JPH02155727A - Manufacture of thermocuring resin laminated sheet - Google Patents

Manufacture of thermocuring resin laminated sheet

Info

Publication number
JPH02155727A
JPH02155727A JP63310184A JP31018488A JPH02155727A JP H02155727 A JPH02155727 A JP H02155727A JP 63310184 A JP63310184 A JP 63310184A JP 31018488 A JP31018488 A JP 31018488A JP H02155727 A JPH02155727 A JP H02155727A
Authority
JP
Japan
Prior art keywords
glass cloth
glass
prepreg
unwoven
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310184A
Other languages
Japanese (ja)
Inventor
Takahisa Iida
隆久 飯田
Takahiro Nakada
高弘 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP63310184A priority Critical patent/JPH02155727A/en
Publication of JPH02155727A publication Critical patent/JPH02155727A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To eliminate the uneveness from the surface of a substrate and thereby increase drilling processing efficiency by using woven glass cloth which is made brittle as an intermediate layer and using a specific weight of unwoven glass cloth on the surface of the woven glass cloth. CONSTITUTION:Epoxy resin which is made brittle so that the bending strength of a laminated plate reaches 50 kg/mm<2> both in vertical and horizontal directions is impregnated with thermocuring resin varnish such as epoxy resin, then a dried prepreg is used as an intermediate layer and the prepreg which is impregnated with thermocuring resin varnish and dried is applied, as a surface layer, on the unwoven glass cloth weighing 100 to 150g/m<2>. After this, a desired number of these surface layers and intermediate layers are laminated and copper foil is placed together. These are thermally molded under pressure. To make the woven glass cloth brittle, a variety of methods are available which are heat-cleaning at high temperatures of 400 deg.C or higher for a comparatively long time, soaking in an acid or alkali liquid and opening the fibers of a glass cloth mechanically. The unwoven glass cloth should preferably be of 7 to 12 mum monofilament in dia. and 9 to 19mm fiber length. The unwoven glass cloth also should preferably be heat-resistant and less water-absorptive for binder and coupling processes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業機器用、電子機器用の新規な熱硬化性樹
脂積層板に関するもので、その目的とするところは、基
板の表面平滑性、ドリル加工性、特に小径ドリル穴位置
精度に優れた熱硬化性樹脂積層板を得ることにある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a novel thermosetting resin laminate for industrial equipment and electronic equipment, and its purpose is to improve the surface smoothness of the substrate. The object of the present invention is to obtain a thermosetting resin laminate having excellent drill workability, especially small-diameter drill hole position accuracy.

〔従来の技術〕[Conventional technology]

従来、高品質が要求される産業機器、電子機器等に使用
される電気絶縁板また印刷回路用銅張積層板の基材とし
ては、主にガラス織布が用いられている。これは、ガラ
ス織布を基材とする積層板は寸法安定性、機械的強度、
電気特性、耐熱性、耐薬品性等の特性において非常に優
れているからである。
Conventionally, woven glass fabric has been mainly used as a base material for electrical insulating boards and copper-clad laminates for printed circuits used in industrial equipment, electronic equipment, etc. that require high quality. This is because laminates based on woven glass fabric have dimensional stability, mechanical strength,
This is because it has excellent properties such as electrical properties, heat resistance, and chemical resistance.

しかじな゛がら、近年電子部品の小型化および高信幀性
化が進み、特にフラットパッケージの出現により表面実
装化が急速に進み、これによりプリント配線板の高密度
化が急速に進んでいる。これに伴いスルーホールの小径
化、バイアホールの増加、更に生産性の向上や低コスト
化により、小径ドリル加工(0,5aφ以下)において
も、従来の2枚重ね加工から3枚重ね加工への要求が高
まり、穴位置精度、ドリル刃摩耗、穴壁粗さなどの問題
が現われている。
However, in recent years, electronic components have become smaller and more reliable, and in particular, the advent of flat packages has led to rapid progress in surface mounting, which has led to rapid increases in the density of printed wiring boards. . Along with this, the diameter of through-holes has become smaller, the number of via holes has increased, and productivity has improved and costs have been reduced. Even in small-diameter drilling (0.5aφ or less), conventional two-ply processing has been changed to three-ply processing. As demands have increased, problems such as hole position accuracy, drill blade wear, and hole wall roughness have emerged.

更に、高密度化による回路幅、回路間隔の細線化に伴い
、エツチングレジストと積層板との密着性向上のため基
板表面の平滑性が問題となってきている。
Furthermore, as the circuit width and circuit spacing become thinner due to higher density, the smoothness of the substrate surface has become a problem in order to improve the adhesion between the etching resist and the laminate.

従来、産業機器用、電子機器用の熱硬化性樹脂積層板に
用いられるガラス織布は厚み、25〜180μmで、重
量は19〜220 g / rrfであり、積層板の曲
げ強度と相関のある引張強度は縦方向80〜100kg
/25鵬、横方向60〜80kg/25mである。
Traditionally, glass woven fabrics used for thermosetting resin laminates for industrial equipment and electronic devices have a thickness of 25 to 180 μm and a weight of 19 to 220 g/rrf, which is correlated with the bending strength of the laminate. Tensile strength is 80-100 kg in longitudinal direction
/25peng, 60-80kg/25m in the lateral direction.

このようなガラス織布を使用して得られた積層板におい
て゛、従来の小径ドリル穴あけ(0,5m以下)2枚重
ね加工より3枚重ね加工を行った場合、ドリル穴位置精
度の大幅な低下、及びドリル刃摩耗の増加が著しく、3
枚重ね加工の要求を満足することができない。
In the case of laminated plates obtained using such glass woven fabric, when three-ply processing is performed instead of the conventional small-diameter drilling (0.5 m or less) two-ply processing, the accuracy of the drill hole position is significantly improved. 3. Drill blade wear decreased significantly and drill blade wear increased significantly.
It is not possible to satisfy the requirements for layer processing.

また、ガラス織布には縦糸間、横糸間に間隙が存在し、
ガラス織布全体としてはガラス繊維がある部分と、空隙
部が存在する不均一な形状となっている。このためガラ
ス織布を用いた積層板は表面に凹凸が生ずる。これがエ
ツチングレジストとの密着不良による回路の断線や細り
の原因となる。
In addition, there are gaps between warp and weft threads in glass woven fabric.
The entire glass woven fabric has a non-uniform shape with glass fibers in some areas and voids in others. For this reason, a laminate using glass woven fabric has unevenness on its surface. This causes disconnection or thinning of the circuit due to poor adhesion with the etching resist.

またドリルによる穴明は加工時には、特に小径ドリルに
おいて、ドリルの滑りの原因にもなっている。
Drilling with a drill also causes the drill to slip during machining, especially when using a small diameter drill.

そこで従来より、この表面凹凸を改良するために、表面
の樹脂層を厚くする方法が考えられたが、この方法で4
0μm以上の樹脂層を構成するには、プレス時の滑りの
発生、プレス時の樹脂分の流出による、あるいは板厚精
度の低下等の欠点があった。
Therefore, in order to improve this surface unevenness, a method of thickening the resin layer on the surface has been considered, but this method
Constructing a resin layer with a thickness of 0 μm or more has disadvantages such as occurrence of slippage during pressing, resin content flowing out during pressing, and reduction in plate thickness accuracy.

〔発明が解決しようとする課B) 本発明の目的は、上記欠点を改良するために、積層板の
曲げ強度が縦方向、横方向共に50kg/w’以下にな
るよう脆化処理したガラス織布を中間層に使用し、その
表面に重110〜150g/rrfのガラス織布を使用
することにより、基板表面の凹凸が改善された、ドリル
加工性の良好な積層板を提供するにある。
[Problem B to be Solved by the Invention] In order to improve the above-mentioned drawbacks, the object of the present invention is to provide a glass fabric which has been subjected to embrittlement treatment so that the bending strength of the laminated plate is 50 kg/w' or less in both the longitudinal and transverse directions. To provide a laminate with improved drillability and improved surface irregularities by using cloth as an intermediate layer and glass woven cloth with a weight of 110 to 150 g/rrf on the surface thereof.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、積層板の曲げ強度が縦方向、横方向共に50
kg/m”になるよう脆化処理したガラス織布にエポキ
シ樹脂などの熱硬化性樹脂プレスを含浸、乾燥したプリ
プレグを中間層に使用し、重量100〜150g/rr
fのガラス不織布に、前記熱硬化性樹脂プレスを含浸乾
燥したプリプレグを表面層として、これら表面層と中間
層を所定枚数積層して銅箔を重ね、加熱加圧成形するこ
とを特徴とする熱硬化性樹脂積層板の製造方法である。
In the present invention, the bending strength of the laminated plate is 50 in both the longitudinal and lateral directions.
A glass woven fabric that has been embrittled to a weight of 100 to 150 g/rr is impregnated with a thermosetting resin press such as epoxy resin, and dried prepreg is used as the intermediate layer.
A heating method characterized in that a prepreg obtained by impregnating and drying the thermosetting resin press is used as a surface layer on the glass nonwoven fabric of f, and a predetermined number of these surface layers and an intermediate layer are laminated, copper foil is layered, and heat and pressure molding is performed. This is a method for manufacturing a curable resin laminate.

本発明の特徴は、積層板の曲げ強度が縦横方向共に50
kg/m”以下になるよう脆化処理したガラス織布を中
間層に使用し、その表面に重110〜150kg/nl
のガラス不織布を使用することにある。
The feature of the present invention is that the bending strength of the laminated plate is 50 in both the vertical and horizontal directions.
A glass woven fabric that has been embrittled to a weight of 110 to 150 kg/nl is used as the intermediate layer, and the surface is
The purpose is to use glass non-woven fabric.

積層板の強度を低下させるために主としてガラス織布の
強度を低下させる。
In order to reduce the strength of the laminate, the strength of the glass woven fabric is mainly reduced.

一般にガラス織布の強度は、積層成形する直前において
ガラス織布を構成しているガラス糸の引張り強度で示さ
れる。しかしながら、通常ガラス糸の引張り強度は、糊
付着量、エポキシ樹脂との結合を強化するために使用さ
れるカップリング剤の種類および付着量、ヒートクリー
ニングの温度や時間に依存している。この為に同じ引張
り強度の基材を使用しても得られる積層板の曲げ強度の
値が異なる。小径ドリル穴位置精度の良否は、基材(ガ
ラス織布)と樹脂との剛性の違いにより、ドリル刃が基
材によって曲げられるか否かにより決まると考えられて
いる。
Generally, the strength of a glass woven fabric is indicated by the tensile strength of the glass threads constituting the glass woven fabric immediately before lamination and molding. However, the tensile strength of glass thread usually depends on the amount of adhesive applied, the type and amount of coupling agent used to strengthen the bond with the epoxy resin, and the temperature and time of heat cleaning. For this reason, even if base materials with the same tensile strength are used, the bending strength values of the obtained laminates differ. It is believed that the accuracy of the position of a small-diameter drill hole is determined by whether or not the drill blade is bent by the base material due to the difference in rigidity between the base material (glass woven fabric) and the resin.

小径ドリル穴位置精度と積層板の曲げ強度には第1図の
如く明確な相関関係が得られている。
As shown in FIG. 1, there is a clear correlation between the positional accuracy of small-diameter drill holes and the bending strength of the laminate.

(第1図は、径0.4amφ、3枚重ね、回転数=60
.000rpm 、送り:1.2m/分の例である。)
第1図か゛ら明らかなように、積層板の曲げ強度の減少
に伴い大曲りN(大曲り距離の平均値)が減少している
。積層板の曲げ強度が50kg/am2以上では大曲が
りに効果が少ない。
(Figure 1 shows a diameter of 0.4 amφ, 3 sheets stacked, rotation speed = 60
.. 000 rpm, feed: 1.2 m/min. )
As is clear from FIG. 1, as the bending strength of the laminate decreases, the large bend N (average value of the large bend distance) decreases. If the bending strength of the laminate is 50 kg/am2 or more, it will not be effective against large bends.

また、20kg/+m+”以下では、塗布工程時及び加
圧加熱成形時に基材切れ等の発生により生産性を減少さ
せる恐れがあるので、製造工程上注意を要する。
Furthermore, if the weight is less than 20 kg/+m+'', there is a risk of reducing productivity due to breakage of the base material during the coating process and press/heat molding, so care must be taken in the manufacturing process.

積i仮の曲げ強度を低下させるためには、脆化ガラス織
布を得る必要がある0通常脆化処理としては、400°
C以上の高温度で比較的長時間ヒートクリーニングを行
なう方法、酸又はアルカリ液中に浸漬する方法、ガラス
クロスを機械的に開繊する方法等があるが、特に限定さ
れない。
In order to reduce the temporary bending strength of the product, it is necessary to obtain a embrittled glass fabric.The usual embrittlement treatment is 400°
Examples include a method of performing heat cleaning at a high temperature of C or higher for a relatively long time, a method of immersing in an acid or alkaline solution, a method of mechanically opening a glass cloth, but the method is not particularly limited.

表面層にガラス不織布を使用すると、ガラス織布に比べ
表面層のガラス繊維と樹脂との分布が非常に均一となり
、中間層のガラス織布の凹凸を緩和し、基板の表面平滑
性が向上する。従ってこの構成で常法により製造された
積層板は、エツチングレジストとの密着性が向上し、小
径ドリル加工においては゛ドリルの滑りも減少し、良好
な穴位置精度となる。
When a glass non-woven fabric is used for the surface layer, the distribution of glass fibers and resin in the surface layer is much more uniform compared to a glass woven fabric, which alleviates the unevenness of the glass woven fabric in the intermediate layer and improves the surface smoothness of the substrate. . Therefore, the laminated plate manufactured by the conventional method with this configuration has improved adhesion with the etching resist, and during small-diameter drilling, the slippage of the drill is reduced, resulting in good hole position accuracy.

ガラス不織布としては、モノフィラメント7〜12μm
、繊維長9〜t9mmのものを選定し、耐熱性向上のた
めバインダー及びカップリング処理は、耐熱性、吸水性
の少ないものを選ぶ必要がある。
As the glass nonwoven fabric, monofilament 7 to 12 μm
It is necessary to select a fiber having a fiber length of 9 to 9 mm, and for the binder and coupling treatment to improve heat resistance, it is necessary to select a fiber with low heat resistance and water absorption.

また、本発明に用いられる熱硬化性樹脂はエポキシ樹脂
、ポリイミド樹脂、フェノール樹脂、ポリエステル樹脂
等で特に限定されない。
Further, the thermosetting resin used in the present invention is not particularly limited and may be an epoxy resin, a polyimide resin, a phenol resin, a polyester resin, or the like.

〔実施例〕〔Example〕

本発明を実施例により説明する。 The present invention will be explained by examples.

実施例1 積層板の縦方向の曲げ強度40kg/鵬1を得るために
、モノフィラメント9νm、縦打込敗41本/2501
m、横打込数32本/25am、厚さ180μm−重量
205 g / rtrのガラス織布を400℃の加熱
炉中で20時間ヒートクリーニングし、付着糊剤を燃焼
した。
Example 1 In order to obtain the longitudinal bending strength of the laminate of 40 kg/1, the monofilament was 9 νm and the vertical driving loss was 41/2501.
A glass woven fabric with a thickness of 180 μm and a weight of 205 g/rtr was heat-cleaned in a heating furnace at 400° C. for 20 hours to burn off the adhesion sizing agent.

更にこれを600’Cの高温炉中を連続的に通過させ、
次にカップリング剤としてエポキシジシランを塗布し乾
燥した。
Furthermore, this was continuously passed through a high temperature furnace at 600'C,
Next, epoxy disilane was applied as a coupling agent and dried.

このよう゛に処理されたガラス織布の引張り強度は、縦
方向35kg/25園、横方向25kg/25m+aで
あった。
The tensile strength of the glass woven fabric thus treated was 35 kg/25 m+a in the longitudinal direction and 25 kg/25 m+a in the transverse direction.

別にエポキシ樹脂(油化シェルエポキシ■製品名 E 
p5045) 100重量部(以下、部と記す)、硬化
剤ジシアンジアミド4,7部、硬化促進剤2−エチル−
4−メチルイミダゾール及び溶剤からなるエポキシ樹脂
ワニスを作成し、上記ガラス織布に含浸乾燥して樹脂分
(RC) 40〜42%のプリプレグを得た。
Separately, epoxy resin (oiled shell epoxy ■Product name E
p5045) 100 parts by weight (hereinafter referred to as parts), 4.7 parts of curing agent dicyandiamide, curing accelerator 2-ethyl-
An epoxy resin varnish consisting of 4-methylimidazole and a solvent was prepared, and the glass woven fabric was impregnated with the varnish and dried to obtain a prepreg having a resin content (RC) of 40 to 42%.

続いて、表面層用として、重量50g/rrfのガラス
不織布(日本バイリーン製Ep−4050)に前記同様
のワニスを含浸し乾燥して樹脂含有量が53〜55%の
プリプレグを得た。
Subsequently, for the surface layer, a glass nonwoven fabric (Ep-4050 manufactured by Nippon Vilene Co., Ltd.) weighing 50 g/rrf was impregnated with the same varnish as described above and dried to obtain a prepreg having a resin content of 53 to 55%.

次に前記ガラス織布プリプレグ8枚を中間層に上下表面
層に前記ガラス不織布プリプレグを積層し、さらに、そ
の上1i!Fli (18μm)を重ね、加熱加圧成形
して、厚さ1.6mmのエポキシ樹脂銅張積層板を得た
Next, the eight sheets of glass woven prepreg were laminated as an intermediate layer, and the glass nonwoven prepreg was laminated as the upper and lower surface layers, and then 1i! Fli (18 μm) was overlapped and molded under heat and pressure to obtain an epoxy resin copper-clad laminate having a thickness of 1.6 mm.

実施例2 実施例1と同様のガラス織布プリプレグ7枚を中間層に
、上下表面層に樹脂含有量が65〜67%のガラス不織
布プリプレグを積層し、実施例1と同様の処理を行って
1.6鋪のエポキシ樹脂銅張積層板を得た。
Example 2 Seven glass woven prepregs similar to those in Example 1 were laminated as an intermediate layer, and glass nonwoven prepregs with a resin content of 65 to 67% were laminated on the upper and lower surface layers, and the same treatment as in Example 1 was performed. A 1.6 inch epoxy resin copper clad laminate was obtained.

比較例1 モノフィラメント径9μm、l打込数41本/25■、
横打込数32本/25園、厚さ180μm、重1205
g/%のガラス織布に、実施例と同じ樹脂を含浸乾燥し
て樹脂含有量が39〜41%のプリプレグを得、このプ
リプレグ8枚を積層して両面にw4箔(18μm)を重
ね、加熱加圧成形して厚さ1.6鵬のエポキシ樹脂銅張
積層板を得た。
Comparative Example 1 Monofilament diameter 9μm, number of 1 strokes 41/25■,
Number of horizontal strokes: 32/25, thickness: 180μm, weight: 1205
g/% glass woven fabric was impregnated with the same resin as in the example and dried to obtain a prepreg with a resin content of 39 to 41%, and 8 sheets of this prepreg were laminated and W4 foil (18 μm) was layered on both sides. An epoxy resin copper-clad laminate having a thickness of 1.6 mm was obtained by heat-pressing molding.

比較例2 実施例1と同様のガラス織布プリプレグを8桟積層して
、両面に銅箔(18μm)を重ね、加熱加圧成形して厚
さ1.6−のエポキシ樹脂銅張積層板を得た。
Comparative Example 2 Eight woven glass fabric prepregs similar to those in Example 1 were laminated, copper foil (18 μm) was layered on both sides, and heat and pressure molded to form an epoxy resin copper-clad laminate with a thickness of 1.6 mm. Obtained.

実施例1.2及び比較例1.2で得られた積層板につい
て、ドリル加工性、表面粗さを測定し、その結果を第1
表に示す。
The drill workability and surface roughness of the laminates obtained in Example 1.2 and Comparative Example 1.2 were measured, and the results were compared to the first
Shown in the table.

第1表からも明らかなように、本発明の積層板のドリル
加工性、表面粗さは従来の積層板に比較して極めて優れ
ていることがわかる。
As is clear from Table 1, the drill workability and surface roughness of the laminate of the present invention are extremely superior to those of conventional laminates.

第  1  表 注:測定方法 (1)ドリル径 0.4−φ 3枚重ね回転数  60
000r、p、■ 送り速度 1.2m/5in 5000シツツトまでの平均値 (2)ドリル径 11aφ 3枚重ね 回転数  65000r、pom 送り速度 5.抛/細1n 10000シヨツトまでの平均値 (3)積層板表面の最大粗さ 〔発明の効果〕 本発明方法に従うと、小径ドリルによる穴あけ加工を、
従来の2枚重ねから3枚重ねで実施可能となり、生産性
が大巾に向上する。その上、従来ガラス織布積層板の欠
陥であった表面の凹凸が改善されて平滑性が良好となり
、レジストとの密着性が向上し微細パターン化も可能と
なり、高密度対応用の熱硬化性樹脂積層板を得ることが
できる。
Table 1 Note: Measurement method (1) Drill diameter 0.4-φ 3-ply rotation speed 60
000r, p, ■ Feed rate 1.2m/5in Average value up to 5000 shots (2) Drill diameter 11aφ 3-ply rotation speed 65000r, pom Feed rate 5. Average value up to 10,000 shots (3) Maximum roughness of the laminate surface [Effects of the invention] According to the method of the present invention, drilling with a small diameter drill can be
It is now possible to stack three sheets instead of the conventional two-layer stack, greatly improving productivity. In addition, the surface irregularities, which were defects of conventional glass woven laminates, have been improved, resulting in better smoothness, improved adhesion with resist, and the ability to form fine patterns. A resin laminate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、小径ドリル大曲がり量と積層板の曲げ強度の
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the large bending amount of a small diameter drill and the bending strength of a laminate.

Claims (1)

【特許請求の範囲】[Claims] (1)積層板の曲げ強度が縦方向、横方向共に50kg
/mm^2以下になるよう脆化処理したガラス織布に、
エポキシ樹脂などの熱硬化性樹脂ワニスを含浸、乾燥し
たプリプレグを中間層に使用し、重量10g/m^2〜
150g/m^2のガラス不織布に前記熱硬化性樹脂ワ
ニスを含浸、乾燥したプリプレグを表面層として、これ
ら表面層と中間層を所定枚数積層して銅箔を重ね、加熱
加圧成形することを特徴とする熱硬化性樹脂積層板の製
造方法。
(1) The bending strength of the laminate is 50 kg in both the vertical and horizontal directions.
/mm^2 or less, glass woven fabric has been subjected to embrittlement treatment,
A prepreg impregnated with thermosetting resin varnish such as epoxy resin and dried is used for the intermediate layer, and the weight is 10 g/m^2 ~
A glass non-woven fabric of 150 g/m^2 is impregnated with the thermosetting resin varnish, the dried prepreg is used as a surface layer, a predetermined number of these surface layers and an intermediate layer are laminated, copper foil is layered, and heat and pressure molding is performed. A method for producing a characteristic thermosetting resin laminate.
JP63310184A 1988-12-09 1988-12-09 Manufacture of thermocuring resin laminated sheet Pending JPH02155727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310184A JPH02155727A (en) 1988-12-09 1988-12-09 Manufacture of thermocuring resin laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310184A JPH02155727A (en) 1988-12-09 1988-12-09 Manufacture of thermocuring resin laminated sheet

Publications (1)

Publication Number Publication Date
JPH02155727A true JPH02155727A (en) 1990-06-14

Family

ID=18002185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310184A Pending JPH02155727A (en) 1988-12-09 1988-12-09 Manufacture of thermocuring resin laminated sheet

Country Status (1)

Country Link
JP (1) JPH02155727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111746069A (en) * 2020-05-14 2020-10-09 江阴市沪澄绝缘材料有限公司 Low-smoke environment-friendly glass cloth laminated board and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111746069A (en) * 2020-05-14 2020-10-09 江阴市沪澄绝缘材料有限公司 Low-smoke environment-friendly glass cloth laminated board and production method thereof
CN111746069B (en) * 2020-05-14 2022-04-12 江阴市沪澄绝缘材料有限公司 Low-smoke environment-friendly glass cloth laminated board and production method thereof

Similar Documents

Publication Publication Date Title
JP4025177B2 (en) Method for producing copper foil with insulating layer
JP3631385B2 (en) Laminate substrate and method for producing the same
JP3862770B2 (en) Method for producing metal-clad laminate
JP3963662B2 (en) Laminate production method
KR20060134192A (en) Process for producing double-sided metal clad laminate and double-sided metal clad laminate produced by the process
JP4467449B2 (en) Substrate reinforcing fiber fabric, prepreg using the reinforcing fiber fabric, and printed wiring board substrate
JPH02155727A (en) Manufacture of thermocuring resin laminated sheet
JP4276830B2 (en) Prepreg base material and multilayer printed wiring board using the same
KR100187577B1 (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JPH03112643A (en) Copper clad laminate and manufacture thereof
JPH01148519A (en) Manufacture of thermosetting resin laminated sheet
JP3343722B2 (en) Method for producing composite prepreg and laminate
JPH02155726A (en) Manufacture of heat curing resin laminated sheet
JPH01127335A (en) Manufacture of thermosetting resin laminated sheet
JPH10338758A (en) Production of prepreg and laminated sheet
JPH10135590A (en) Substrate for printed circuit
JP2001269954A (en) Manufacturing method of laminated sheets
JPS61137733A (en) Copper lined laminated board
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JPS6364740A (en) Copper-lined laminated board
JPH02137924A (en) Manufacture of thermosetting resin laminated plate
JP2001170953A (en) Method for manufacturing laminated sheet
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2002160317A (en) Method for manufacturing metal foil-clad laminate and metal foil-clad laminate
JP2005132857A (en) Prepreg