JPH02155815A - Semi-active suspension control device of caterpillar vehicle - Google Patents

Semi-active suspension control device of caterpillar vehicle

Info

Publication number
JPH02155815A
JPH02155815A JP30888388A JP30888388A JPH02155815A JP H02155815 A JPH02155815 A JP H02155815A JP 30888388 A JP30888388 A JP 30888388A JP 30888388 A JP30888388 A JP 30888388A JP H02155815 A JPH02155815 A JP H02155815A
Authority
JP
Japan
Prior art keywords
solenoid valve
acceleration
damping force
wheel
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30888388A
Other languages
Japanese (ja)
Inventor
Seikichi Nowada
野和田 清吉
Yukio Inoue
井上 幸夫
Michio Onozuka
三千雄 小野塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP30888388A priority Critical patent/JPH02155815A/en
Publication of JPH02155815A publication Critical patent/JPH02155815A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/34Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/22Magnetic elements
    • B60G2600/24Magnetic elements permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/014Pitch; Nose dive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/22Braking, stopping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To reduce influence of error of an acceleration meter in a semi-active suspension control device for a construction machine such as wheel loader by combining a judgement due to speed value using the roll angle speed and pitch angle speed with a judgement due to acceleration value using acceleration in the vertical direction of the car body. CONSTITUTION:To a control circuit 12 a gyrobox 7 emits output digital signals of pitch angle speed, roll angle speed, and vertical acceleration at the center of gravity of the car body given by a gyro- and acceleration meter. Together with the car speed, this control circuit 12 processes the outputs of a rotation pickup 8 and potentiometers 9-11 fitted on accel. pedal, brake pedal, and steering wheel, and emits as output a damping force changeover signal for a solenoid valve 3 mounted on each wheel. In response to this signal, the solenoid valve 3 changes over a damping force changeover valve 2 to control the damping force. This constitution can reduce the influence of mechanical error of the acceleration meter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は装軌車輛に適用されるセミアクティブ懸架制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semi-active suspension control system applied to a tracked vehicle.

本発明はホイルローダ等建設機械にも利用できる。The present invention can also be used for construction machines such as wheel loaders.

チ角速度、ロール角速度、上下加速度の信号を入力して
CPU (13)に送出し、前記A/Dコンバータ(1
8)は、ポテンシオメータ(9,1(7,11)からの
信号をディジタル量に変換してCPU (13)に送出
し、波形整形回路(21)は回転ピックアップ(8)か
らの信号波形を整えカウンタ(2o)を経由してCPU
に送出し、電磁弁駆動回@(77)け対し、ピッチ、ロ
ール成分に関しては、車体重心からの距離を重みとして
、乗じて各転輪に対する変化分とし、これらピッチ角速
度分ロール角速度分、上下方向速度分を加算して、車体
動揺値とした。この車体動揺値が予め設定しておいた、
しきい値以上になった時、減衰力を高くして、車体動揺
を低減させる様に制御していた。
Signals of tilt angular velocity, roll angular velocity, and vertical acceleration are input and sent to the CPU (13), and the signals are sent to the A/D converter (13).
8) converts the signal from the potentiometer (9, 1 (7, 11) into a digital quantity and sends it to the CPU (13), and the waveform shaping circuit (21) converts the signal waveform from the rotary pickup (8). CPU via trimming counter (2o)
Solenoid valve driving times @ (77) Regarding the pitch, roll components, the distance from the center of gravity of the vehicle is used as a weight, multiplied to obtain the change for each wheel, and the pitch angular velocity, roll angular velocity, up and down The directional velocity was added to obtain the vehicle body sway value. This vehicle body sway value has been set in advance,
When the threshold value was exceeded, the damping force was increased to reduce vehicle body vibration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のセミアクティブ懸架制御に於ては、車体動揺成分
として、ピッチ角速度―、ロール角速度k及び車体上下
方向速度りを検出し、これらの値を加算して、車体動揺
値としていた。これらの値は車輌が不整地走行をするも
のと考えると非接触で検出する必要がある。そのために
は、角速度の検出方法としては、ジャイロを用いること
が渚えられ、上下速度売の検出方法としてd加速度計を
12からの信号により電磁弁3で作動し、該制御回路1
2はCPU 13とRAM 14とROM 15とシリ
アル■1016と電磁弁駆動回路17とA/Dコンバタ
18と電源回路19とカウンタ20と波形整形回路2ノ
を具備し、前記シリアルI1016ば、検出器からの車
体重心位置のピッチ角速度、ロール角速度、上下加速度
の信号を入力してCPU 13に送出し、前記A/Dコ
ンバータ18は、ポテンシオメータ9,10.11から
の信列をディゾタル量に車体動揺低減に対し、有効な制
御を行うことができなくなってしまうという問題が生じ
る。
In conventional semi-active suspension control, pitch angular velocity, roll angular velocity k, and vehicle vertical velocity are detected as vehicle body vibration components, and these values are added to obtain a vehicle body vibration value. These values need to be detected in a non-contact manner, considering that the vehicle is traveling on rough terrain. To this end, it is recommended to use a gyro as a method for detecting angular velocity, and as a method for detecting vertical velocity, a d accelerometer is operated by a solenoid valve 3 in response to a signal from 12, and the control circuit 1
2 is equipped with a CPU 13, a RAM 14, a ROM 15, a serial number 1016, a solenoid valve drive circuit 17, an A/D converter 18, a power supply circuit 19, a counter 20, and a waveform shaping circuit 2; The signals of the pitch angular velocity, roll angular velocity, and vertical acceleration of the position of the center of gravity of the vehicle are inputted and sent to the CPU 13, and the A/D converter 18 converts the signal train from the potentiometers 9, 10.11 into dizotal quantities. A problem arises in that it is no longer possible to effectively control the vibration reduction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に得る装軌車輛におけるセミアクティブ懸架制御
装置は、アキュムレータと減衰力切換弁とシリンダとア
ームと転輪からなる車輛の懸架制御装置において、前記
減衰力切換弁2は制御回路供給する電流を制御すること
を特徴とする。
A semi-active suspension control device for a tracked vehicle according to the present invention is a suspension control device for a vehicle comprising an accumulator, a damping force switching valve, a cylinder, an arm, and a wheel, in which the damping force switching valve 2 controls the current supplied to the control circuit. It is characterized by control.

〔作用〕[Effect]

車体動揺の上下方向成分として、加速度値を利用するこ
とにより正確な車体上下の動揺を検知する。
Accurate vertical vibration of the vehicle body is detected by using the acceleration value as the vertical component of the vehicle vibration.

そして、ピッ−デー角速度ドとロール角速度前を用いた
速度値による判断と、車体上下加速度を用いた加速度値
による判断の2つの判断を併用して、セミアクティブ懸
架制御を行う。
Then, semi-active suspension control is performed using two types of judgments: one based on the speed value using the speed angular velocity and the roll angular velocity, and the other based on the acceleration value using the vertical acceleration of the vehicle body.

〔実施例〕〔Example〕

本発明の実施例を第1図〜第4図に示す。 Examples of the present invention are shown in FIGS. 1 to 4.

第1図は、本発明の1実施例で全転輪のうち1つの転輪
に対する構成を示す。第1図に於て、1はアキニームレ
ータ、2は減衰力切換弁、3は2を動作させるための電
磁弁である。4はシリンダ、5はアーム、6は転輪であ
る。
FIG. 1 shows the configuration of one of all the wheels in one embodiment of the present invention. In FIG. 1, 1 is an akinimulator, 2 is a damping force switching valve, and 3 is a solenoid valve for operating 2. 4 is a cylinder, 5 is an arm, and 6 is a wheel.

転ピックアップ8、ポテンシオメータ9,10.11か
らのアクセルペダル踏込量、ブレーキペダル踏込量、ス
テアリングツ・ンドル回転角信号に基づいて、車体の各
転輪に取り付けられている電磁弁3に対して、減衰力切
換を行うための電気信号を与えるだめの制御回路である
Based on the accelerator pedal depression amount, brake pedal depression amount, and steering wheel rotation angle signals from the rotation pickup 8, potentiometers 9, 10.11, the electromagnetic valve 3 attached to each wheel of the vehicle body is , a control circuit that provides electrical signals for switching the damping force.

第2図は、制御回路のブロック図で、制御回路12は、
CPU 13、RAM 14、ROM J s、シリア
ルI10 (直列転送)16、電磁弁駆動回路17、力
軸取り付けられている歯車列より車速信号を検出するた
めに使用される回転ピンクアップである。
FIG. 2 is a block diagram of the control circuit, and the control circuit 12 includes:
These are a CPU 13, a RAM 14, a ROM Js, a serial I10 (serial transfer) 16, a solenoid valve drive circuit 17, and a rotational pink-up used to detect a vehicle speed signal from a gear train attached to the power shaft.

9はアクセルペダルの踏込量を検出するためのポテンシ
オメータ、10はグレーキペタルの踏込量を検出するた
めのポテンシオメータ、11はステアリングハンドルの
回転角を検出するだめのポテンシオメータである。12
は、ソヤイロ箱7、回度をシリアルデータとして入力し
、CPU I Jに送出する。A/Dコンバータ18は
、ポテンシオメータ9,10.11に接続され、ポテン
シオメータからのアクセルペダル位置信号、ブレーキペ
ダル位置信号、および、ステアリングツ・ンドル回転角
信号をディジタル量に変換してCPU 13に送出する
1゜波形整形回路21は回転ピックアップ8からの回=
6− 転速度信号の波形を整えてカウンタ20に出力する。カ
ウンタ20は、波形整形された回転速度信号をカウント
し、CPU l 3に送出する。電磁弁駆動回路17は
、CPU 13からの指令信号により各転輪に取シ付け
られている電磁弁3へ供給する電流を制御する。電源回
路19はバッテリ22から供給される電源から制御回路
12の各部が必要とする電圧の電源を供給する。
9 is a potentiometer for detecting the amount of depression of the accelerator pedal, 10 is a potentiometer for detecting the amount of depression of the brake pedal, and 11 is a potentiometer for detecting the rotation angle of the steering wheel. 12
inputs the frequency as serial data to the Soyiro box 7 and sends it to the CPU IJ. The A/D converter 18 is connected to the potentiometers 9, 10, and 11, and converts the accelerator pedal position signal, brake pedal position signal, and steering wheel rotation angle signal from the potentiometers into digital quantities and sends them to the CPU 13. The 1° waveform shaping circuit 21 that sends out a wave from the rotary pickup 8 =
6- Adjust the waveform of the rotation speed signal and output it to the counter 20. The counter 20 counts the waveform-shaped rotational speed signal and sends it to the CPU 13. The solenoid valve drive circuit 17 controls the current supplied to the solenoid valves 3 attached to each wheel based on a command signal from the CPU 13. The power supply circuit 19 supplies power at the voltage required by each part of the control circuit 12 from the power supplied from the battery 22 .

次に前記制御回路12の制御動作を第3図のフ対する重
みとして、車体重心からの距離、t、 (I) 。
Next, the distance from the center of gravity of the vehicle is t, (I), with the control operation of the control circuit 12 as a weight relative to the weight shown in FIG.

tR(I)を乗じて、これらを加算し、x(I)として
、 RAM14に記憶しておく。ここでIは各転輪に対
応する番号とする。
Multiply by tR(I), add these, and store in the RAM 14 as x(I). Here, I is a number corresponding to each wheel.

次にステップS6で上記ステップS、に於て記憶した 
x(I)の絶対値がROM 15に予め設定されている
しきい値SL以上となった時、1番目の転輪に取付けら
れている電磁弁に出力されるデータを高減衰とし、しき
い値SL以下の時は逆に低減衰とじてACとブレーキペ
ダル位置信号Bcステアリングハンドル回転角信号θ8
が読み込まれる。さらにステップS3で車速Vを読み込
む。ステラfS4では、各転輪に対応する電磁弁出力デ
ータを演算しておシ、ステップSllからS16までを
転輪全てに対して、実施したかどうかを判断している。
Next, in step S6, the information stored in step S above is stored.
When the absolute value of x(I) exceeds the threshold SL preset in ROM 15, the data output to the solenoid valve attached to the first wheel is set to high attenuation, and the threshold is set. When it is less than the value SL, it is considered as low attenuation and AC and brake pedal position signal Bc steering wheel rotation angle signal θ8
is loaded. Further, in step S3, the vehicle speed V is read. In Stella fS4, the solenoid valve output data corresponding to each wheel is calculated, and it is determined whether steps Sll to S16 have been performed for all the wheels.

ステップS、ではピッチ角速度P、ロール角速度Rに対
し、各転輪に加速度2の絶対値が、予めROM 75内
にセットされているしきい値88以上の時、ステップS
、。に進んで全ての転輪に対する電磁弁出力データを高
減衰として、RAM 14にセットする。逆にしきい値
以下の時は何もせずにステップ811へ進む。
In step S, when the absolute value of acceleration 2 for each wheel with respect to the pitch angular velocity P and roll angular velocity R is equal to or greater than the threshold value 88 set in advance in the ROM 75, step S
,. Then, set the solenoid valve output data for all wheels as high damping in the RAM 14. On the other hand, if it is less than the threshold value, the process proceeds to step 811 without doing anything.

ステップSllではステップS2で読み込んだ、アクセ
ルペダル踏込量ACの変化率をACとするとAcが予め
ROM15に設定されているしきい値SA以上の時車体
のスフワット(発進時に車体の後部が沈みこむこと)防
止のために、車体後方のサスペンションを高減衰とする
様に電磁弁出力データを、RAM14にセットする。逆
にしきい値以下の時は何もせずステップ813へ進む。
In step Sll, when AC is the rate of change in the accelerator pedal depression amount AC read in step S2, when AC is equal to or higher than the threshold value SA preset in the ROM 15, the vehicle body swots (the rear of the vehicle sinks when starting). ) To prevent this, solenoid valve output data is set in the RAM 14 so that the suspension at the rear of the vehicle is highly damped. On the other hand, if it is less than the threshold value, the process proceeds to step 813 without doing anything.

ステラ76S1.では、ステップS、で読み込んだ、ブ
レーキペダル踏込量Bcの変化率をBcとした時、Bc
が予めROM 15に設定されているしきい値SB以上
の時、ステラfS14に進み車体のノーズダイブ値以下
の時は何もせずステラf S、、へ進む。
Stella 76S1. Now, when the rate of change in the amount of brake pedal depression Bc read in step S is Bc, Bc
When is above the threshold value SB set in advance in the ROM 15, the process proceeds to Stella fS14, and when it is below the nose dive value of the vehicle body, nothing is done and the process proceeds to Stella fS.

ステップS1+1 + slgでは、ステラ7’ S、
、 、 Sl、とは逆の車体左側のローリングに対する
減衰力制御のための判断をステップs、、 + 816
と同様に行う。
In step S1+1 + slg, Stella 7' S,
, , Judgment for damping force control for rolling on the left side of the vehicle body, which is opposite to Sl, is made in step s, +816
Do the same as.

次にステップ81G+で、ステップS4からStSで実
施した、電磁弁出力データを、駆動回路から電磁弁へ出
力し、ステップS1へ戻る。
Next, in step 81G+, the solenoid valve output data carried out in steps S4 to StS is output from the drive circuit to the solenoid valve, and the process returns to step S1.

第4図は、車体動揺方向を定義したもので、22aが車
体前方、22bが車体後方である。
FIG. 4 defines the direction of vehicle body sway, where 22a is the front of the vehicle and 22b is the rear of the vehicle.

ステップS1.ではステップS、で読み込んだステアリ
ングハンドル角度θ8の変化率をθ8とした時θ6が予
めROM 15に設定されているしきい値+88以上の
時、車体右側へのローリングとして、車体右側のサスペ
ンションを高減衰とする様に電磁弁出力データをRAM
 14にセットする。逆にしきいくした形で、セミアク
ティブ懸架制御を行うことができる。
Step S1. Now, let us assume that the rate of change of the steering wheel angle θ8 read in step S is θ8. When θ6 is equal to or greater than the threshold value set in advance in ROM 15 +88, the suspension on the right side of the vehicle is raised to roll to the right side of the vehicle. RAM the solenoid valve output data for damping.
Set it to 14. On the other hand, semi-active suspension control can be performed in a more extreme manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例で、1つの転輪に対する構成
を示す図、 第2図は、制御回路のブロック図、 第3図は、その制御フローチャートを示す図、−1叶 第4図は、車体動揺の方向を定義した図7.あ5゜1・
・・アキュムレータ、2・・・減衰力切換弁、3・・・
電磁弁、4・・・シリンダ、5・・・アーム、6・・・
転輪、7・・・検出器(ジャイロ箱)、8・・・回転ピ
ックアップ、9・・・アクセルペダル踏込量検出用ポテ
ン7オメータ、10・・・ブレーキ啄ダル踏込量検出用
ポテンシオメータ、11・・・ステアリングハンドルの
回転角検出用ボテ/ジオメータ、I2・・・減衰力切換
用電磁弁の制御回路、13・・・CPU、14・・・R
AM 。
Fig. 1 is a diagram showing an embodiment of the present invention, showing the configuration for one wheel, Fig. 2 is a block diagram of a control circuit, and Fig. 3 is a diagram showing its control flowchart. The figure is Figure 7, which defines the direction of vehicle body vibration. A5゜1・
...Accumulator, 2...Damping force switching valve, 3...
Solenoid valve, 4... cylinder, 5... arm, 6...
Wheel, 7... Detector (gyro box), 8... Rotation pickup, 9... Poten 7 meter for detecting accelerator pedal depression amount, 10... Potentiometer for detecting brake pedal depression amount, 11 ...Bottle/geometer for detecting the rotation angle of the steering wheel, I2...Control circuit of the solenoid valve for switching the damping force, 13...CPU, 14...R
A.M.

Claims (1)

【特許請求の範囲】[Claims] アキュムレータと減衰力切換弁とシリンダとアームと転
輪からなる車輛の懸架制御装置において、前記減衰切換
弁(2)は制御回路(12)からの信号により電磁弁(
3)で作動し、該制御回路(12)はCPU(13)と
RAM(14)とROM(15)とシリアルI/O(1
6)と電磁弁駆動回路(17)とA/Dコンバータ(1
8)と電源回路(19)とカウンタ(20)と波形整形
回路(21)を具備し、前記シリアルI/O(16)は
、検出器からの車体重心位置のピッチ角速度、ロール角
速度、上下加速度の信号を入力してCPU(13)に送
出し、前記A/Dコンバータ(18)は、ポテンシオメ
ータ(9、10、11)からの信号をディジタル量に変
換してCPU(13)に送出し、波形整形回路(21)
は回転ピックアップ(8)からの信号波形を整えカウン
タ(20)を経由してCPUに送出し、電磁弁駆動回路
(17)はCPU(13)からの指令信号により電磁弁
(3)へ供給する電流を制御することを特徴とする装軌
車輛におけるセミアクティブ懸架制御装置
In a vehicle suspension control system consisting of an accumulator, a damping force switching valve, a cylinder, an arm, and a wheel, the damping switching valve (2) is operated by a solenoid valve (
3), and the control circuit (12) operates with a CPU (13), a RAM (14), a ROM (15), and a serial I/O (1
6), solenoid valve drive circuit (17), and A/D converter (1
8), a power supply circuit (19), a counter (20), and a waveform shaping circuit (21). The A/D converter (18) converts the signal from the potentiometers (9, 10, 11) into a digital quantity and sends it to the CPU (13). , waveform shaping circuit (21)
prepares the signal waveform from the rotary pickup (8) and sends it to the CPU via the counter (20), and the solenoid valve drive circuit (17) supplies it to the solenoid valve (3) according to the command signal from the CPU (13). Semi-active suspension control device for tracked vehicles characterized by controlling current
JP30888388A 1988-12-08 1988-12-08 Semi-active suspension control device of caterpillar vehicle Pending JPH02155815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30888388A JPH02155815A (en) 1988-12-08 1988-12-08 Semi-active suspension control device of caterpillar vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30888388A JPH02155815A (en) 1988-12-08 1988-12-08 Semi-active suspension control device of caterpillar vehicle

Publications (1)

Publication Number Publication Date
JPH02155815A true JPH02155815A (en) 1990-06-14

Family

ID=17986410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30888388A Pending JPH02155815A (en) 1988-12-08 1988-12-08 Semi-active suspension control device of caterpillar vehicle

Country Status (1)

Country Link
JP (1) JPH02155815A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9662954B2 (en) 2012-11-07 2017-05-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US10005335B2 (en) 2012-11-07 2018-06-26 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US10124709B2 (en) 2015-05-15 2018-11-13 Polaris Industries Inc. Utility vehicle
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10946736B2 (en) 2018-06-05 2021-03-16 Polaris Industries Inc. All-terrain vehicle
US11110913B2 (en) 2016-11-18 2021-09-07 Polaris Industries Inc. Vehicle having adjustable suspension
US11285964B2 (en) 2014-10-31 2022-03-29 Polaris Industries Inc. System and method for controlling a vehicle
US11884117B2 (en) 2018-11-21 2024-01-30 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11904648B2 (en) 2020-07-17 2024-02-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190015A (en) * 1983-04-13 1984-10-27 Tech Res & Dev Inst Of Japan Def Agency Vehicle suspension control device
JPS60248416A (en) * 1984-05-21 1985-12-09 Toyota Central Res & Dev Lab Inc Active suspension apparatus
JPS60248417A (en) * 1984-05-21 1985-12-09 Toyota Central Res & Dev Lab Inc Active suspension apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190015A (en) * 1983-04-13 1984-10-27 Tech Res & Dev Inst Of Japan Def Agency Vehicle suspension control device
JPS60248416A (en) * 1984-05-21 1985-12-09 Toyota Central Res & Dev Lab Inc Active suspension apparatus
JPS60248417A (en) * 1984-05-21 1985-12-09 Toyota Central Res & Dev Lab Inc Active suspension apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005335B2 (en) 2012-11-07 2018-06-26 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11970036B2 (en) 2012-11-07 2024-04-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US9662954B2 (en) 2012-11-07 2017-05-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11124036B2 (en) 2012-11-07 2021-09-21 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400787B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400786B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400784B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400785B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11919524B2 (en) 2014-10-31 2024-03-05 Polaris Industries Inc. System and method for controlling a vehicle
US11285964B2 (en) 2014-10-31 2022-03-29 Polaris Industries Inc. System and method for controlling a vehicle
US11752860B2 (en) 2015-05-15 2023-09-12 Polaris Industries Inc. Utility vehicle
US10124709B2 (en) 2015-05-15 2018-11-13 Polaris Industries Inc. Utility vehicle
US11110913B2 (en) 2016-11-18 2021-09-07 Polaris Industries Inc. Vehicle having adjustable suspension
US11878678B2 (en) 2016-11-18 2024-01-23 Polaris Industries Inc. Vehicle having adjustable suspension
US11479075B2 (en) 2017-06-09 2022-10-25 Polaris Industries Inc. Adjustable vehicle suspension system
US11912096B2 (en) 2017-06-09 2024-02-27 Polaris Industries Inc. Adjustable vehicle suspension system
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10946736B2 (en) 2018-06-05 2021-03-16 Polaris Industries Inc. All-terrain vehicle
US11884117B2 (en) 2018-11-21 2024-01-30 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11975584B2 (en) 2018-11-21 2024-05-07 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11904648B2 (en) 2020-07-17 2024-02-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles

Similar Documents

Publication Publication Date Title
US6816764B2 (en) Suspension coordinator subsystem and method
CA2568220C (en) Control device for vehicle
EP1369287B1 (en) A method and control system for motor vehicle
EP1369286B1 (en) Vehicle control system and method therefor
US6301534B1 (en) Method and system for vehicle directional control by commanding lateral acceleration
US6684140B2 (en) System for sensing vehicle global and relative attitudes using suspension height sensors
US6622074B1 (en) Vehicle motion control subsystem and method
US6556908B1 (en) Attitude sensing system for an automotive vehicle relative to the road
US7120529B2 (en) Drive train and brakes coordinator subsystem and method
Peng et al. Lateral control of front-wheel-steering rubber-tire vehicles
JP6286091B1 (en) Vehicle state estimation device, control device, suspension control device, and suspension device.
CN104828082A (en) Method and device for preventing steerable vehicle from being tilted
CN101932462A (en) Vehicular damping force control device
WO2022266824A1 (en) Steering control method and apparatus
CN109094644A (en) Active rear steer and direct yaw moment control method under limiting condition
JPH02155815A (en) Semi-active suspension control device of caterpillar vehicle
JP2003170822A (en) Yaw moment feedback control method
JP6360246B1 (en) Vehicle state estimation device, control device, suspension control device, suspension device, steering control device, and steering device
CN109017805A (en) One kind is for there are probabilistic driving system vehicle stability control methods
JP3374348B2 (en) Control device for controlling vehicle movement of four-wheel vehicle
JP2019166904A (en) Vehicle state estimation device, controller, suspension controller, suspension device, steering controller, and steering device
CN110758404B (en) Fault-tolerant control method for actuator fault of vehicle stabilization system
JPS632802B2 (en)
Wang et al. Dynamics control for EVs
TWI845089B (en) Loading calculation module, vehicle anti-runaway system, vehicle and method using the same