JPH02156555A - Resin sealed semiconductor device - Google Patents

Resin sealed semiconductor device

Info

Publication number
JPH02156555A
JPH02156555A JP63310421A JP31042188A JPH02156555A JP H02156555 A JPH02156555 A JP H02156555A JP 63310421 A JP63310421 A JP 63310421A JP 31042188 A JP31042188 A JP 31042188A JP H02156555 A JPH02156555 A JP H02156555A
Authority
JP
Japan
Prior art keywords
sealing resin
filler
resin
semiconductor device
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310421A
Other languages
Japanese (ja)
Inventor
Toshimi Kawahara
川原 登志実
Hiroyuki Saegusa
三枝 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63310421A priority Critical patent/JPH02156555A/en
Publication of JPH02156555A publication Critical patent/JPH02156555A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

PURPOSE:To improve the heat dissipating property of a resin seal semiconductor device by blending, in sealing resin, aluminum powder coated with an aluminum oxide film or an aluminum nitride film, as filling material. CONSTITUTION:In a resin seal semiconductor device 1, a semiconductor element 2 is fixed on a mounting part 3, and connected with leads 4 via bonding wires 5; the whole part is molded with sealing resin 6, thereby protecting the semiconductor element 2 from the ambient air and simplifying the mounting onto a printed board by using the leads 4. In this case, Al powder coated with an aluminum oxide film or aluminum nitride film of 0.5-20.0mum in thickness is blended, as filling material 7, in the sealing resin. Thereby, the thermal conductivity of sealing resin is improved, and excellent heat dissipating property can be obtained.

Description

【発明の詳細な説明】 〔概 要〕 樹脂封止半導体装置の封止に用いる封止樹脂に関し、 半導体装置の封止樹脂の熱放散性を向上することを目的
とし、 封止樹脂の中に、膜の厚さが0.5〜20.0μmの酸
化アルミニウム皮膜、または窒化アルミニウム皮膜で被
覆されたアルミニウムの粉末を、充てん〔産業上の利用
分野〕 本発明は、樹脂封止半導体装置の封止に用いる封IF樹
脂に関する。
[Detailed Description of the Invention] [Summary] Regarding the sealing resin used for sealing a resin-sealed semiconductor device, the purpose of improving the heat dissipation property of the sealing resin of the semiconductor device is to incorporate , filled with aluminum powder coated with an aluminum oxide film or an aluminum nitride film with a film thickness of 0.5 to 20.0 μm [Industrial Application Field] This invention relates to a sealing IF resin used for sealing.

近年、集積回路(IC)を中心とした半導体装置の高密
度化、高集積化の進展は目ざましく、それに伴う半導体
装置の発熱量も、益々増大してきている。
2. Description of the Related Art In recent years, there has been remarkable progress in increasing the density and integration of semiconductor devices, mainly integrated circuits (ICs), and the amount of heat generated by semiconductor devices has accordingly increased.

一般に、半導体装置は、素子を保護するために、種々の
方法で封止が行われているが、この封止に際して、如何
に安価で、かつ、熱放散の効率がよい材料を使うかが重
要な課題となっている。
Generally, semiconductor devices are sealed using various methods to protect the elements, but it is important to use materials that are both inexpensive and efficient in heat dissipation. This has become a major issue.

すなわち、高出力で熱放散の大きなマイコンやゲートア
レイなどでは、放熱板として、熱伝導率が400X10
−’cal/cm−s ・’C程度と高いセラミックを
取り付けて封止した、いわゆるセラミックICが使われ
るいる。
In other words, for microcontrollers, gate arrays, etc. that have high output and large heat dissipation, a heat sink with a thermal conductivity of 400x10 is used.
-'cal/cm-s - So-called ceramic ICs are used, which are sealed with ceramics that have a high value of around 'C.

しかし、一般に、セラミンクICは価格が高い上に、量
産性も劣るので、限られた用途で用いる場合が多い。
However, ceramic ICs are generally expensive and have poor mass productivity, so they are often used for limited purposes.

それに対して、量産性がよく、安価なことから、低圧成
形に適した封止用の合成樹脂により成形封止した、いわ
ゆるプラスチックICがよく用いられている。
On the other hand, so-called plastic ICs, which are molded and sealed with a sealing synthetic resin suitable for low-pressure molding, are often used because they are easy to mass-produce and are inexpensive.

〔従来の技術〕[Conventional technology]

プラスチックICで用いられる封止樹脂には、素子の発
熱に対する熱応力を緩和し、熱伝導性の劣る封止樹脂の
熱伝導性を改質する目的で、種々の充てん材を添加する
ことが行われている。
Various fillers are added to the encapsulating resin used in plastic ICs in order to alleviate the thermal stress caused by the heat generated by the element and to improve the thermal conductivity of the encapsulating resin, which has poor thermal conductivity. It is being said.

充てん材としてよく用いられるのは、溶融シリカ(Si
Oz)の粉末であるが、熱伝導率がセラミ、ツタに比べ
て非常に低く (15X10−’cal/cm −s 
−’C)、充てん材の放熱性としては、満足できない。
Fused silica (Si) is often used as a filler.
oz), but its thermal conductivity is very low compared to ceramic and ivy (15X10-'cal/cm-s
-'C) The heat dissipation of the filler is not satisfactory.

これに代わる充てん材として、結晶性シリカの粉末とア
ルミナ(Atzo:+)粉末とが知られている。
As alternative fillers, crystalline silica powder and alumina (Atzo:+) powder are known.

結晶性シリカは、溶融シリカに比べて、熱伝導率は高い
(50X10−’cal/cm + s ・’C)が、
大幅な改善にはならず、線膨張係数が大きいので、熱応
力によるパッケージ割れが生じ易い欠点がある。
Crystalline silica has a higher thermal conductivity than fused silica (50X10-'cal/cm + s ・'C), but
This is not a significant improvement, and since the coefficient of linear expansion is large, there is a drawback that the package is likely to crack due to thermal stress.

アルミナ粉末は、熱伝導率が結晶性シリカと大差なく、
イオン性不純物の含量が多いために、耐湿性が劣る上に
、粉末自体が硬いために、成形金型が磨耗するなどの問
題がある。
Alumina powder has a thermal conductivity that is not much different from crystalline silica.
Due to the high content of ionic impurities, the moisture resistance is poor, and the powder itself is hard, causing problems such as abrasion of the molding die.

一方、熱伝導性に着目すれば、熱伝導性のよい例えば、
A!なとの金属粉末が、良好な充てん材になり得る。
On the other hand, if we focus on thermal conductivity, for example,
A! metal powder can be a good filler.

しかし、何ら処理しないそのま\の金属粉末では、封止
樹脂の中に、如何によく分散を行っても、素子・ボンデ
ングワイヤ・リードなどの相互間の短絡事故を避けるこ
とは不可能に近い。
However, with unprocessed metal powder, no matter how well it is dispersed in the sealing resin, it is impossible to avoid short circuits between elements, bonding wires, leads, etc. close.

そこで、金属粉末の表面を絶縁性の樹脂によって、予め
被覆する提案もなされている(特開昭54128276
 )。
Therefore, a proposal has been made to coat the surface of the metal powder with an insulating resin in advance (Japanese Patent Laid-Open No. 54128276
).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

トで述べたように、プラスチックICの封止樹脂に添加
する充てん材として、一般に、無機金属酸化物が用いら
れているが、益々増大するICの発熱を放散するために
は、熱伝導率の高い金属↑51末が使用できれば、非常
に好都合である。
As mentioned above, inorganic metal oxides are generally used as fillers added to the sealing resin of plastic ICs, but in order to dissipate the increasingly increasing heat generated by ICs, it is necessary to It would be very convenient if a high metal ↑51 powder could be used.

しかし、金属粉末そのま\では、封止樹脂の中に如何に
よ(分散させても、金属粉末同士の凝集や金属のイオン
化などが起こり、絶縁劣化や電気的短絡を防ぐことが難
しい問題があった。
However, no matter how much metal powder is dispersed in the sealing resin, aggregation of the metal powder and ionization of the metal occur, making it difficult to prevent insulation deterioration and electrical short circuits. there were.

そこで、金属の熱伝導性のよさを阻害せずに薄くて均一
な膜厚で、かつ、安定な絶縁性の皮膜を被覆した充てん
材を混練した封止樹脂により成形した半導体装置を得る
ことが要望されていた。
Therefore, it is possible to obtain a semiconductor device molded using a sealing resin kneaded with a filler coated with a thin, uniform film thickness and stable insulating film without impairing the good thermal conductivity of metal. It was requested.

〔課題を解決するための手段〕[Means to solve the problem]

上で述べた課題は、封止樹脂の中に、膜の厚さが0.5
〜20.0μmの酸化アルミニウム皮膜、または窒化ア
ルミニウム皮膜で被覆したAN扮末を、充てん材として
混練させた樹脂封止半導体装置により達成できる。
The problem mentioned above is that the thickness of the film in the sealing resin is 0.5
This can be achieved by using a resin-sealed semiconductor device in which AN powder coated with an aluminum oxide film or an aluminum nitride film of ~20.0 μm is kneaded as a filler.

〔作 用〕[For production]

第1図は樹脂封止半導体装置の一例の構成図である。 FIG. 1 is a configuration diagram of an example of a resin-sealed semiconductor device.

同図において、樹脂封止半導体装置1は、半導体素子2
が載置部3に固着され、リード4との間はボンデングワ
イヤ5で接続され、それら全体が封止樹脂6でモールド
成形されて、半導体素子2を外気から保護したり、リー
ド4によるプリント基板などへの実装を簡便にしたりす
るようになっている。
In the figure, a resin-sealed semiconductor device 1 includes a semiconductor element 2
is fixed to the mounting part 3 and connected to the leads 4 by bonding wires 5, and the whole is molded with a sealing resin 6 to protect the semiconductor element 2 from the outside air and to prevent printing using the leads 4. This makes it easier to mount it on a board, etc.

そして、半導体素子2から発生する熱を放散するために
、一般には熱伝導性が劣る封止樹脂6の中に、充てん材
7を混練して、熱放散を良くするようになっている。
In order to dissipate the heat generated from the semiconductor element 2, a filler material 7 is kneaded into the sealing resin 6, which generally has poor thermal conductivity, to improve heat dissipation.

第2図は本発明の充てん材を混練した樹脂封止半導体装
置の特性図である。
FIG. 2 is a characteristic diagram of a resin-sealed semiconductor device kneaded with the filler of the present invention.

図中、横軸の時間に対して、縦軸は、負荷を印加しなが
ら、水蒸気加圧試験、いわゆるバイアスP CT (P
ressure Cooker Te5t)試験を行っ
たときの不良率を示す。
In the figure, the horizontal axis is time, and the vertical axis is the water vapor pressurization test, so-called bias P CT (P
Ressure Cooker Te5t) Indicates the defective rate when the test is conducted.

試料は、エポキシ系の封止樹脂に、平均粒径が20μm
のAN粉末をベースとした充てん材を、80重量%添加
し混練したものである。
The sample was made of epoxy sealing resin with an average particle size of 20 μm.
80% by weight of a filler based on AN powder was added and kneaded.

バイアスPCT試験の条件は、温度120°C1湿度1
00%RH1圧力2気圧である。
The conditions for the bias PCT test are: temperature 120°C, humidity 1
00% RH 1 pressure 2 atmospheres.

また、試料の評価は、半導体素子2として、シリコンウ
ェーハ上に、パターン幅が3μm、パターン間隙が2μ
mのAl2のパターンを配線した試験素子を用い、八〇
のボンデングワイヤ5で、リード4との間の導通を取り
、バイアスは、一対のパターンの一方をアースし、他方
に24Vの直流電圧を印加している。
In addition, the evaluation of the sample was conducted as a semiconductor element 2 on a silicon wafer with a pattern width of 3 μm and a pattern gap of 2 μm.
Using a test element wired with an Al2 pattern of 1.5 m, conduction is established between the lead 4 and the lead 4 using a 80-m bonding wire 5. For bias, one of the pair of patterns is grounded, and the other is connected to a 24 V DC voltage. is being applied.

先に述べたように、封止樹脂6の熱伝導性を良くするた
めの充填材7としては、熱伝導性のよい金属の粉末が、
最もよい充てん材である。
As mentioned above, as the filler 7 for improving the thermal conductivity of the sealing resin 6, metal powder with good thermal conductivity is used.
It is the best filling material.

しかし、同図の(イ)から分かるとおり、何ら処理しな
いそのままのAffi粉末では、封止樹脂6の中に、如
何によく混練し分j141させても、約24時間で半数
が不良となり、半導体素子2・リード4・ボンデングワ
イヤ5などの相互間の絶縁劣化や短絡を長時間にわたっ
て避けることはできない。
However, as can be seen from (A) in the same figure, if the Affi powder is used as it is without any treatment, no matter how well it is kneaded into the sealing resin 6, half of it becomes defective in about 24 hours, and the semiconductor It is impossible to avoid insulation deterioration and short circuits between the elements 2, leads 4, bonding wires 5, etc. over a long period of time.

このことは、A!の表面が、大気中において、数十人の
極く薄い酸化皮膜で覆われているが、充てん材として封
止樹脂の中で混練する際に、酸化皮膜が機械的に破壊さ
れたり、トンネル効果のために電気的な絶縁性が不充分
なためである。
This is A! The surface of the oxide film is covered with an extremely thin oxide film in the atmosphere, but when it is kneaded in the sealing resin as a filler, the oxide film is mechanically destroyed and a tunnel effect occurs. This is because the electrical insulation is insufficient.

それに対して、Al1の粉末に酸化処理を施し、0.5
μmの酸化アルミニウム皮膜で表面を被覆すると、同図
の(ロ)に示すとおり、800時間までは、不良率が0
%で、2,000時間経ても、不良率は高々10%であ
る。
On the other hand, by applying oxidation treatment to Al1 powder, 0.5
When the surface is coated with a μm-thick aluminum oxide film, the defect rate is 0 for up to 800 hours, as shown in (b) of the same figure.
%, and even after 2,000 hours, the defective rate is at most 10%.

さらに、5μmの酸化皮膜で表面を被覆すると、同図の
(ハ)に示すとおり、2,000時間経ても、不良率は
0%で、非常によい特性を示す。
Furthermore, when the surface is coated with an oxide film of 5 μm, as shown in (c) of the same figure, even after 2,000 hours, the defective rate is 0%, showing very good characteristics.

窒化アルミニウム皮膜で表面を被覆した場合にも、同図
(ニ)や(ホ)に示すとおり、PCT試験の結果は、酸
化アルミニウム皮膜で表面を被覆した場合とほぼ同一で
ある。
Even when the surface is coated with an aluminum nitride film, the PCT test results are almost the same as when the surface is coated with an aluminum oxide film, as shown in Figures (D) and (E).

封止樹脂の中に添加する充てん材のA f $53末の
粒径は、小さ過ぎると、酸化処理や窒化処理の制御が困
難となり、大き過ぎると、同一の添加量のとき、充てん
材の表面積が小さくなるので、封止樹脂に熱伝導性を付
与する効果が低くなる。
If the particle size of the A f $53 powder of the filler added to the sealing resin is too small, it will be difficult to control the oxidation treatment and nitriding treatment, and if it is too large, the filler will Since the surface area becomes smaller, the effect of imparting thermal conductivity to the sealing resin becomes lower.

第3図は、本発明の充てん材の混線量と熱伝導率との関
係図である。
FIG. 3 is a diagram showing the relationship between the amount of crosstalk and thermal conductivity of the filling material of the present invention.

同図において、封止樹脂の中に混練する充てん祠の星は
、熱伝導性に着目すれぼ多い方が効果的である。
In the same figure, it is more effective to have as many stars as possible to mix into the sealing resin, focusing on thermal conductivity.

しかし、封止樹脂の流動性が悪くなって、一般に行われ
るトランスファ成形が困難になったり、成形用の金型が
磨耗したり、あるいは、封止樹脂自体の結着材(バイン
ダ)としての機能が損なわれたりするので、自ずから限
度がある。
However, the fluidity of the sealing resin deteriorates, making the commonly performed transfer molding difficult, causing the mold for molding to wear out, or causing the sealing resin itself to function as a binder. There is a limit to this, as it may cause damage to the body.

それに対して、封止樹脂の中に混練する充てん材の量を
少なくしていくと、急激に熱伝導率が低下して効果が小
さくなってくる。
On the other hand, when the amount of filler kneaded into the sealing resin is reduced, the thermal conductivity decreases rapidly and the effect becomes smaller.

しかし、充てん材の混線量の下限を制約する条件は特に
ない。
However, there is no particular condition that restricts the lower limit of the amount of crosstalk in the filling material.

第4図は、本発明の充てん材の皮膜の厚さと熱伝導率と
の関係図である。
FIG. 4 is a diagram showing the relationship between the film thickness and thermal conductivity of the filler of the present invention.

同図において、皮膜が酸化アルミニウムのとき、皮膜の
厚さが0.5μm以下になると、熱伝導率は非常に大き
くなるが、短絡不良も増大し、実用的でな(なる。
In the figure, when the film is made of aluminum oxide and the thickness of the film is 0.5 μm or less, the thermal conductivity becomes very high, but short circuit failures also increase, making it impractical.

この理由は、封止樹脂に充てん材を混練する際に、皮膜
が機械的に破壊されるためと考えられ、0.5μrnが
皮膜の厚さの下限である。
The reason for this is thought to be that the film is mechanically destroyed when the filler is kneaded into the sealing resin, and 0.5 μrn is the lower limit of the film thickness.

それに対して、皮膜の厚さが20μm以上になると、熱
伝導率が象、激に低下し、本発明の充てん材の効果がな
くなってくる。
On the other hand, when the thickness of the film becomes 20 μm or more, the thermal conductivity decreases drastically and the filler of the present invention becomes ineffective.

同図においては、Affi粉末の粒径が100μrnな
ので、皮膜の厚さが50μmの場合には、アルミナその
ものの特性に近い。
In the figure, since the particle size of Affi powder is 100 μrn, when the thickness of the film is 50 μm, the characteristics are close to those of alumina itself.

しかし、一般に、充てん材の粒径は、100μm程度の
大きさが限度なので、皮膜の厚さとしては、20μmが
効果的な上限である。
However, since the particle size of the filler is generally limited to about 100 μm, the effective upper limit for the thickness of the film is 20 μm.

以上述べたことは、酸化アルミニウム皮膜が、ちっ化ア
ルミニウムの皮膜に変わっても、全く同様の結果であっ
た。
The results described above were exactly the same even when the aluminum oxide film was replaced with an aluminum nitride film.

〔実施例〕〔Example〕

第1図は樹脂封止半導体装置の一例の構成図である。 FIG. 1 is a configuration diagram of an example of a resin-sealed semiconductor device.

実施例:1 充てん材7として、平均粒径が20μmのAj2粉末に
水蒸気酸化を施し、膜厚0.5μmの酸化アルミニウム
の皮膜で被覆したものを用いた。
Example: 1 As the filler 7, Aj2 powder having an average particle size of 20 μm was subjected to steam oxidation and coated with an aluminum oxide film having a thickness of 0.5 μm.

封止樹脂には、エポキシ系とフェノールノボラック系の
混合樹脂を用い、2−ウンデシルイミダゾール、ステア
リン酸、モンタナワックスなどを添加し、カーボンブラ
ックを加え、充てん材の含有量が80重量%になるよう
配合して、ボールミルでよく混練した。
For the sealing resin, a mixed resin of epoxy and phenol novolak is used, and 2-undecylimidazole, stearic acid, montana wax, etc. are added, and carbon black is added to bring the filler content to 80% by weight. The mixture was mixed well with a ball mill.

第1図に示したDIPタイプの半導体装置1において、
半導体素子2には、シリコンウェーハ上に、パターン幅
が3μm、パターン間隙が2μmのAIのパターンを配
線した試験素子2を用い、パターンの両端をそれぞれリ
ード4に、AI2のボンデングワイヤ5で接続した。
In the DIP type semiconductor device 1 shown in FIG.
The semiconductor element 2 is a test element 2 in which an AI pattern with a pattern width of 3 μm and a pattern gap of 2 μm is wired on a silicon wafer, and both ends of the pattern are connected to leads 4 using bonding wires 5 of AI2. did.

モールド金型を用いて樹脂封止を行い、半導体装置1の
形に成形して、熱伝導率の測定と信頼性の評価を行った
Resin sealing was performed using a molding die, the semiconductor device 1 was formed, and thermal conductivity was measured and reliability was evaluated.

熱伝導率は、成形した半導体装置1を切断して試験片を
つくり、熱盤とスポット式の赤外線温度計とを用いて測
定した。
Thermal conductivity was measured by cutting the molded semiconductor device 1 into test pieces, using a heating plate and a spot-type infrared thermometer.

充てん材を混練してない樹脂自体の熱伝導率が、約12
XIO−’cal/cm + s ・”Cであるのに対
して、本発明の充てん材を混練した封止樹脂の実施例に
おいては、182X10−’cal/cm −s −”
Cとなり、約15倍の高い効果が確認できた。
The thermal conductivity of the resin itself without being kneaded with filler is approximately 12.
XIO-'cal/cm + s ・"C, whereas in the example of the sealing resin kneaded with the filler of the present invention, it is 182X10-'cal/cm -s -"
C, and an approximately 15 times higher effect was confirmed.

また、信頼性の評価の中で、試料lの充てん材を混練し
た封止樹脂6としての成形性能は、試験素子2のパター
ンを介したり一ド4の間のオープン不良率として評価し
たが、オープン不良率は0%であった。
In addition, in the reliability evaluation, the molding performance as the sealing resin 6 kneaded with the filler of sample 1 was evaluated as the open failure rate through the pattern of the test element 2 and between one dot 4. The open defect rate was 0%.

一方、第2図の(ロ)は、本発明に係わる充てん材を混
練した封止樹脂6で成形した、半導体装置1のバイアス
PCT試験の結果である。
On the other hand, (b) of FIG. 2 shows the results of a bias PCT test of the semiconductor device 1 molded with the sealing resin 6 kneaded with the filler according to the present invention.

800時間までは、不良率が0%で、2,000時間経
ても、不良率は高々10%であった。
Up to 800 hours, the defective rate was 0%, and even after 2,000 hours, the defective rate was at most 10%.

実施例:2 充てん材7として、粒径が80μmのへ〇粉末の表面に
、膜厚3.0μmの酸化アルミニウム皮膜で被覆したも
のを用いた。
Example: 2 As the filler 7, the surface of He〇 powder having a particle size of 80 μm was coated with an aluminum oxide film having a thickness of 3.0 μm.

実施例:Iと同様の仕様で、充てん材の含有量が60重
量%になるよう配合してボールミルでよく混練し、封止
樹脂を調合して半導体装置1を成形して評価を行った。
Example: With the same specifications as I, the filler content was blended to be 60% by weight, thoroughly kneaded in a ball mill, a sealing resin was prepared, and a semiconductor device 1 was molded and evaluated.

その結果、本発明に係わる充てん材を混練した封止樹脂
の熱伝導率は、 t54X10−’cal/cm −s
 ・°Cで、オープン不良率は0%であった。
As a result, the thermal conductivity of the sealing resin mixed with the filler according to the present invention was t54X10-'cal/cm-s
・At °C, the open defect rate was 0%.

実施例:3 充てん材7として、粒径が100μmの大きさのA!粉
末の表面に、膜厚15.Oumの酸化アルミニウム皮膜
で被覆したものを用いた。
Example: 3 As the filler 7, A! with a particle size of 100 μm is used. A film thickness of 15mm is applied to the surface of the powder. A material coated with Oum's aluminum oxide film was used.

実施例:lと同様の仕様で、充てん材の含有量が70重
量%になるよう配合してボールミルでよく混練し、封止
樹脂を調合して半導体装置1を成形して評価を行った。
Example: With the same specifications as 1, the filler content was mixed to be 70% by weight, thoroughly kneaded in a ball mill, a sealing resin was prepared, and a semiconductor device 1 was molded and evaluated.

その結果、本発明に係わる充てん材を混練した封止樹脂
の熱伝導率は、167X10−’cal/cm−s ・
℃で、オープン不良率は0%であった。
As a result, the thermal conductivity of the sealing resin mixed with the filler according to the present invention was 167X10-'cal/cm-s.
℃, the open defect rate was 0%.

実施例:4 充てん材7として、粒径が50μmのAβ粉末を含窒素
雰囲気中で加熱窒化し、表面を膜W1.0μmの窒化ア
ルミニウムの皮膜で被覆したものを用いた。
Example 4 As the filler 7, Aβ powder having a particle size of 50 μm was heated and nitrided in a nitrogen-containing atmosphere, and the surface was coated with an aluminum nitride film having a film width of 1.0 μm.

実施例:1と同様の仕様で、充てん材の含を量がΣ(0
重世%になるよう配合してボールミルでよく混練し、封
止樹脂を調合して半導体装置lを成形して評価を行った
Example: With the same specifications as 1, the amount of filler content is Σ(0
They were blended so as to have a weight ratio of 100% and thoroughly kneaded in a ball mill, and a sealing resin was prepared. A semiconductor device 1 was molded and evaluated.

その結果、本発明に係わる充てん材をを混練した封止樹
脂の熱伝導率は、176X10−’cal/cm −s
・°Cで、充てん材を混練してない樹脂自体の熱伝導率
の、約15倍の高い効果が確認できた。
As a result, the thermal conductivity of the sealing resin mixed with the filler according to the present invention was 176X10-'cal/cm-s
・At °C, it was confirmed that the thermal conductivity was approximately 15 times higher than that of the resin itself without the filler.

また、オープン不良率は0%であった。Furthermore, the open defect rate was 0%.

比較例:1 充てん材7として、平均粒径が80μmの結晶シリカを
用い、実施例:1と同様の仕様で、充てん材の含有量が
80重景%になるよう配合したボールミルでよく混練し
、封止樹脂を調合して半導体装置lを成形して評価を行
った。
Comparative Example: 1 Crystalline silica with an average particle size of 80 μm was used as the filler 7, and the mixture was well kneaded in a ball mill with the same specifications as Example 1 so that the filler content was 80%. , a sealing resin was prepared, a semiconductor device 1 was molded, and evaluation was performed.

その結果、熱伝導率は、結晶シリカ単体の熱伝導率に近
い、48X10−’cal/cm Hs ・’Cであっ
たが、オーブン不良率は20%の大きな値であった。
As a result, the thermal conductivity was 48×10-'cal/cm Hs·'C, which is close to that of crystalline silica alone, but the oven failure rate was a large value of 20%.

本実施例においては、A1の粉末の表面の酸化処理を、
水蒸気を用いて行ったが、酸素雰囲気の気相中で加熱し
たり、液相中で電気化学的に行うこともでき、ち化処理
は、窒素プラズマに曝して行うなどの変形が可能である
In this example, the oxidation treatment on the surface of powder A1 was performed as follows:
Although this was done using water vapor, it can also be done by heating in a gas phase in an oxygen atmosphere or electrochemically in a liquid phase, and modifications such as exposing it to nitrogen plasma are also possible. .

また、封止樹脂の種類や組成など、あるいは、充てん材
の配合比や混純の方法なども、目的や要求性能に応じて
、種々の変形が可能である。
Furthermore, the type and composition of the sealing resin, the blending ratio of the filler, the mixing method, etc. can be modified in various ways depending on the purpose and required performance.

[発明の効果] 以上の説明から明らかなように、本発明によれば、Al
粉末の表面を、酸化アルミニウムもしくはちっ化アルミ
ニウムの皮膜で被覆した充てん材を、封止樹脂に混練し
て成形した樹脂封止半導体装置は、封止樹脂の熱伝導率
を、封止樹脂単体の熱伝導率よりもはるかに大きくでき
るので、益々高集積化、高密度化が進展し、発熱量が増
大する傾向にある半導体装置の製造に寄与するところが
大きい。
[Effect of the invention] As is clear from the above explanation, according to the present invention, Al
Resin-sealed semiconductor devices are molded by kneading a filler whose powder surface is coated with a film of aluminum oxide or aluminum nitride into a sealing resin. Since it can be made much larger than the thermal conductivity, it greatly contributes to the manufacture of semiconductor devices, which are becoming increasingly highly integrated and densely packed, and whose heat generation tends to increase.

【図面の簡単な説明】[Brief explanation of the drawing]

半導体装置の特性図、 第3図は本発明の充てん材の混線量と熱伝導率との関係
図、 第4図は本発明の充てん材の皮膜の厚さと熱伝導率との
関係図、 である。 図において、 1は樹脂封止半導体装置、2は半導体素子、3は載置部
、       4はリード、5はボンデングワイヤ 
 6は封止樹脂、7は充てん材、 である。 オ耐血封正牛導体装置の一例n構ハ凹 第  fI!1 間開(h) 本発明の克11./オ万i;l&Lした上釘脂封エキ尋
体値19才1竹」η第 2[!1 范TA/右η:L#量(會(幻 本発明/ltT/vnの;毘昧量ヒ他イ文導牢との闇擾
、間第 3 図
A characteristic diagram of a semiconductor device, FIG. 3 is a diagram of the relationship between the amount of crosstalk and thermal conductivity of the filler of the present invention, and FIG. 4 is a diagram of the relationship between the film thickness and thermal conductivity of the filler of the present invention. be. In the figure, 1 is a resin-sealed semiconductor device, 2 is a semiconductor element, 3 is a mounting part, 4 is a lead, and 5 is a bonding wire.
6 is a sealing resin, and 7 is a filler. An example of a blood-resistant sealed conductor device. 1 Space (h) Advantages of the present invention 11. /Oman i;l & L upper nail fat seal body value 19 years old 1 bamboo" η 2nd [! 1 Fan TA/Right η:L# amount (meeting (phantom present invention/ltT/vn's; 款Mai amount Hi and other Ibun guide prisons, between Figure 3)

Claims (1)

【特許請求の範囲】[Claims] 封止樹脂の中に、厚さが0.5ないし20.0μmの酸
化アルミニウム皮膜、または窒化アルミニウム皮膜で被
覆されたアルミニウムの粉末を、充てん材として混練さ
せたことを特徴とする樹脂封止半導体装置。
A resin-encapsulated semiconductor characterized in that aluminum powder coated with an aluminum oxide film or an aluminum nitride film with a thickness of 0.5 to 20.0 μm is kneaded into a sealing resin as a filler. Device.
JP63310421A 1988-12-08 1988-12-08 Resin sealed semiconductor device Pending JPH02156555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310421A JPH02156555A (en) 1988-12-08 1988-12-08 Resin sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310421A JPH02156555A (en) 1988-12-08 1988-12-08 Resin sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH02156555A true JPH02156555A (en) 1990-06-15

Family

ID=18005056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310421A Pending JPH02156555A (en) 1988-12-08 1988-12-08 Resin sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH02156555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing

Similar Documents

Publication Publication Date Title
US7759805B2 (en) Semiconductor device encapsulated by an electrically conductive plastic housing composition with conductive particles
JPS6018145B2 (en) Resin-encapsulated semiconductor device
JP2002076197A (en) Board for semiconductor device and semiconductor device
JPH02156555A (en) Resin sealed semiconductor device
JPH032390B2 (en)
JPS5831755B2 (en) Base for electrical insulation
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
US6211277B1 (en) Encapsulating material and LOC structure semiconductor device using the same
JPH0256816B2 (en)
JP2633856B2 (en) Resin-sealed semiconductor device
JPH01152151A (en) Epoxy resin composition
JPH08198948A (en) Epoxy resin composition and device for sealing semiconductor
JPH0515744B2 (en)
JPH06209024A (en) Manufacture of resin sealed semiconductor device
KR20210141927A (en) junction structure
JPH0345901B2 (en)
JP4062786B2 (en) SEALING MATERIAL AND LOC STRUCTURE SEMICONDUCTOR DEVICE USING SAME
JPS6028252A (en) Resin-sealed semiconductor device
JPH0555413A (en) High heat conductive resin structure and semiconductor package using same
JPH0239443A (en) Semiconductor device
JPS5988858A (en) Resin sealed type semiconductor device
JPH0142631B2 (en)
JPS622770Y2 (en)
JP2970184B2 (en) Semiconductor encapsulant
JPH0286617A (en) Highly heat-dissipating epoxy resin composition