JPH02155339A - Abnormality communication system for remote supervisory and controlling equipment - Google Patents

Abnormality communication system for remote supervisory and controlling equipment

Info

Publication number
JPH02155339A
JPH02155339A JP63310445A JP31044588A JPH02155339A JP H02155339 A JPH02155339 A JP H02155339A JP 63310445 A JP63310445 A JP 63310445A JP 31044588 A JP31044588 A JP 31044588A JP H02155339 A JPH02155339 A JP H02155339A
Authority
JP
Japan
Prior art keywords
section
station
abnormality
host
loop line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63310445A
Other languages
Japanese (ja)
Other versions
JP2526646B2 (en
Inventor
Koichi Kawabe
河辺 公一
Tadashi Mochizuki
正 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63310445A priority Critical patent/JP2526646B2/en
Publication of JPH02155339A publication Critical patent/JPH02155339A/en
Application granted granted Critical
Publication of JP2526646B2 publication Critical patent/JP2526646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

PURPOSE:To instantly inform the abnormality of a host section of each station with a high fault occurrence probability to a master station by providing a transmission/ reception section and an abnormality monitoring section on a local section of each station and inhibiting transmission of all signals such as a token signal when the abnormality monitoring section decides the presence of the abnormality to the host section of its own station. CONSTITUTION:A transmission/reception section 51 calls a host section H every prescribed time. The abnormality monitoring section 52 decides whether or not the host section H is normally operated based on a reply signal at that time. When the abnormality takes place in the host section H, the abnormality monitoring section 52 outputs a high level signal to an AND gate 53 with an inverting input terminal. Thus, the output of a cyclic signal transmission/reception section 54 is locked and no transmission of signals such as a token signal is given from a slave station 21 having the abnormality to a loop line and the presence of abnormal reception is caused in an adjacent slave station. Thus, the abnormal of the host section H of the slave station 21 is instantly reported to the master station 11. Thus, the slave station 21 is disconnected and the relay and terminal mode of each station is changed.

Description

【発明の詳細な説明】 Δ、産業上の利用分野 本発明は、複数の親局と多数の子局間が親局毎のループ
回線で結合され、ループ回線の異常時に各ループ回線に
対する子局の所属を変えることで通信機能を回復する流
動群構成の遠方監視制御装置に係り、特に主として外部
との連絡を司る各子局のポストコンピュータの異常を親
局に知らせる遠方監視制御装置の5υ常連絡方式に関す
る。
Detailed Description of the Invention Δ, Industrial Application Field The present invention connects a plurality of master stations and a large number of slave stations by a loop line for each master station, and when an abnormality occurs in the loop line, the slave stations for each loop line are connected. This relates to remote monitoring and control equipment with a floating group configuration that restores communication functions by changing the affiliation, and in particular, 5υ constant communication of remote monitoring and control equipment that notifies the master station of abnormalities in the post computers of each slave station, which mainly controls communication with the outside world. Regarding the method.

+1 、発明の概要 本発明は、6局のコンピュータがホスト部とローカル部
とに分割されるとともに、複数の親局の〔l−カル部と
多数の子局の【ノーカルミツ1間が親局ftjのループ
回線で結合され、ループ回線の5〜常時に各ループ回線
に対する子局の所属を変えることで通信機能を回復する
流動群構成の遠方監視制御装置において、 一定周期でローカル部からホスト部を呼び出し、その応
答信号に基づいてホスト部の異常の有無を判定し、7d
常有りのときは当該異常局のトークン信号の送信を禁止
することにより、 障害発生確率の高いポスト部の異常を早期に検出し、子
局の所属を変更して異常局のみを切離すことができるよ
うにしたものである。
+1, Summary of the Invention The present invention is characterized in that a computer in six stations is divided into a host part and a local part, and a computer in a plurality of master stations is divided into a host part and a local part in a plurality of slave stations. In a remote monitoring and control device with a fluid group configuration, which is connected by loop lines and recovers the communication function by constantly changing the affiliation of slave stations to each loop line, the host unit is called from the local unit at regular intervals. , determines whether there is an abnormality in the host unit based on the response signal, and 7d
By prohibiting the abnormal station from transmitting token signals when it is always present, it is possible to detect an abnormality in the post section with a high probability of failure at an early stage, change the affiliation of the slave station, and disconnect only the abnormal station. It has been made possible.

C0従来の技術 第2図は流動群構成の遠方監視制御ンステムの回線措成
例を示す。同図(A)は回線の正常状態を示す。3つの
親局11〜1.に対して9箇所の子局2.〜28が3つ
のループ回線3.〜33で夫々1つの親局11〜13に
属して結合される。ループ回線3.〜33には送受信デ
ータが一方向(矢印で示す)で巡回され、子局2..2
7は両方のループ回線に所属する端末モードの動作にさ
れ、これら子局を除く子局2..2..23.2..2
..2.。
C0 Prior Art FIG. 2 shows an example of a circuit configuration of a remote monitoring and control system having a floating group configuration. (A) in the figure shows the normal state of the line. Three master stations 11-1. 9 slave stations for 2. ~28 are three loop lines 3. .about.33 belong to and are coupled to one master station 11-13, respectively. Loop line 3. The transmitted and received data is circulated in one direction (indicated by an arrow) to slave stations 2. to 33. .. 2
7 is operated in the terminal mode belonging to both loop lines, and the slave stations 2.7 except these slave stations are operated in terminal mode. .. 2. .. 23.2. .. 2
.. .. 2. .

28は中継モードの動作にされる。28 is operated in relay mode.

又、端末モードにおいて、親局との連絡を行う方を木犀
、行わない方を前屈と称する。同様に、中継モードにお
いて、親局と連絡を行う方を主系、行わない方を従系と
称する。
Furthermore, in the terminal mode, the one that communicates with the master station is called Mokusai, and the one that does not communicate with the master station is called Masaki. Similarly, in the relay mode, the system that communicates with the master station is called the main system, and the system that does not communicate with the master station is called the slave system.

こうした構成において、送受信信号がノイズ等によって
一時的に破壊、消滅する一過性障害には回線構成をその
ままにして障害回復処理を実行する。また、回線断等の
継続的回線+1d常には各ループ回線3.〜3.に対す
る子局の所属を変えることで全子局に対する通信機能を
回復4゛る。
In such a configuration, in the event of a temporary failure in which transmitted and received signals are temporarily destroyed or disappeared due to noise or the like, failure recovery processing is performed while leaving the line configuration as is. In addition, each loop line 3. ~3. The communication function for all slave stations can be restored by changing the affiliation of the slave stations.

第2図(B)はr局21と27間の継続的[−j1線異
常発生による回線構成変形途中状態を示し、子局21と
2.は中継モードから端末モードに変化して回線異常I
Iりを健全回路から分離する。しかし、このままでは、
子局2..2.はどの親局とも接続されていないので、
子局27.23に対する通信機能はない。第2図(C)
は通信機能回復後の回線構成状態例を示す。同図(C)
では子局2.と2.間の回線異常と判定した場合の回復
回線構成を示し、子局21はループ回線3.で親局II
へ所属し、子局2.と23はループ回線3.で親局I、
へ所属される。
FIG. 2(B) shows a state in which the line configuration is deformed due to the occurrence of a continuous [-j1 line abnormality] between the r stations 21 and 27, and the slave stations 21 and 2. changes from relay mode to terminal mode and line abnormality I
Isolate the circuit from the healthy circuit. However, as it is,
Child station 2. .. 2. is not connected to any master station, so
There is no communication function for slave stations 27 and 23. Figure 2 (C)
shows an example of the line configuration state after communication function is restored. Same figure (C)
Now, slave station 2. and 2. The recovery line configuration is shown when it is determined that there is an abnormality in the line between 3. and 3. Main station II
Belongs to subsidiary station 2. and 23 are loop lines 3. At the main station I,
Belongs to.

以下、各ポスト(親局及び子局)間の通信方式及び障害
発生時の従来の処理方式を第3図及び第4図を参照して
詳細に説明する。
Hereinafter, the communication system between each post (master station and slave station) and the conventional processing system when a failure occurs will be explained in detail with reference to FIGS. 3 and 4.

まず、通信方式は、通常時には同期符号と定符号の1つ
のフリート−クン信号(第4図a)をループ回線31〜
33に夫々巡回させておき、通信デ−タの(fるポスト
はフリート−クン信号を受信したときに該フリート−ク
ン信号を同期符号と定符号のピノ−トークン(+:”:
に切り換えると共に該ビジートークン信号に続けた送信
データ(第4図b)を送出し、ビジートークンの巡回で
他ポストの送信を禁止する。
First, the communication method normally transmits one free token signal (FIG. 4a) of a synchronous code and a constant code to the loop line 31.
33 respectively, and when the communication data post receives a free token signal, it converts the free token signal into a synchronous code and a constant code pinot token (+:":
At the same time, the transmission data (FIG. 4b) following the busy token signal is sent, and the transmission of other posts is prohibited by the circulation of the busy token.

この通常処理は、第3図(A)において、障害a無検出
iff< I Oと正常動作処理+M< 20の経路で
行われる。即ち、ループ回線から受信した信号の変化イ
1゛無セ1定(S11)と、該信号がトークン付きであ
ることの判定(S l 2)と、該信号がビジートーク
ンか否かの判定(S+3)とフリート−クンか否かの判
定(S14)とによって受信信号が正規のビジートーク
ン又はフリート−クンであることをヂエックする。そし
て、ビジートークン受信では該ビジートークンに続くデ
ータが分解符号(第4図d)1分離阻止群号(第4図e
)、クリヤ符号(第4図f)でないことを判定しくS2
+)、自己ポストが送信中でないことの条件(S22)
で受信信号を中継する(S23)。また、フリート−ク
ン受信では自己ポストに送信データの有無ヂエック(S
24)をし、送信データ無しでは該フリート−クンの中
u(S23)を行い、送信データaりではフリート−ク
ンをビジートークンに変えると共に送信データを付加し
て送信しく525)、この送信終了(326)でフリー
ト−クンの注入を行う(S27)。
In FIG. 3A, this normal processing is performed along the path of failure a no detection if < IO and normal operation processing + M < 20. That is, a change in the signal received from the loop line is determined (S11), a determination is made that the signal includes a token (S12), and a determination is made as to whether the signal is a busy token (S11). It is checked whether the received signal is a regular busy token or fleet token by S+3) and a determination as to whether it is a fleet token (S14). When a busy token is received, the data following the busy token is a decomposition code (Fig. 4 d), 1 separation prevention group code (Fig. 4 e).
), it should be determined that it is not a clear code (Fig. 4 f) S2
+), condition that self-post is not being sent (S22)
The received signal is relayed at (S23). In addition, when receiving free tokens, you can check whether there is sent data in the self-post (S
24), and if there is no data to send, execute the corresponding fleet token u (S23), and if there is data to send, change the fleet token to a busy token, add the data to send, and send 525), ending this transmission. At (326), free tokens are injected (S27).

次に、一過性の通信異常処理を説明する。障害有無検出
ff1lOにおいて、受信信号の変化無しく511)を
−時障害処理部30においてタイマ管理し、この受信信
号変化無しが第1の設定時間(後述する分解符号注入時
間間隔1.3秒より長い時間、ごこては1.5秒に設定
)を越えたか否かをチゴツタしく531)、設定時間を
越えてかつ第2の設定時間(−時障害と継続障害とを時
間的に判定するための時間、ここでは2.8秒)以内に
なるとき(S32)では連続零符号(第4図C)をルー
プ回線に送出する(S33)。この連続零符号注入によ
って′F流のポストはトークンを含まない(SI2)受
信信号についてトークン欠けの検出か否かを切り換えて
おき(S34)、トークン欠けでないときに連続零符号
のヂエツクを行い(S35)、該符号の検出によって連
続零符i」−を注入する(S33)。こうした各ポスト
の連続零符号注入によってループ回線に連続零符号が充
満してくる。一方、トークンを含まない(S I 2)
受信信号についてトークン欠けを検出するとき(S 3
4 ) 、この検出時間が一過性で継続的でないとき(
S36)には一過性障害として検出時間の最短時間ポス
トがフリート−クンを注入する(S37)。この最短時
間は、各ポストにトークン穴上発生時の検出時間として
割り当てられ、そのうちの最短時間にされるポストが連
続零符号に代えてフリート−クンを注入する。このフリ
ート−クンの注入によって、ループ回線にフリート−ク
ンの巡回が始まり、ループ回線措成を通常状態のままに
して一過性障害からの回復を得る。
Next, temporary communication abnormality processing will be explained. In the fault detection ff1lO, when there is no change in the received signal (511), the fault processing unit 30 manages the timer when there is no change in the received signal. For a long time, the iron is set to 1.5 seconds) 531) It is determined whether the set time has been exceeded and the second set time (-) is determined in terms of time between failures and continuous failures. (2.8 seconds in this case) (S32), a continuous zero code (C in FIG. 4) is sent to the loop line (S33). By injecting continuous zero codes, the 'F style post does not include a token (SI2). It is switched whether or not token missing is detected for the received signal (S34), and continuous zero codes are checked when there is no token missing (S34). S35), and by detecting the code, a consecutive zero sign i''- is injected (S33). By injecting consecutive zero codes into each post, the loop line is filled with consecutive zero codes. On the other hand, it does not include tokens (S I 2)
When detecting missing tokens in the received signal (S3
4) When this detection time is temporary and not continuous (
In S36), the shortest detection time post injects a fleet token as a temporary failure (S37). This shortest time is assigned to each post as the detection time when a token hole occurs, and the post set to the shortest time injects a fleet token instead of a continuous zero code. By injecting the free tokens, the free tokens start circulating in the loop line, leaving the loop line configuration in a normal state and recovering from a temporary failure.

また、−時障害処理部30では、障害有無検出部IOに
おいてトークンがビジーでもフリーでも無いときすなわ
ちトークン不良であるとき(Sl4)、この検出が受信
信号の所定回数(この例では7回)以上継続するか否か
の判定を行い(S38)、所定回数に達しないときは受
信信号をそのまま中継しておく(S39)。そして、ト
ークン不良が7回以上になる回数が4回に達するまでは
(S40)、該トークンをフリート−クンに転化して注
入する(S41)。このような処理により、ノイズ等に
よるトークンの一時的消減、破壊に対する回復処理を図
る。
Further, in the - time failure processing unit 30, when the token is neither busy nor free in the failure detection unit IO, that is, when the token is defective (Sl4), this detection is performed more than a predetermined number of times (7 times in this example) of the received signal. It is determined whether or not to continue (S38), and if the predetermined number of times has not been reached, the received signal is relayed as is (S39). Then, until the number of token failures exceeding 7 reaches 4 (S40), the tokens are converted into fleet tokens and injected (S41). Through such processing, recovery processing against temporary disappearance or destruction of tokens due to noise or the like is achieved.

一1ユ述の一時的障害処理において、ステップS32、
S36.S40により一時的障害でないとの判定を得、
この判定によって第3図(B)の継続障害処理に入る。
In the temporary failure processing described in Section 11, step S32,
S36. Obtained a judgment that the failure was not temporary due to S40,
Based on this determination, the continuous failure process shown in FIG. 3(B) is entered.

同図において、障害部局所化処理部50は、継続障害検
出中(フラグ)をセットしく551)、自己ボストが現
在中継モードか端末モードかを判定しく552)、端末
モードはそのままに、中継モードであれば端末モードに
切り換えると共に健全回線側へクリヤ信号(第4図r)
を注入する(S53)。これにより、障害発生部位に最
も近いボストは例えば第2図(Δ)のP点が断線すると
、ボスト2.が端末モードになって障害回線部の一方を
分離し、健全回線側になるボスト2JI11へクリヤ信
号を注入する。
In the figure, the fault localization processing unit 50 sets the continuous fault detection (flag) 551), determines whether the self-boost is currently in the relay mode or terminal mode 552), leaves the terminal mode unchanged, and sets the relay mode. If so, switch to terminal mode and send a clear signal to the healthy line side (Figure 4 r)
is injected (S53). As a result, if the boss closest to the failure location is disconnected, for example at point P in FIG. 2 (Δ), the boss 2. enters terminal mode, isolates one side of the faulty line, and injects a clear signal to Bost 2JI11, which becomes the healthy line.

次に、端末モードになったボスト2.は障害回線側(S
54)に対して所定時間(この例では1゜3秒)毎に分
解符号を注入する(S55)。この分解符号を受信した
ボスト21は中継モードか否かをチエツクしく556)
、端末モードではそのまま、中継モードでは端末モード
に切り換えると共に健全回線側ボスト1□ヘクリャ信号
を注入する(S57)。これにより、障害回線箇所(第
2図の■)点)はループ回線から分離され、第2図(1
3)に示す状態の障害部局所化を得る。
Next, the boss 2. which is in terminal mode. is the faulty line side (S
54) at predetermined time intervals (1°3 seconds in this example) (S55). The boss 21 that receives this decomposition code should check whether it is in relay mode or not (556).
, the terminal mode remains unchanged, and the relay mode is switched to the terminal mode, and the normal line side boss 1□heklya signal is injected (S57). As a result, the faulty line location (point ■ in Figure 2) is separated from the loop line, and
Obtain fault localization in the state shown in 3).

この障害j15局所化処理において、ボスト2.。In this fault j15 localization process, boss 2. .

23は何れの親局にも所属しない孤立状態にあり、ボス
ト2−.23側でのステップS54及びボスト2、側で
のステップ858による判定で健全回線側に対しては孤
立解消・回線復旧処理部60による処理がなされる。
23 is in an isolated state that does not belong to any master station, and boss 2-. Based on the determination in step S54 on the 23 side and step 858 on the BOST 2 side, the isolation resolution/line recovery processing unit 60 performs processing on the healthy line side.

第2図(【3)の状態において、中継モードから端末モ
ードに変化した2、と2.のボストは健全回線3.と3
xを使って谷ポストからの現在のモード報告(中継又は
端末)を行わせる(S61)。このモード報告後、当該
ボストが健全回線状態で端末モード指定か中継モード指
定であるかをチエツクする(S62)。このチエツクに
おいて、ボスト2..23が中継モード指定であるとき
には現在のモードが端末モードか中継モードかをチエツ
クしく563)、端末モードにあるときに当該ポスト2
.の主系、従系のいずれかに受信異常があったか否かチ
エツクしく564)、P点に受信異常のあったボスト2
..2.には端末モードのままにモード指定を行い(S
65)、該ボスト21と2゜を端末モードに保持させる
。また、ボスト23は端末モード指定ではなく(S62
)、端末モードでもなく(S63)主系、従系のいずれ
にも受信異常がないため、ステップS76のチエツク後
に中継モードのままとなる(S77)。また、ボスト2
4にはステップS62において端末指定がチニックされ
、現在が端末モード(S68)でいずれにも受信異常無
しく569)、また3x回線側に親局が無しく570)
、若番の端末(ボスト2、)があり(S71)、さらに
該ボスト23に受信異常有り(S72)によって中継モ
ードに切り換える(S75)。
In the state shown in FIG. 2 ([3), 2 and 2 change from relay mode to terminal mode. The boss is a healthy line 3. and 3
x is used to cause the valley post to report the current mode (relay or terminal) (S61). After reporting this mode, it is checked whether the boss is in a healthy line state and is designated as terminal mode or relay mode (S62). In this check, Bost 2. .. When 23 is designated as relay mode, check whether the current mode is terminal mode or relay mode (563), and when in terminal mode, the corresponding post 2
.. Please check whether there was a reception error in either the main system or the slave system.
.. .. 2. Specify the mode while leaving the terminal mode (S
65), maintain the posts 21 and 2° in terminal mode. Also, the boss 23 does not specify the terminal mode (S62
), it is not in terminal mode (S63), and there is no reception abnormality in either the main system or the slave system, so it remains in relay mode after the check in step S76 (S77). Also, Bost 2
4, the terminal designation is changed in step S62, and the current mode is terminal mode (S68), there is no reception abnormality in either case (569), and there is no master station on the 3x line side (570).
, there is a terminal with a lower number (Bost 2) (S71), and there is a reception abnormality in the BOST 23 (S72), so the mode is switched to the relay mode (S75).

このような処理により、ボスト21は親局1.に所属し
、ボスト2..2.は親局1.に所属するループ回線に
構成され、第2図(C)に示すように孤立解消が図られ
る。
Through such processing, the boss 21 becomes the master station 1. Belongs to Boss 2. .. 2. is the main station 1. As shown in FIG. 2(C), isolation is eliminated.

なお、ステップS79〜S82他はボスト2゜など残り
のボストに対するモード報告とその処理、及び後述の障
害回復時の回線復旧処理を示す。
Note that steps S79 to S82 and others show mode reporting and processing for the remaining bosses such as boss 2°, and line recovery processing at the time of failure recovery, which will be described later.

次に、ループ回線の切断等の障害が回復されたとき、障
害回復検出部7oによる検出と、この検出による孤立解
消・回線復旧処理部60による処理を行う。障害回復検
出は、第2図(C)の状態でボスト2.がボスト2.に
分解符号を送信しており、またボスト21も受信した分
解符号を中継している(S91)。この分解符号に対し
て、ボスト2.は2点の異常によって分解符号の受信が
なく (S92)、ステップS55によって1.3秒毎
の分解符号注入をしている。この状態において、13点
の障害回復がなされると、ボスト2.が分解符号を受信
しく592)、障害回復と判定して継続障害検出中のフ
ラグをリセットする(S93)。
Next, when a failure such as disconnection of the loop line is recovered, the failure recovery detection unit 7o performs detection and the isolation elimination/line recovery processing unit 60 performs processing based on this detection. Failure recovery detection is performed when the boss 2. But Bost 2. , and the boss 21 also relays the received decomposition code (S91). For this decomposition code, Bost 2. Due to two abnormalities, no decomposition code is received (S92), and decomposition codes are injected every 1.3 seconds in step S55. In this state, if 13 points of failure are recovered, the boss 2. receives the decomposition code (592), determines that the failure has been recovered, and resets the continuous failure detection flag (S93).

これによって、ボスト2.は分解符号注入を停止し、ボ
スト2.にし分解符号の受信が無くなり(S94)、障
害回復を検出する。
With this, Bost 2. stops decomposition code injection, and bost 2. Then, the decomposition code is no longer received (S94), and fault recovery is detected.

これらボスト2..2.での障害回復検出より、回線3
..3..3Yでモード報告が行われ孤立解消・回線復
旧処理部6oによってループ回線を第2図(Δ)に示す
元の回線状態に戻す。この処理は、ボスト2..2.に
はステップ562−963−S 64−866→S 6
7ノ経路で中9モーF1.:戻ず。また、ボスト23に
はステップS62→S63→S76→S77の経路で中
継モードのままにし、ボスト24にはステップS62→
S68→S79→580−・S81の経路で中継モード
のままにしておく。ここで、端末モードがら中継モード
に変化したボスト212.がらモード報告が行われボス
ト21〜2oは全て中継モードにあり、親局I、と1.
の2つの親局を持つ構成になったことを各ボストのモー
ド報告から判明する。このため、ボスト2.に対しては
ステップ562−S68−・S 79−S 80−98
2(7)El路で端末モー)’ニ1帰させて親局2つの
存在を解消する。また、ボスト2.〜26にはステップ
S62→S63→S76→S77の経路で中継モードの
ままにしておく。
These bosses 2. .. 2. From the failure recovery detection in
.. .. 3. .. At step 3Y, a mode report is made and the isolation elimination/line recovery processing unit 6o returns the loop line to the original line state shown in FIG. 2 (Δ). This process is performed by Bost 2. .. 2. Steps 562-963-S 64-866→S 6
Middle 9th course F1. : Don't go back. In addition, the boss 23 is left in the relay mode along the route of steps S62→S63→S76→S77, and the boss 24 is left in the relay mode from step S62→S77.
Leave the relay mode on the route S68→S79→580-/S81. Here, the boss 212. which has changed from terminal mode to relay mode. However, the mode report is carried out, and the bosses 21 to 2o are all in relay mode, and the master stations I and 1.
It is clear from the mode report of each boss that the configuration has two master stations. For this reason, Bost 2. For steps 562-S68-・S79-S80-98
2(7) On the El path, the terminal mode)' is returned to 1 to eliminate the existence of two master stations. Also, Bost 2. -26, the relay mode is left in the route of steps S62→S63→S76→S77.

このような処理により、ループ回線状態を第2図(A)
に示す元の状態に戻す。
Through such processing, the loop line state is changed to the state shown in Figure 2 (A).
Return to the original state shown in .

前記流動群方式の遠方監視制御装置の各局(例えばI+
、1−.2.〜2.)のマイクロコンピュータは第5図
に示すようにホスト部Hとローカルjπ≦L(1、+、
 1.、)に分割櫂成している。すなわちホスト63+
1は主として外部との連絡を司るCPUであり、ローカ
ル部L (L、、L、)は主としてループ回線との連絡
を司るCPUである。
Each station (for example, I+
, 1-. 2. ~2. ) microcomputer has a host section H and a local jπ≦L(1, +,
1. It is divided into , ). i.e. host 63+
1 is a CPU that mainly controls communication with the outside, and local section L (L,,L,) is a CPU that mainly controls communication with the loop line.

D9発明が解決しようとする課題 上記のような流動群方式の遠方監視制御装置において、
各局のマイクロコンピュータのローカル部で異常が発生
した場合はループ回線に巡回するデータに影響するため
、曲記第3図のような通信異常処理方法によって検出す
ることかできる。しかし各局のマイクロコンピュータの
ポスト部で異常か発生した場合は、ループ回線の巡回デ
ータに直接影響を与えないため、親局に連絡されない。
D9 Problems to be Solved by the Invention In the above-described flow group type remote monitoring and control device,
If an abnormality occurs in the local part of the microcomputer of each station, it will affect the data circulating on the loop line, so it can be detected by the communication abnormality handling method as shown in FIG. However, if an abnormality occurs in the post section of each station's microcomputer, the master station is not notified because it does not directly affect the circulating data on the loop line.

このためホスト部の障害発生時、すなわち外部との連絡
機能を失い、当該子局が監視制御不能になってら親局で
は気がつかないという問題があった。
For this reason, there is a problem in that when a failure occurs in the host section, that is, when the communication function with the outside is lost and the slave station becomes unable to be monitored and controlled, the master station does not notice.

しかも前記ホスト部はローカル部よりも部品点数が多い
ため障害発生確率は高い。
Furthermore, since the host section has more parts than the local section, the probability of failure occurring is high.

本発明は−1−記の点に鑑みてなされたものでその1]
的は、主として外部との連絡を司る各子局のポストコン
ピュータの異常を9期に発見してWfL L−,5に知
らせることができる遠方監視制御装置の異常連絡方式を
提供することにある。
The present invention has been made in view of the points mentioned in -1-, Part 1]
The purpose is to provide an abnormality communication method for a remote monitoring and control device that can discover abnormalities in the post computers of each slave station that mainly controls communication with the outside and notify them to WfL L-, 5.

E9課題を解決するだめの手段および作用本発明は、親
局および子局の各局の処理装置が、主として外部との連
絡を司るポスト部と、主としてループ回線との連絡を司
る[J−カル部とに分割して構成されるとともに、複数
の親局のローカル部と多数の子局のローカル部間が親局
fiのループ回線で結合され、各子局はループ回線の巡
回トークンに乗せたデータで親局と連絡を行う主系と該
トークン及びデータの中継を行う従系を持つ中継モード
と、一方のループ回線で親局と連絡を行う本属と他方の
ループ回線の中継を行う前屈を持つ端末モードとの切換
可能にされ、前記ループ回線の継続障害発生時および該
障害発生箇所の回復時に子局のモードを切り換えて親局
との連絡を得るようにした遠方監視制御装置において、
前記各局のローカル部に、ホストl<を呼び出す信号を
送信するとともにホスト部からの応答信号を受信する送
受信j1<と、該送受信部で受信された応答信号に基づ
いてポスト部の異常のf丁無を判定する一v常監視11
<とを設け、 前記異常監視部が異常イ1゛りを判定したとき、当該異
常局の1・−クン信と・他−斉の送信を禁11−4−る
ことを特徴としている。
E9 Means and operation for solving the problems The present invention provides that the processing devices of each of the master station and the slave station are connected to a post section which mainly controls communication with the outside, and a [J-Cal section which mainly controls communication with the loop line. In addition, the local parts of multiple master stations and the local parts of many slave stations are connected by a loop line of the master station fi, and each slave station transmits data carried on the cyclic token of the loop line. A relay mode has a main system that communicates with the master station and a slave system that relays the token and data, and a forward bend mode that has a main system that communicates with the master station on one loop line and a relay system that relays the other loop line. In the remote monitoring and control device, the mode of the slave station can be switched between the terminal mode and the terminal mode of the slave station, and the mode of the slave station can be switched to obtain contact with the master station when a continuous failure occurs in the loop line and when the failure point is recovered,
A transmitter/receiver j1< that sends a signal to call the host l< to the local section of each station and receives a response signal from the host section, and a transmitter/receiver j1< that sends a signal to call the host l< and receives a response signal from the host section; Constant monitoring to determine nothing 11
<>, and when the abnormality monitoring section determines that there is an abnormality, it prohibits the abnormal station from transmitting 1-1 and 11-4 signals.

F、実施例 以上、図面を於照しながら本発明の一実施例を説明する
。第1図において第5図と同一部分は同−符壮をもって
示しでいる。j′−局2Iのローカル部(ローカルCP
LJ)1,1には、ホスl一部(ホストCPU)I−1
を呼び出す信号を送信するとと乙にホスト部1−Iから
の応答信号を受信4−る送受信部51と、該送受信部5
1の受信信号を監視しポスト部IIで5′1!常が発生
したか否かを判定ずろ5′4常監視部52と、該異常監
視部52の判定出力が反転入力端子に供給される反転入
力端子付アントゲ−1・5:J)とが設けられている。
F. Embodiment An embodiment of the present invention will now be described with reference to the drawings. In FIG. 1, the same parts as in FIG. 5 are indicated with the same symbols. j' - local part of station 2I (local CP
LJ) 1, 1 includes a part of the host (host CPU) I-1
When a signal to call is transmitted, a transmitting/receiving section 51 receives a response signal from the host section 1-I, and the transmitting/receiving section 5 receives a response signal from the host section 1-I.
The received signal of 1 was monitored and the post section II received 5'1! A constant monitoring unit 52 for determining whether an abnormality has occurred or not, and an ant game with an inverting input terminal (1/5:J) with an inverting input terminal to which the judgment output of the abnormality monitoring unit 52 is supplied to the inverting input terminal are provided. It is being

前記アントゲート53の非反転入力端子には、回線3.
の巡回信号を送信するための巡回信号送(3部5・1の
出力か供給される。
The non-inverting input terminal of the ant gate 53 is connected to the line 3.
cyclic signal transmission for transmitting a cyclic signal (the output of the third section 5.1 is supplied).

L記のような送受信部51 + 7.%常監視部52反
転入力)1°j;、 、(、付アンドゲート53は、子
局2.のローカル:M(1,、および(也の子局(22
〜2o)の〔l−カル部にも各々設けられろしのである
A transmitting/receiving unit 51 as shown in L+7. % constant monitoring unit 52 inverted input) 1°j;
- 2o) are also provided in the l-cal part.

l記のように構成された装置において、送受信部51は
一定時間毎にホスト1N(IIを呼び出ず。異常監視部
52はそのときの応答信号に基づいてホスト部trが正
常に動作しているか否かを判定する。
In the device configured as described in section 1, the transmitting/receiving section 51 does not call the host 1N (II) at regular intervals.The abnormality monitoring section 52 determines whether the host section tr is operating normally based on the response signal at that time. Determine whether or not there is.

いまホスし部■で異常が発生ずると、例えば送受信71
<51には応答信号が受信されなくなる。すると−v常
監視部52はポスト部1−1が異常状態にあると判定し
てハイレベル信号を反転入力端子付アンドゲート53へ
出力する。このため前記アンドゲート53のアンド条件
が構成qとな、って巡回信号送受信部54の出力はロッ
クされる。これによって異常発生子局2.からループ回
線ヘト−クン信号他−斉の送信は行われず、隣接する子
局において受信5〜常(fりの状態となる。すると前記
第3図で述へたような障害検出、障害処理が行われて子
局2.のホストim5+1の異常は即座に親局1.に報
告される。したがって子局2.が切離されるとともに各
局の中継、端末モードが変更される。
If an abnormality occurs in the host unit ■, for example, the transmission/reception 71
<51, no response signal is received. Then, the -v constant monitoring section 52 determines that the post section 1-1 is in an abnormal state and outputs a high level signal to the AND gate 53 with an inverting input terminal. Therefore, the AND condition of the AND gate 53 becomes configuration q, and the output of the cyclic signal transmitting/receiving section 54 is locked. This causes the abnormality to occur in the slave station 2. From then on, the loop line failure signal and other signals are not transmitted simultaneously, and the adjacent slave station receives the signal constantly (f).Then, failure detection and failure processing as described in Fig. 3 are performed. The abnormality of host im5+1 of slave station 2. is immediately reported to master station 1. Therefore, slave station 2. is disconnected, and the relay and terminal modes of each station are changed.

上記のような動作は親局11〜1.及び子局2゜〜2n
においても全(同様に行われるものである。
The above operation is carried out by the master stations 11-1. and slave station 2゜~2n
This is also done in the same way.

G9発明の効果 以」二のように本発明によれば各局のローカル部に送受
信部および異常監視部を設け、異常監視部が自局のホス
ト部に異常有りと判定したときにトークン信号他−斉の
送信を禁止するようにしたので、障害発生確率の高い各
局のホスト部の異常を即座に親局へ知らせることができ
る。このため流動群方式の遠方監視制御装置において異
常局を早期に切離して局所化および孤立解消処理を行う
ことができる。
G9 Effects of the Invention According to the present invention, a transmitting/receiving section and an abnormality monitoring section are provided in the local section of each station, and when the abnormality monitoring section determines that there is an abnormality in the host section of its own station, the token signal etc. Since simultaneous transmission is prohibited, abnormalities in the host section of each station with a high probability of failure can be immediately notified to the master station. Therefore, in the flow group type remote monitoring and control device, an abnormal station can be isolated at an early stage to perform localization and isolation resolution processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図(
A)は流動群方式の回線構成図、第2図(13)は回線
異常発生時の回線構成変形途中状態図、第2図((シ)
は回線異常による構成変杉図、第3図(Δ)および第3
図(13)は’+;L求の処理フローチャート、第41
図は巡回信号の波形図、第5図は各局のマイクロコンピ
ュータの構成図である。 11.  l −、! a”’親局、2.〜2、−〕−
局、3183、.3..3..3、・・回線、1■・・
・ポスI−in!、L。 t、、、、r、、・・・ローカル部、51・・・送受信
部、52・・異常監視部、53・・反転入力端子付アン
トゲ−1・、54・・・巡回信号送信部。 第2図(A) XID群方弐の回状講へ回 第2図(B) ロ疎31c常−生吟の回線講以変形達中状態巴外2名 第2図(C) 回瑳冥常Ejる講声jU形囚 どノし一一−−−−−−−−J 第4図 i!!回イ言号の5反形圓
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 (
A) is a line configuration diagram of the floating group system, Figure 2 (13) is a diagram of the line configuration in the process of deformation when a line abnormality occurs, and Figure 2 ((C)
Figure 3 (Δ) and Figure 3 show configuration changes due to line abnormalities.
Figure (13) is the processing flowchart for '+;L request, No. 41
The figure is a waveform diagram of a circulating signal, and FIG. 5 is a configuration diagram of a microcomputer at each station. 11. l-,! a"' Master station, 2. ~ 2, -] -
Bureau, 3183,. 3. .. 3. .. 3,...Line, 1■...
・Pos I-in! ,L. t, , , r, . . . Local part, 51 . . . Transmission/reception unit, 52 . Figure 2 (A) To the circular lecture of XID group 2 Figure 2 (B) 2 people outside the group are in the process of reaching the circular lecture of RO 31c Jo-Seigin Figure 2 (C) Circular lecture Always Ej Ru Lecture J U Type Prisoner Ichiichi---J Figure 4 i! ! Five antimorphic circles of circular words

Claims (1)

【特許請求の範囲】[Claims] (1)親局および子局の各局の処理装置が、主として外
部との連絡を司るホスト部と、主としてループ回線との
連絡を司るローカル部とに分割して構成されるとともに
、複数の親局のローカル部と多数の子局のローカル部間
が親局毎のループ回線で結合され、各子局はループ回線
の巡回トークンに乗せたデータで親局と連絡を行う主系
と該トークン及びデータの中継を行う従系を持つ中継モ
ードと、一方のループ回線で親局と連絡を行う本属と他
方のループ回線の中継を行う兼属を持つ端末モードとの
切換可能にされ、前記ループ回線の継続障害発生時およ
び該障害発生箇所の回復時に子局のモードを切り換えて
親局との連絡を得るようにした遠方監視制御装置におい
て、 前記各局のローカル部に、ホスト部を呼び出す信号を送
信するとともにホスト部からの応答信号を受信する送受
信部と、該送受信部で受信された応答信号に基づいてホ
スト部の異常の有無を判定する異常監視部とを設け、 前記異常監視部が異常有りを判定したとき、当該異常局
のトークン信号他一斉の送信を禁止することを特徴とす
る遠方監視制御装置の異常連絡方式。
(1) The processing devices of the master station and slave stations are divided into a host section, which mainly controls communication with the outside world, and a local section, which mainly controls communication with the loop line. The local part of the main station and the local parts of many slave stations are connected by a loop line for each master station, and each slave station communicates with the master station using data carried on the circular token of the loop line, and the master system communicates with the master station by using the data carried on the circular token of the loop line. It is possible to switch between a relay mode that has a slave system that performs relaying, and a terminal mode that has a main system that communicates with the master station using one loop line and a terminal mode that also relays the other loop line. In a remote monitoring and control device that switches the mode of a slave station to obtain contact with a master station when a continuous failure occurs and when the failure location is recovered, a signal is sent to the local unit of each station to call the host unit. and a transmitting/receiving section that receives a response signal from the host section, and an abnormality monitoring section that determines whether there is an abnormality in the host section based on the response signal received by the transmitting/receiving section, and the abnormality monitoring section detects whether there is an abnormality. An abnormality communication method for a remote monitoring and control device, characterized in that, when a determination is made, all transmission of token signals and other signals from the abnormal station is prohibited.
JP63310445A 1988-12-08 1988-12-08 Abnormality notification method for remote monitoring and control equipment Expired - Fee Related JP2526646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310445A JP2526646B2 (en) 1988-12-08 1988-12-08 Abnormality notification method for remote monitoring and control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310445A JP2526646B2 (en) 1988-12-08 1988-12-08 Abnormality notification method for remote monitoring and control equipment

Publications (2)

Publication Number Publication Date
JPH02155339A true JPH02155339A (en) 1990-06-14
JP2526646B2 JP2526646B2 (en) 1996-08-21

Family

ID=18005334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310445A Expired - Fee Related JP2526646B2 (en) 1988-12-08 1988-12-08 Abnormality notification method for remote monitoring and control equipment

Country Status (1)

Country Link
JP (1) JP2526646B2 (en)

Also Published As

Publication number Publication date
JP2526646B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JPH02502681A (en) System for interfacing alarm annunciators with cellular radio transceivers
US20010040870A1 (en) Line failure notifying apparatus for terminal apparatus
JPH02155339A (en) Abnormality communication system for remote supervisory and controlling equipment
JPH08251216A (en) Data transmitter
JP2596066B2 (en) Line abnormality recovery method for remote monitoring and control equipment
JP2526648B2 (en) Data loss prevention method for remote monitoring and control equipment
JP2600806B2 (en) Line abnormality recovery method for remote monitoring control device
JPH10313278A (en) Star type optical subscriber transmission system
JPH0216831A (en) Line abnormality processing system for remote supervisory and controlling equipment
JPS60106233A (en) Transmission line switching device
JPH0216832A (en) Line release processing system for remote supervisory and controlling equipment
JPH0370947B2 (en)
JP2844862B2 (en) Equipment switching method for remote monitoring and control system
JPS59224938A (en) Network system
JP2002251203A (en) Distributed control system
JPS60176197A (en) Monitor controller for fire prevention
JP2793398B2 (en) Ring circuit monitoring method
JP2585326B2 (en) Multi-loop communication system
JPH0810874B2 (en) Post independent test system for remote monitoring and control equipment
JPS60109946A (en) Fault detector at multiplex system stand-by side
JPH09229989A (en) Communication system
JPH0746290A (en) State detection circuit
JPS5829230A (en) Dispatching telephone system of radio telephone system
JPH1041901A (en) Supervisory control equipment
JPS58107739A (en) Alarm detecting circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees