JPH0215637B2 - - Google Patents

Info

Publication number
JPH0215637B2
JPH0215637B2 JP59242290A JP24229084A JPH0215637B2 JP H0215637 B2 JPH0215637 B2 JP H0215637B2 JP 59242290 A JP59242290 A JP 59242290A JP 24229084 A JP24229084 A JP 24229084A JP H0215637 B2 JPH0215637 B2 JP H0215637B2
Authority
JP
Japan
Prior art keywords
base metal
laser beam
metal
alloying
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242290A
Other languages
Japanese (ja)
Other versions
JPS61124516A (en
Inventor
Seishiro Yoshihara
Takao Kawanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59242290A priority Critical patent/JPS61124516A/en
Publication of JPS61124516A publication Critical patent/JPS61124516A/en
Publication of JPH0215637B2 publication Critical patent/JPH0215637B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属製工具または機械部品の製造法、
特に局部的合金化法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing metal tools or machine parts;
In particular, it concerns local alloying methods.

(従来の技術) 従来技術のうちいわゆる金属の熱処理は溶融点
を超えて加熱することはなく、成分偏析の改善や
結晶組織の微細化には自ら限界があり、新たな成
分の添加は表面から拡散できるわずかな量と深さ
に限定されていた。また、異種金属を表層に付着
させるメツキや溶射は母材との付着力が弱く、使
用性能向上には限界があつた。さらに、最近レー
ザービームにより金属表層を溶融する試みが知ら
れているが、この方法はブローホールや亀裂を生
じ実用化されるに至つていない。特に刃物や耐摩
耗用工具はその端面が作用面として用いられるこ
とが多いが、いわゆる付け刃は複雑な加工工程を
必要とし、端面の形状が直線やゆるやかな曲線に
限定され、付け刃の材質も著るしく限定されてい
た。
(Conventional technology) Among the conventional techniques, so-called heat treatment of metals does not involve heating beyond the melting point, and there are limits to improving component segregation and refining the crystal structure, and adding new components is only possible from the surface. It was limited to a small amount and depth that could be spread. Furthermore, plating and thermal spraying, which attach dissimilar metals to the surface layer, have weak adhesion to the base material, which limits the ability to improve performance. Furthermore, attempts have recently been made to melt the metal surface layer with a laser beam, but this method causes blowholes and cracks and has not been put into practical use. In particular, the end face of blades and wear-resistant tools is often used as the working surface, but so-called attached blades require a complicated machining process, the shape of the end face is limited to a straight line or a gentle curve, and the material of the attached blade is was also severely limited.

(発明が解決しようとする問題点) 本発明は性能の優れた金属製工具または機械部
品を製造する方法、特に、母材金属を局部的に溶
融して合金化し、凝固ののち、該合金化部を露出
せしめるように切断して製造する方法を提供する
ものである。
(Problems to be Solved by the Invention) The present invention provides a method for manufacturing metal tools or machine parts with excellent performance, in particular, a method of manufacturing a metal tool or machine part with excellent performance, in particular, locally melting a base metal to form an alloy, solidifying the metal, and then forming the alloy. The present invention provides a manufacturing method by cutting to expose the parts.

(問題点を解決するための手段、及び作用) 本発明の要旨とするところは、母材金属の表面
に該母材金属より酸化されやすく該母材金属より
融点の低い脱酸剤と、該母材金属に添加せんとす
る合金成分とによつて構成される添加剤を付着せ
しめ、レーザービームまたは電子ビームによつて
溶融後凝固せしめたのち、該溶融凝固部を露出せ
しめるように切断することを特徴とする切断面合
金化法である。以下本発明を詳細に説明する。
(Means and effects for solving the problems) The gist of the present invention is to provide a deoxidizing agent on the surface of a base metal that is more easily oxidized than the base metal and has a lower melting point than the base metal; Additives made up of the alloy components to be added to the base metal are attached, melted and solidified using a laser beam or electron beam, and then cut to expose the molten solidified portion. This is a cutting surface alloying method characterized by the following. The present invention will be explained in detail below.

多くの金属は溶融によつて酸化反応が急速に進
行し、ガスを発生し、ブローホールをつくりやす
い。
When many metals are melted, oxidation reactions proceed rapidly, generating gas and easily creating blowholes.

本発明においては母材金属より酸化されやすい
物質を含むいわゆる脱酸剤を共存せしめることに
よつて溶融金属の酸化反応およびリミングアクシ
ヨを鎮静せしめ、この時生ずる脱酸生成物を浮上
せしめて溶融金属から分離せしめる。母材金属が
鋼または鋼合金の場合には脱酸物質としては周知
のアルミ、けい素、マンガン、チタン、ジルコニ
ウム、バナジウムまたはその合金の一種以上を含
むものが適当である。これらの脱酸物質を添加す
る方法としては、該脱酸物質を含む添加剤を粉末
とし樹脂と溶剤によつて母材金属に塗布し乾燥し
たのち母材とともに溶融するか、母材にあらかじ
め溶着せしめたのち、母材とともに溶融する。合
金成分を添加するには添加剤に脱酸剤とともに合
金元素を混合し、塗布乾燥して母材とともに溶融
せしめるが、このほか添加剤を溶融または半溶融
の状態で母材金属の表面に付着せしめ、該付着金
属の凝固後あるいは凝固を待たずに母材とともに
溶融することもできる。以上の脱酸剤および合金
元素の添加に際し、添加剤に母材金属より融点の
低い金属を加えておくことにより脱酸剤および合
金元素の飛散を防止することができる。
In the present invention, the oxidation reaction and rimming action of the molten metal are suppressed by coexisting with a so-called deoxidizer containing a substance that is more easily oxidized than the base metal, and the deoxidation products generated at this time are floated and removed from the molten metal. Separate. When the base metal is steel or a steel alloy, suitable deoxidizing substances include one or more of the well-known aluminum, silicon, manganese, titanium, zirconium, vanadium, or alloys thereof. The methods of adding these deoxidizing substances include powdering the additive containing the deoxidizing substance, applying it to the base metal using resin and solvent, drying it, and then melting it together with the base metal, or pre-welding it to the base metal. After heating, it melts together with the base material. To add alloying components, alloying elements are mixed with the additive along with a deoxidizing agent, and the mixture is applied and dried to melt together with the base metal. Alternatively, the deposited metal may be melted together with the base material after solidification or without waiting for solidification. When adding the above-mentioned deoxidizing agent and alloying element, scattering of the deoxidizing agent and alloying element can be prevented by adding a metal having a lower melting point than the base metal to the additive.

本発明の熱源には母材金属および添加元素を溶
融できる熱源、例えば燃焼ガス、誘導加熱、電
孤、プラズマ、電子ビーム、あるいはレーザービ
ームなどを用いることができるが、エネルギ密度
の高い熱源、例えば電子ビームあるいはレーザー
ビームが局部加熱溶解と急速冷却効果による結晶
微細化が著るしいので材質特性向上の点から最も
好ましい。また本発明法においては溶融金属の空
気酸化および空気巻込みをさけるために溶融部を
アルゴン、ヘリウムなどの不活性気体あるいは窒
素などの反応しにくい気体によつておおうことが
好ましい。切断時には不活性気体により溶融部を
吹飛ばすほか、酸素を吹付けて金属の酸化反応熱
を利用することができる。
The heat source of the present invention can be a heat source capable of melting the base metal and additive elements, such as combustion gas, induction heating, electric arc, plasma, electron beam, or laser beam, but heat sources with high energy density, such as Electron beams or laser beams are most preferable from the viewpoint of improving material properties because local heating and melting and rapid cooling effects result in significant crystal refinement. Further, in the method of the present invention, in order to avoid air oxidation of the molten metal and air entrainment, it is preferable that the melting zone be filled with an inert gas such as argon or helium, or a gas that is difficult to react with, such as nitrogen. During cutting, in addition to blowing away the molten part with inert gas, oxygen can be blown to utilize the heat of the metal's oxidation reaction.

(実施例) 次に本発明の実施例について述べる。(Example) Next, embodiments of the present invention will be described.

実施例 1 第1図に本発明の実施例の手順を示す。板厚4
mmの炭素鋼鋼板1の板面にアルミ粉とモリブデン
粉を1対1で混合し、シリコン樹脂をビヒクルと
し、シンナーにより粘度調整し、刷毛で塗膜厚さ
0.7mmに塗布し、乾燥した(工程A)。次に該塗布
部に10kWのレーザービームを直径2mmに絞り、
40mm/秒の速度で鋼板を移動させた(工程B)。
次に10kWのレーザービームを直径0.8mmに絞り、
レーザー照射部に10Kg/cm2の酸素5リツトル/分
を吹付けながら、40mm/秒の速度で工程Bと同位
置を切断した(工程C)。第2図に本発明実施部
の鋼板の断面変化を示している。工程Aでは鋼板
1の上に添加剤2が接着される。工程Bではレー
ザービームにより溶融部が得られ、該溶融部には
添加剤から合金成分としてモリブデンが10〜20%
添加され、瞬時に凝固し、合金化部3となる。添
加剤中のアルミは脱酸剤として、また溶融して添
加剤の飛散を防ぐ機能を有している。工程Cでは
合金化部3が切断面に露出するように切断されて
いる。第2図Cの例では両面の切断部に合金化部
3が露出しているが、切断位置をずらして合金化
部を片側のみに露出させることができる。切断面
は必要に応じて仕上加工される。この例では合金
化部の断面硬度はビツカース硬度で430であり、
母材部のビツカース硬度180に対し著るしく硬化
している。合金化部はブローホールや酸化物の巻
込みは問題とならない程度である。
Example 1 FIG. 1 shows the procedure of an example of the present invention. Plate thickness 4
Mix aluminum powder and molybdenum powder in a 1:1 ratio on the plate surface of carbon steel plate 1 of mm size, use silicone resin as a vehicle, adjust the viscosity with thinner, and apply a coating thickness using a brush.
It was applied to a thickness of 0.7 mm and dried (Step A). Next, a 10kW laser beam is focused on the application area to a diameter of 2mm,
The steel plate was moved at a speed of 40 mm/sec (Step B).
Next, focus the 10kW laser beam to a diameter of 0.8mm,
While spraying 5 liters/min of 10 kg/cm 2 of oxygen onto the laser irradiated area, cutting was performed at a speed of 40 mm/sec at the same position as in step B (step C). FIG. 2 shows changes in the cross section of the steel plate of the part in which the present invention is implemented. In step A, additive 2 is bonded onto steel plate 1. In step B, a laser beam is used to obtain a molten zone, in which 10-20% molybdenum is added as an alloying component from additives.
It is added and instantly solidified to form the alloyed part 3. Aluminum in the additive functions as a deoxidizing agent and melts to prevent the additive from scattering. In step C, the alloyed portion 3 is cut so as to be exposed at the cut surface. In the example shown in FIG. 2C, the alloyed portion 3 is exposed at the cut portions on both sides, but the alloyed portion 3 can be exposed only on one side by shifting the cutting position. The cut surface is finished if necessary. In this example, the cross-sectional hardness of the alloyed part is 430 on the Bitkers hardness,
It is significantly hardened compared to the base material's Bitkers hardness of 180. In the alloyed part, blowholes and inclusion of oxides are not a problem.

実施例 2 板厚2mmの炭素鋼板1の板面にアルミ粉とタン
グステン粉を1対1て混合して散布し、5kWの
レーザービームを直径8mmに絞り、80mm/秒の速
度で鋼板を移動させ、アルミを溶融してタングス
テンとアルミを鋼板上に接着した(工程A)。次
に塗布部に8kWのレーザービームを直径2mmに
絞り、80mm/秒の速度で鋼板を移動させた(工程
B)。次に8kWのレーザービームを直径0.8mmに絞
り、レーザー照射部に5Kg/cm2のアルゴンガス5
リツトル/分を吹付けながら80mm/秒の速度で工
程Bと同位置を切断した(工程C)。溶融部への
タングステンの添加量は10〜25%であり、その部
分のビツカース硬度は560であり、母材部のビツ
カース硬度220に対し著るしく硬化している。こ
の場合に工程Aを省略することもできるが、工程
Aを省略するとタングステンの添加量が低位にば
らつき、品質性能のばらつきとなり好ましくな
い。また、このように高硬度の合金部は通常の機
械的切断法では極めて困難であるが、レーザービ
ームや電子ビームではNC制御盤により容易に加
工可能であり、大量生産に適している。
Example 2 A 1:1 mixture of aluminum powder and tungsten powder was sprinkled on the surface of a carbon steel plate 1 with a thickness of 2 mm, a 5 kW laser beam was focused to a diameter of 8 mm, and the steel plate was moved at a speed of 80 mm/sec. , Tungsten and aluminum were bonded onto a steel plate by melting aluminum (Step A). Next, an 8 kW laser beam was focused on the coating area to a diameter of 2 mm, and the steel plate was moved at a speed of 80 mm/sec (Step B). Next, the 8 kW laser beam is focused to a diameter of 0.8 mm, and the laser irradiation area is filled with 5 kg/cm 2 of argon gas.
Cutting was performed at the same position as in step B at a speed of 80 mm/sec while spraying at liter/min (step C). The amount of tungsten added to the molten part is 10 to 25%, and the Vickers hardness of that part is 560, which is significantly hardened compared to the base metal part, which has a Vickers hardness of 220. In this case, step A can be omitted, but if step A is omitted, the amount of tungsten added will vary to a low level, resulting in variations in quality and performance, which is not preferable. In addition, such highly hard alloy parts are extremely difficult to cut using normal mechanical cutting methods, but they can be easily processed using a laser beam or electron beam using an NC control panel, making them suitable for mass production.

以上の結果はレーザービームによるものである
が、電子ビームでも同様の効果が得られる。しか
しながら、切断面はガス吹付の可能なレーザービ
ームの方が電子ビームの場合よりきれいである。
Although the above results were obtained using a laser beam, similar effects can be obtained using an electron beam. However, the cut surface is cleaner with a laser beam that can spray gas than with an electron beam.

(発明の効果) 以上のように本発明は金属製工具または機械部
品の端部を局部的に合金化させ、従来品にない優
れた性能を持たせるとともに、仕上形状あるいは
その直前まで一挙に切断加工できるものである。
本発明法では合金成分が高能度で添加でき、ブロ
ーホールや酸化物の巻き込み欠陥は無視でき、産
業上裨益するところが極めて大である。
(Effects of the Invention) As described above, the present invention locally alloys the edges of metal tools or machine parts, gives them superior performance not found in conventional products, and cuts them all at once to the finished shape or just before it. It can be processed.
In the method of the present invention, alloy components can be added with high efficiency, blowholes and oxide entrainment defects can be ignored, and the industrial benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,B,Cは本発明の実施例における工
程の説明図、第2図A,B,Cは本発明の実施例
工程中における板断面内の変化を示す図である。 1:母材鋼板、2:添加剤、3:合金化部、
4:添加剤残部、5:切断部。
FIGS. 1A, B, and C are explanatory diagrams of steps in an embodiment of the present invention, and FIGS. 2A, B, and C are diagrams showing changes in the cross section of a plate during the steps of an embodiment of the present invention. 1: Base steel plate, 2: Additive, 3: Alloying part,
4: Additive remainder, 5: Cut portion.

Claims (1)

【特許請求の範囲】 1 母材金属の表面に該母材金属より酸化されや
すく該母材金属より融点の低い脱酸剤と、該母材
金属に添加せんとする合金成分とによつて構成さ
れる添加剤を付着せしめ、レーザービームまたは
電子ビームによつて溶融後凝固せしめたのち、該
溶融凝固部を露出せしめるように切断することを
特徴とする切断面合金化法。 2 レーザービームまたは電子ビームによつて切
断することを特徴とする特許許求の範囲第1項記
載の切断面合金化法。
[Claims] 1. A deoxidizing agent that is more easily oxidized than the base metal and has a lower melting point than the base metal on the surface of the base metal, and an alloy component to be added to the base metal. A method for alloying a cut surface, which comprises: adhering an additive, melting and solidifying with a laser beam or an electron beam, and then cutting to expose the melted and solidified portion. 2. The method for alloying a cut surface according to item 1 of the patent application, characterized in that cutting is performed with a laser beam or an electron beam.
JP59242290A 1984-11-19 1984-11-19 Method for alloying cut section Granted JPS61124516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242290A JPS61124516A (en) 1984-11-19 1984-11-19 Method for alloying cut section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242290A JPS61124516A (en) 1984-11-19 1984-11-19 Method for alloying cut section

Publications (2)

Publication Number Publication Date
JPS61124516A JPS61124516A (en) 1986-06-12
JPH0215637B2 true JPH0215637B2 (en) 1990-04-12

Family

ID=17087045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242290A Granted JPS61124516A (en) 1984-11-19 1984-11-19 Method for alloying cut section

Country Status (1)

Country Link
JP (1) JPS61124516A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866044B2 (en) * 2011-05-04 2014-10-21 GM Global Technology Operations LLC System and method for manufacturing magnesium body panels with improved corrosion resistance

Also Published As

Publication number Publication date
JPS61124516A (en) 1986-06-12

Similar Documents

Publication Publication Date Title
JP5941252B2 (en) Hybrid laser arc welding process and apparatus
Sexton et al. Laser cladding of aerospace materials
JP5873658B2 (en) Hybrid laser arc welding process and apparatus
JPH0524967B2 (en)
US20050263500A1 (en) Laser or laser/arc hybrid welding process with formation of a plasma on the backside
JP2678804B2 (en) Method for forming pure Cu build-up layer on iron alloy substrate
JPH01156457A (en) Surface hardening method for titanium product
JPH0215637B2 (en)
JPH0360595B2 (en)
JPS6012277A (en) Method of welding metal
JPH0372707B2 (en)
JPS61119615A (en) Melt-working method of metallic surface
JPH0263693A (en) Laser beam machining method
RU2106948C1 (en) Laser method for manufacture of disk saw
JPS6343788A (en) Laser beam welding method
JPS63268585A (en) Cutting method by laser beam
JP2812772B2 (en) Laser welding method
JP4036588B2 (en) Laser welding method
JPH0520192B2 (en)
JPH06126476A (en) Laser welding method for aluminum alloy
JPS62176696A (en) Metal cutting method using laser beam
JPS62170418A (en) Production of bearing
Goswami et al. Laser processing of metals and alloys
JPH0256196B2 (en)
JPH11181563A (en) Surface hardened aluminum member and its production