol solution from which residual vinyl acetate monomer was removed after copolymerization in Example 3.
After adding 150 g of methanol and mixing well to make the mixture homogeneous, 15.7 ml of 2N caustic soda methanol solution was added thereto while stirring at 40°C, and after mixing well, the mixture was left to stand. The entire system gelled after 14 minutes and 50 seconds. After standing for another 20 minutes, the gel was pulverized using a pulverizer, washed with methanol, and dried to obtain a white polymer powder.
The obtained shield polymer is a copolymer containing 4.0 mol% of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl)ammonium chloride units and a saponification degree of vinyl acetate units of 88.0 mol%. The Bruckfield viscosity of its 4% aqueous solution at 20°C was 30.4 centipoise. Example 5 In an apparatus similar to Example 3, 3000 g of vinyl acetate,
108 g of methanol and 1.1 g of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl) ammonium chloride were charged, and 0.15 g of 2,
Copolymerization was initiated by addition of 2'-azobisisobutyronitrile and 50 g of methanol. Polymerization time
20 g of a 50% methanol solution of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl) ammonium chloride was added dropwise at a constant rate during 1.0 hour. The solid content concentration in the system when polymerization is stopped is
It was 15.7%. After removing the remaining vinyl acetate monomer by the same operation as in Example 3, a copolymer methanol solution with a solid content concentration of 31.7% was obtained. To 960 g of this methanol solution was added 39.2 ml of 2N caustic soda methanol solution while stirring at 40°C, mixed well, and then left to stand. The entire system gelled after 5 minutes and 35 seconds. After another 20 minutes, the gel was pulverized using a pulverizer, washed with methanol, and then dried by heating to obtain a white copolymer powder. The nitrogen content of this copolymer is 0.492
In weight percent, this corresponds to a content of 0.8 mole percent trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl)ammonium chloride units. Saponification degree of vinyl acetate unit is 99.4
The Bruckfield viscosity of a 4% aqueous solution at 20° C. was 167 centipoise. Example 6 In an apparatus similar to Example 3, 3000 g of vinyl acetate,
By charging 283 g of methanol and 0.5 g of N--(1,1-dimethyl-3-dimethylaminopropyl)acrylamide hydrochloride, and adding 0.3 g of 2,2'-azobisisobutyronitrile and 50 g of methanol. Copolymerization was started. During the polymerization time of 2.5 hours, 41 g of a 25% methanol solution of N-(1,1-dimethyl-3-dimethylaminopropyl)acrylamide hydrochloride was added dropwise at a constant rate. The solid content concentration in the system at the time of termination of polymerization was 30.3%. After removing the remaining vinyl acetate monomer by the same operation as in Example 3, a copolymer methanol solution with a solid content concentration of 33.0% was obtained. 1061g of this methanol solution
While stirring at 40°C, 51 ml of 2N caustic soda methanol solution was added, mixed well, and left to stand. The entire system gelled after 2 minutes and 15 seconds. After standing for 20 minutes, the gel was pulverized using a pulverizer, washed with methanol, and then dried by heating to obtain a white copolymer powder. This copolymer is N
It was analyzed to contain 0.4 mol% of -(1,1-dimethyl-3-dimethylaminopropyl)acrylamide units. The saponification degree of vinyl acetate unit is
The Bruckfield viscosity of a 4% aqueous solution at 20° C. was 71.2 centipoise. Example 7 N-(1,1-dimethyl-
3-dimethylaminopropyl)acrylamide-
Methyl chloride gas was bubbled into two flasks while stirring 1000 g of a 5% aqueous solution of vinyl alcohol-vinyl acetate copolymer. After bubbling for 5 hours, the copolymer in the aqueous solution was analyzed by proton nuclear magnetic resonance, and it was found that all the amino groups were quaternized and trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl) ammonium chloride. It was confirmed that the copolymer contained 0.4 mol% of Testing as a paper strength enhancer Canadian Standard Freeness 565
A predetermined amount of the aqueous solution of the copolymer synthesized in each of the examples and the polymer of the comparative example was added and mixed into 1% aqueous slurry of pulp (NBKP). Then, after 3 minutes, paper was made using a Tatsupi Standard paper machine to a basis weight of 80±5g/ m2 , and 3.5Kg/m2.
After press dehydration at cm 2 for 5 minutes, use a rotating drum dryer.
After drying at 110℃ for 1 minute to form paper, 20℃, 65%
Humidity was controlled at RH for 48 hours. On the other hand, the white water during paper making was collected and concentrated, and the concentration of the copolymer in the white water was determined by JHFinley, Journal of Analytical
Chemistry, Vol. 33, No. 13, 1925 (1961) was used to determine the fixation rate of each added copolymer to the pulp. After humidity conditioning, the paper sample was measured for tensile strength (breaking length) in accordance with JIS-8113 and specific bursting strength in accordance with JIS-8112. The measurement results are shown in Table 1. Table 1 shows, as comparative examples, systems without paper strength additives and ordinary PVA without cationic groups (Kuraray Poval PVA-177, saponification degree 98.5%, polymerization degree
1750), and acrylamide copolymer-modified PVA
(acrylamide modification degree 5 mol%, saponification degree 98.3
%, degree of polymerization 1500), and acrylamide copolymerization modification (degree of PVA acrylamide modification 50 mol%, degree of saponification 97.5%, degree of polymerization 1200) for a sample made in the same manner.

【衚】【table】

【衚】 カチオン基を含たぬPVA−117及びアクリルア
ミド共重合倉性PVAモル倉性及び50モル
倉性が実質的に定着を瀺さず、玙力も発揮され
おいないのに察しお本発明の新芏なカチオン性の
氎溶性共重合䜓を䞻剀ずする玙力増匷剀はいずれ
も高い定着率を瀺し、か぀玙力増匷効果が優れお
いる。
[Table] PVA-117 that does not contain cationic groups and acrylamide copolymer-modified PVA (5 mol% modified and 50 mol%
In contrast, paper strength enhancers based on the novel cationic water-soluble copolymer of the present invention all show a high fixation rate, whereas the paper strength enhancers based on the novel cationic water-soluble copolymer of the present invention show virtually no fixation and do not exhibit paper strength. , and has an excellent paper strength enhancement effect.

【図面の簡単な説明】[Brief explanation of drawings]

第図〜第図は䞻呚波数90MHzのプロトン
栞磁気共鳎スペクトルVARIAN瀟、FM−
390であり、いずれも本発明の共重合䜓の
重氎溶液を枬定したものである。第図は−
−ゞメチルアミノプロピルアクリルアミド
−ビニルアルコヌル共重合䜓、第図は前者共重
合䜓の四玚化物であるトリメチル−−−ア
クリルアミドプロピルアンモニりムクロリド−
ビニルアルコヌル共重合䜓、第図はトリメチル
−−−アクリルアミド−−ゞメチル
−プロピルアンモニりムクロリド−ビニルアル
コヌル酢酞ビニル共重合䜓のスペクトル図であ
る。各図䞭、暪軞は詊料溶液に共存させた基準物
質トリメチルシリルプロピオン酞−d4−ナトリ
りム塩からの化孊シフトをPPMで瀺しおある。
Figures 1 to 3 are proton nuclear magnetic resonance spectra with a main frequency of 90MHz (VARIAN, FM-
390), both of which are 5% of the copolymer of the present invention.
This is a measurement of a heavy aqueous solution. Figure 1 shows N-
(3-dimethylaminopropyl)acrylamide-vinyl alcohol copolymer; Figure 2 shows trimethyl-3-(1-acrylamidopropyl)ammonium chloride, which is a quaternized product of the former copolymer.
Vinyl Alcohol Copolymer, FIG. 3 is a spectral diagram of trimethyl-3-(1-acrylamido-1,1-dimethyl-propyl)ammonium chloride-vinyl alcohol vinyl acetate copolymer. In each figure, the horizontal axis indicates the chemical shift in PPM from a reference substance (trimethylsilylpropionic acid- d4 -sodium salt) coexisting in the sample solution.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、 R1氎玠原子たたはメチル基 【匏】 R6、R7、R8は氎玠原子たたは炭玠数
〜のアルキル基を瀺し、は〜
の敎数を瀺す。 【匏】たたは【匏】 R2、R3、R4は眮換基を含んでいおも
よい䜎玚アルキル基、X-はアンモニり
ム窒玠ず塩を圢成する陰性の基を瀺す。 を、それぞれ意味する。 で衚される共重合単䜍を0.01〜20モル含有し、
ビニル゚ステル単䜍のケン化床が70モル以䞊
で、か぀氎溶液の20℃におけるブルツクフむ
ヌルド粘床がセンチポむズ以䞊であるカチオン
倉性ポリビニルアルコヌルからなるこずを特城ず
する玙力増匷剀。  が−CH32−CH2−CH2−で、か぀
が−CH32である請求項蚘茉の玙力増匷剀。  が−CH32−CH2−CH2−で、か぀
が−N+CH33・Cl-である請求項蚘茉の玙力
増匷剀。  が−CH2−CH2−CH2−で、か぀が−
CH32である請求蚘蚘茉の玙力増匷剀。  が−CH2−CH2−CH2−で、か぀が−
N+CH33・Cl-である請求項蚘茉の玙力増匷
剀。
[Claims] 1. General formula [In the formula, R 1 : Hydrogen atom or methyl group A: [Formula] (R 6 , R 7 , R 8 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is 0 to 2
indicates an integer. ) B: [Formula] or [Formula] (R 2 , R 3 , and R 4 are lower alkyl groups that may contain substituents, and X - represents a negative group that forms a salt with ammonium nitrogen.) , respectively. ] Contains 0.01 to 20 mol% of copolymerized units represented by
A paper strength enhancer comprising a cationically modified polyvinyl alcohol having a degree of saponification of vinyl ester units of 70 mol% or more and a Bruckfield viscosity of 4% aqueous solution at 20°C of 4 centipoise or more. 2 A is (-C(CH 3 ) 2 -CH 2 -CH 2 )-, and B
The paper strength enhancer according to claim 1 , wherein is -N(CH3)2 . 3 A is (-C(CH 3 ) 2 -CH 2 -CH 2 )-, and B
The paper strength enhancer according to claim 1, wherein is -N + (CH 3 ) 3.Cl - . 4 A is (-CH 2 -CH 2 -CH 2 )- and B is -N
The paper strength enhancer according to claim 1, which is ( CH3 ) 2 . 5 A is (-CH 2 -CH 2 -CH 2 )- and B is -
The paper strength enhancer according to claim 1, which is N + (CH 3 ) 3 ·Cl − .
JP17599886A 1986-07-25 1986-07-25 Paper strength enhancer based on novel cationic water-soluble copolymer Granted JPS62177297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17599886A JPS62177297A (en) 1986-07-25 1986-07-25 Paper strength enhancer based on novel cationic water-soluble copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17599886A JPS62177297A (en) 1986-07-25 1986-07-25 Paper strength enhancer based on novel cationic water-soluble copolymer

Publications (2)

Publication Number Publication Date
JPS62177297A JPS62177297A (en) 1987-08-04
JPH0215679B2 true JPH0215679B2 (en) 1990-04-12

Family

ID=16005918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17599886A Granted JPS62177297A (en) 1986-07-25 1986-07-25 Paper strength enhancer based on novel cationic water-soluble copolymer

Country Status (1)

Country Link
JP (1) JPS62177297A (en)

Also Published As

Publication number Publication date
JPS62177297A (en) 1987-08-04

Similar Documents

Publication Publication Date Title
US4311805A (en) Vinyl alcohol copolymers containing cationic groups
US4957977A (en) Vinylamine copolymer, flocculating agent etc.
US2884057A (en) Paper of improved dry strength and method of making same
JP2729226B2 (en) Amine-functional poly (vinyl alcohol) for improving the properties of recycled paper
JPH0676462B2 (en) Vinylamine copolymer and method for producing the same
JPS6232206B2 (en)
JPS63258912A (en) Acetal group-containing polysaccharide graft polymer and conversion of aetal group to aldehyde group
JP3237228B2 (en) Papermaking additives consisting of cationic polymers
JPS6213963B2 (en)
US4481319A (en) Low-foam surface sizing agents for paper which contain copolymeric _maleic anhydride semi-amides
JP4238945B2 (en) Paper additive and paper manufacturing method
JPS6234242B2 (en)
JPH0215679B2 (en)
JPWO2002053835A1 (en) Papermaking additive, method for producing papermaking additive, and paper containing papermaking additive
JP3472352B2 (en) Papermaking additives
JPS5879003A (en) Preparation of silicon-containing modified polyvinyl alcohol
JPH0328442B2 (en)
JPS6139440B2 (en)
JPH0357999B2 (en)
JPS6233241B2 (en)
JP3459103B2 (en) Novel quaternary ammonium surfactant, emulsifier for emulsion polymerization, dispersant for suspension polymerization, resin modifier
JPS6149440B2 (en)
JP4288541B2 (en) Paper manufacturing method
JP3459102B2 (en) New surfactants, new emulsifiers for emulsion polymerization, new dispersants for suspension polymerization, new resin modifiers
JPH0480925B2 (en)