JPH02155167A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH02155167A
JPH02155167A JP63307703A JP30770388A JPH02155167A JP H02155167 A JPH02155167 A JP H02155167A JP 63307703 A JP63307703 A JP 63307703A JP 30770388 A JP30770388 A JP 30770388A JP H02155167 A JPH02155167 A JP H02155167A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
powder
particle size
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63307703A
Other languages
Japanese (ja)
Inventor
Kuniyasu Oya
邦泰 大矢
Takayuki Yamahira
隆幸 山平
Hiroshi Ogata
博 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63307703A priority Critical patent/JPH02155167A/en
Publication of JPH02155167A publication Critical patent/JPH02155167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance quick charge-discharge performance by using nickel powder having a particle size of 1-5mum prepared by thermal decomposition of tetracarbonyl nickel as a conductive material. CONSTITUTION:Nickel powder having a particle size of 1-5mum prepared by thermal decomposition of tetracarbonyl nickel is used as a conductive material of a positive electrode 2. The nickel powder obtained has small particle size and a large number of projections on the surface. Therefore, its specific surface area is very large. In the positive electrode 2 prepared with a powder molding press, particles are entangled through projections and the conductive material particles form a matrix to increase conductive effect. The internal resistance of a battery is decreased and quick charge-discharge performance is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ニッケル酸化物を正極活物質とするアルカリ
二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an alkaline secondary battery using nickel oxide as a positive electrode active material.

〔発明の(既要〕[Invention (already required)]

本発明は、ニッケル酸化物を主体とする正極活物質と導
電補助剤を含有する粉体圧縮成形体を正極とするアルカ
リ二次電池において、上記導電補助剤としてテトラカル
ボニルニッケルの熱分解によって得られる粒径1〜5μ
mのニッケル粉末を使用することにより、急速充放電特
性の向上を図るものである。
The present invention provides an alkaline secondary battery in which the positive electrode is a compressed powder body containing a positive electrode active material mainly composed of nickel oxide and a conductive additive, in which the conductive additive is obtained by thermal decomposition of tetracarbonyl nickel. Particle size 1~5μ
By using nickel powder of m, the rapid charging and discharging characteristics are improved.

〔従来の技術〕[Conventional technology]

一般にアルカリ二次電池の正極は、電気化学的酸化還元
反応に直接関与するニッケル酸化物のむ)末、ニッケル
粉末等の導電補助剤、およびテフロン(ポリテトラフル
オロエチレン)等の結合剤等から構成されている。一方
の負極としては、電池反応にきもなって可逆的に水素を
吸蔵・放出する水素吸蔵合金を主体とする負極活物質を
使用したものが近年提案されており、このような負極を
有するアルカリ二次電池は無公害でかつ高エネルギー密
度が期待できる二次電池(以下、ニッケル水素電池と称
する。)として注目されている。
In general, the positive electrode of an alkaline secondary battery is composed of a nickel oxide powder that directly participates in electrochemical redox reactions, a conductive agent such as nickel powder, and a binder such as Teflon (polytetrafluoroethylene). has been done. On the other hand, in recent years, negative electrodes have been proposed that use negative electrode active materials mainly consisting of hydrogen storage alloys that reversibly absorb and release hydrogen during battery reactions. BACKGROUND ART Secondary batteries are attracting attention as secondary batteries (hereinafter referred to as nickel-metal hydride batteries) that are non-polluting and can be expected to have high energy density.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のニッケル水素電池は概して急速充
放電特性に劣るという欠点を有している。
However, the above-mentioned nickel-metal hydride batteries generally have a drawback of poor rapid charging and discharging characteristics.

その理由としては、(1)ニッケル水素電池は一般にボ
タン型電池として製造されるために対極面積が小さいが
、許容できる電流密度には限度があるため結果的に充放
電に長時間を要すること、(2)正極活物質であるニッ
ケル酸化物の導電性が低いために電池の内部抵抗が高く
なってしまうことの2点が挙げられる。このうち(1)
の理由は電池の構造自体に関係しているため、ただらに
解決することは難しい、(2)の理由に対しては、正極
活物質に導電性の高い物質を導電補助剤として大量に添
加したり、また正極を金属ネットで包む等の対策が講じ
られているが、電池の容量を大幅に1貝なうことになる
ので必ずしも好ましいものではない。
The reasons for this are: (1) Nickel-metal hydride batteries are generally manufactured as button-type batteries, so they have a small counter electrode area, but there is a limit to the allowable current density, which results in long charging and discharging times; (2) The internal resistance of the battery increases due to the low conductivity of nickel oxide, which is the positive electrode active material. Of these (1)
The reason for (2) is related to the structure of the battery itself, so it is difficult to solve it simply.For reason (2), it is necessary to add a large amount of highly conductive material to the positive electrode active material as a conductive additive. Countermeasures have been taken, such as wrapping the positive electrode in a metal net, but this is not necessarily preferable because it significantly reduces the capacity of the battery.

さらに、急速充放電特性は正極として焼結体。Furthermore, the rapid charging and discharging properties of the sintered body as a positive electrode.

ペースト、粉体圧縮成形体のいずれを使用するかによっ
ても異なる。これらの三方式にはそれぞれ一長一短があ
り、このうち焼結体を使用する場合が一般に急速充放電
特性に最も優れている。しかし、正極を焼結体で構成す
るためには、ニッケル粉末を極板芯材に焼結させたもの
にニッケル塩を含浸させる工程、アルカリ処理工程、水
洗工程乾燥工程を繰り返すという複雑な製造工程を経な
ければならず、製造コストも高くなる。製造コストの観
点からは粉体圧縮成形体を使用するのが最も有利である
が、急速充放電特性は必ずしも満足なものではない。
It also differs depending on whether a paste or a compressed powder body is used. Each of these three methods has its advantages and disadvantages, and among these, the use of a sintered body generally has the best rapid charging and discharging characteristics. However, in order to construct the positive electrode as a sintered body, a complex manufacturing process is required, which involves repeating the steps of impregnating nickel powder into the core material of the electrode plate with nickel salt, alkali treatment, washing with water, and drying. process, which increases manufacturing costs. From the viewpoint of manufacturing cost, it is most advantageous to use a compacted powder compact, but the rapid charging and discharging characteristics are not necessarily satisfactory.

そごで本発明は、上述の課題を解決し、正極に↑5)体
圧縮成形体を使用した場合にも優れた急速充放電特性の
達成できるアルカリ二次電池を提供することを目的とす
る。
Therefore, it is an object of the present invention to provide an alkaline secondary battery that solves the above-mentioned problems and can achieve excellent rapid charging and discharging characteristics even when a compression molded body is used for the positive electrode. .

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明者らは上述の目的を達成するために検討を重ねた
結果、導電補助剤としてテトラカルボニルニッケルの熱
分解により得られる粒径1〜5μmのニッケルむ)末を
使用し、これを正極活物質であるニッケル酸化物、およ
び必要に応じて添加される結合剤等と共に圧縮成形した
粉体圧縮成形体で正極を構成すると良好な急速充放電特
性が達成されることを見出し、本発明を完成するに至っ
たものである。
As a result of repeated studies to achieve the above object, the present inventors used nickel powder with a particle size of 1 to 5 μm obtained by thermal decomposition of tetracarbonyl nickel as a conductive agent, and used it as a positive electrode active agent. The present invention was completed based on the discovery that good rapid charge/discharge characteristics can be achieved when the positive electrode is composed of a compacted powder compacted with the substance nickel oxide and a binder added as necessary. This is what I came to do.

すなわち本発明にかかるアルカリ二次Ti池は、ニッケ
ル酸化物を主体とする正極活物質と導?lt補助剤を含
有する粉体圧縮成形体を正極とするアルカリ二次″71
i池であって、上記導電補助剤がテトラカルボニルニッ
ケルの熱分解により得られる粒径1〜51tmのニッケ
ル粉末であることを特徴とするものである。
That is, the alkaline secondary Ti pond according to the present invention has a positive electrode active material mainly composed of nickel oxide and a conductive material. Alkaline secondary "71" with a powder compression molded body containing an LT adjuvant as a positive electrode
The conductive auxiliary agent is a nickel powder having a particle size of 1 to 51 tm obtained by thermal decomposition of tetracarbonyl nickel.

本発明の特色のひとつは、導電補助剤としてテトラカル
ボニルニッケルの熱分解により得られるニッケル粉末を
使用する点である。この方法によって得られるニッケル
粉末は、同様の目的で使用されていた従来のニッケル粉
末に比べて粒径が極めて小さく、また特有の表面性状を
有しており、少量の使用でも導電補助剤として非常に優
れた性能を発揮する0粒径が上述の範囲よりも大きくな
ると導電補助効果が低下する傾向があり、電池の内部抵
抗を下げるためには大量に使用せざるを得ない。しかし
、このように正極中において正損活物質以外の物質の含
量を増加させることは、電池容量の低下につながるので
好ましくない、一方、粒径が上述の範囲よりも小さいニ
ッケル粉末は工業的に入手することが難しい。
One of the features of the present invention is that nickel powder obtained by thermal decomposition of tetracarbonyl nickel is used as a conductive aid. The nickel powder obtained by this method has an extremely small particle size compared to conventional nickel powder used for similar purposes, and has a unique surface texture, making it extremely useful as a conductive aid even when used in small amounts. If the zero particle size, which exhibits excellent performance in the battery, is larger than the above-mentioned range, the conductivity assisting effect tends to decrease, and a large amount must be used in order to lower the internal resistance of the battery. However, increasing the content of substances other than the positive electrode in this way leads to a decrease in battery capacity, which is undesirable.On the other hand, nickel powder with a particle size smaller than the above range is not suitable for industrial use. difficult to obtain.

正極活物質としてはニッケル酸化物が使用される0通常
アルカリ電池において使用されるニッケル酸化物は水化
物(水酸化ニッケル)である。このニッケル酸化物の粒
径は3〜100μmとするが、正極活物質を十分にアル
カリ電解液と接触させて初期充放電特性を向上させる観
点からは、3〜30μmに選ぶことがより好ましい。
Nickel oxide is used as the positive electrode active material. The nickel oxide normally used in alkaline batteries is a hydrate (nickel hydroxide). The particle size of this nickel oxide is set to 3 to 100 μm, but from the viewpoint of bringing the positive electrode active material into sufficient contact with the alkaline electrolyte to improve initial charge/discharge characteristics, it is more preferably selected to be 3 to 30 μm.

さらに、正極を形成するために何らかの結合剤を添加し
ても良く、かかる結合剤としてはテフロン等を使用する
ことが好ましい。
Furthermore, some kind of binder may be added to form a positive electrode, and it is preferable to use Teflon or the like as such binder.

ここで、正極を構成する各材料の混合比は、ニッケル粉
末がおおよそ20〜60!fIfft%、ニッケル酸化
物が35〜75重■%である。さらに結合剤を使用する
場合は、5重■%程度とする。
Here, the mixing ratio of each material constituting the positive electrode is approximately 20 to 60 of nickel powder! fIfft%, nickel oxide is 35 to 75% by weight. Furthermore, if a binder is used, it should be about 5% by weight.

本発明においては、これら正極活物質と導電補助剤、さ
らには必要に応じて結合剤を加えた混合粉末をプレス機
で圧縮成形した粉体圧縮成形体を正極としで使用する。
In the present invention, a powder compression molded body obtained by compression molding a mixed powder of these positive electrode active materials, a conductive auxiliary agent, and, if necessary, a binder added thereto, is used as a positive electrode.

一方の負極は、水素吸蔵合金を負極活物質として構成さ
れるものである。ここで上記水素吸蔵合金としては、た
とえばFeTi系合金、LaNi。
One negative electrode is composed of a hydrogen storage alloy as a negative electrode active material. Here, examples of the hydrogen storage alloy include FeTi alloy and LaNi.

系合金、Mg、Ni  系合金等、従来公知の材料を使
用することができる。上記水素吸蔵合金中には高分子吸
収剤や導電性カーボン等が添加されていても良い。
Conventionally known materials such as Mg-based alloys, Mg-based alloys, and Ni-based alloys can be used. A polymer absorbent, conductive carbon, etc. may be added to the hydrogen storage alloy.

その他、本発明のアルカリ二次電池を構成するセパレー
タやアルカリ電解液としては、通常使用されているもの
をいずれも使用することができる。
In addition, any commonly used separators and alkaline electrolytes constituting the alkaline secondary battery of the present invention can be used.

〔作用〕[Effect]

本発明では、正極を構成する導電補助剤としてテトラカ
ルボニルニッケルの熱分解により得られる粒径1〜5μ
mのニッケル粉末が使用される。
In the present invention, a particle size of 1 to 5 μm obtained by thermal decomposition of tetracarbonyl nickel is used as a conductive auxiliary agent constituting the positive electrode.
m of nickel powder is used.

このようにして得られるニッケル粉末は粒径が小さく、
しかも粒子表面に多数の突起を有しているので比表面積
が極めて大きい、粉体圧縮成形により作成される正極の
内部では突起を介してからまり合うように存在しており
、このような粒子間の空間配置がマトリクス的な導電効
果を生み出し、電池の内部抵抗を低減させ、散、連光放
電特性の改善を可能としているものと考えられる。
The nickel powder obtained in this way has a small particle size,
Moreover, since the particles have many protrusions on their surfaces, the specific surface area is extremely large. Inside the positive electrode created by powder compression molding, the particles are entangled with each other through the protrusions. It is thought that the spatial arrangement creates a matrix-like conductive effect, reduces the internal resistance of the battery, and makes it possible to improve the scattered and continuous light discharge characteristics.

(実施例〕 以下、本発明をボタン型のニッケル水素電池に適用した
好適な実施例について図面を参照しながら説明する。
(Example) Hereinafter, a preferred example in which the present invention is applied to a button-type nickel-metal hydride battery will be described with reference to the drawings.

実施例 本実施例にかかるボタン型ニッケル水素電池は、第1図
に示すように、正極(2)を装着した正極缶(1)と負
極(5)を装着した負極缶(6)とをセパレータ(3)
を介して対向させるように重ね合わせ、正極缶(1)と
負極缶(6)の開口部をガスケット(4)によって封止
し、正極缶(1)をかしめた構成を有する。
Example As shown in FIG. 1, the button-type nickel-metal hydride battery according to this example consists of a positive electrode can (1) equipped with a positive electrode (2) and a negative electrode can (6) equipped with a negative electrode (5), which are separated by a separator. (3)
The openings of the positive electrode can (1) and negative electrode can (6) are sealed with a gasket (4), and the positive electrode can (1) is caulked.

上述のニッケル水素電池は、以下のようにして作成した
The above-mentioned nickel-metal hydride battery was created as follows.

まず、正極活物質となる粒径3〜30μmの水酸化ニッ
ケル、導電補助剤となるテトラカルボニルニッケルの熱
分解によって得られる粒径1〜5μmのニッケル粉末、
および結合剤となるテフロンわ)末を後述の第1表に示
す配合比(重量%)A〜已にしたがって混合し、この混
合粉末をプレス機により5トン/cm”の圧力で圧縮成
形して直径7.2 mm、高さ1.2mmのペレットを
作成し、これを正極とした。
First, nickel powder with a particle size of 1 to 5 μm obtained by thermal decomposition of nickel hydroxide with a particle size of 3 to 30 μm as a positive electrode active material, and tetracarbonyl nickel as a conductive additive,
and Teflon powder as a binder were mixed according to the compounding ratio (wt%) A~ shown in Table 1 below, and this mixed powder was compression molded using a press machine at a pressure of 5 tons/cm''. A pellet with a diameter of 7.2 mm and a height of 1.2 mm was prepared, and this was used as a positive electrode.

次に、水酸化リチウムで飽和した33重世%の水酸化カ
リウム水溶液をアルカリ電解液として上記正極缶内に滴
下し、次いで該正極缶内に上記正極を挿入し、さらにマ
イクロポーラス・ポリプロピレン・フィルムよりなるセ
パレータとガスゲットを載置した。
Next, a 33% potassium hydroxide aqueous solution saturated with lithium hydroxide is dropped as an alkaline electrolyte into the positive electrode can, the positive electrode is inserted into the positive electrode can, and a microporous polypropylene film is further inserted into the positive electrode can. A separator and a gas get were placed.

一方、負極活物質となる95重量%のLaN15.+A
 l o、 s 、結合剤となる5ffli%のテフロ
ン粉末を混合し、プレス機によって圧縮成形して直径4
.8mm、高さ1.2mmのペレットを作成し、これを
負極とした。
On the other hand, 95% by weight of LaN15. +A
l o, s, 5ffli% Teflon powder as a binder was mixed and compression molded with a press machine to a diameter of 4.
.. A pellet with a size of 8 mm and a height of 1.2 mm was prepared, and this was used as a negative electrode.

このようにして作成された負極を上記セパレークの上に
載置し、再び先のアルカリ電解液を滴下した。
The negative electrode thus prepared was placed on top of the separator, and the alkaline electrolyte was added dropwise again.

Q後に負極缶を被・已、正極缶の周縁部をかしめて封口
し、ボタン型ニッケル水素電池を作成した。
After Q, the negative electrode can was put on and the periphery of the positive electrode can was caulked and sealed to produce a button-type nickel-metal hydride battery.

比較例 上述の実施例に対する比較のため、導電補助剤として粒
径5〜30μm、および粒径30〜looIImの各ニ
ッケル粉末を使用して同様にボタン型ニッケル水素電池
を作成した。
Comparative Example For comparison with the above-mentioned examples, button-type nickel-metal hydride batteries were similarly prepared using nickel powders with particle sizes of 5 to 30 μm and 30 to looIIm as conductive aids.

(以F余白) 第1表 上述の実施例および比較例において得られた各ボタン型
ニッケル水素電池について、正極中のニッケル粉末の含
量による内部抵抗の変化を4(す定した結果を第2図に
示す0図中、縦軸は内部抵抗(Ω)、横軸はニッケル粉
末の含量(重■%)を表し、・印のプロットはニンケル
t5)末の粒径が1〜5μmの場合、O印のプロットは
5〜30μmの場合、Δ印のプロットは30〜1100
1Iの場合をそれぞれ表す、この図より、本発明にがか
る粒径1〜5゛μmのニッケル粉末を導電補助剤として
使用した場合には、他の粒径の大きいニッケル粉末を使
用した場合に比べて少ない含量でも大幅な内部抵抗の低
減が可能であることが明らかである。
(Hereinafter F margin) For each button-type nickel-metal hydride battery obtained in the Examples and Comparative Examples described above in Table 1, the change in internal resistance depending on the content of nickel powder in the positive electrode is shown in Figure 2. In the figure shown in Figure 0, the vertical axis represents the internal resistance (Ω), the horizontal axis represents the content of nickel powder (weight%), and the plot marked with . The marked plot is for 5 to 30 μm, and the Δ plot is for 30 to 1100 μm.
From this figure, which represents the case of 1I, when the nickel powder of the present invention with a particle size of 1 to 5 μm is used as a conductive aid, compared to the case where other nickel powders with a large particle size are used. It is clear that even with a small content, it is possible to significantly reduce the internal resistance.

次に、上述の各ボタン型ニッケル水素電池のうち配合比
Bにしたがって作成されたものについて、急速充放電特
性を測定した。すなわち、各ボタン型ニッケル水素電池
を8mAの充電電流で3時間充電し、次いで120Ωの
負荷を接続して終始電圧をIVとした定抵抗放電を行わ
せた。このような象、連光放電サイクルを10回繰り返
した後の放電特性を測定した結果を第3図に示す。回申
、縦軸は電圧(■)、横軸は放電時間(分)を表し、曲
線lはニッケル粉末の粒径が1〜58mの場合、曲線■
は5〜30μmの場合、曲線■は30〜10011mの
場合をそれぞれ表す、この図より、本発明にかかる粒径
1〜5μmのニッケル粉末を導電補助剤として使用した
場合には、他の粒径の大きいニッケル粉末を使用した場
合に比べて終始電圧l■に達するまでの放電時間が長く
、長時間にわたり安定した放電特性を有することが明ら
かである。
Next, among the above-mentioned button-type nickel-metal hydride batteries, the rapid charging and discharging characteristics of the batteries prepared according to the blending ratio B were measured. That is, each button-type nickel metal hydride battery was charged with a charging current of 8 mA for 3 hours, and then a load of 120 Ω was connected to perform constant resistance discharge with a voltage of IV throughout. FIG. 3 shows the results of measuring the discharge characteristics after repeating such a continuous light discharge cycle 10 times. The vertical axis represents the voltage (■), the horizontal axis represents the discharge time (minutes), and the curve l is the curve ■ when the particle size of the nickel powder is 1 to 58 m.
represents the case of 5 to 30 μm, and the curve ■ represents the case of 30 to 10011 m.From this figure, when the nickel powder of the present invention with a particle size of 1 to 5 μm is used as a conductive additive, other particle sizes It is clear that the discharge time required to reach the final voltage 1 is longer than in the case of using nickel powder with a large nickel powder, and that the discharge characteristics are stable over a long period of time.

(発明の効果〕 以上の説明からも明らかなように、本発明を適用すれば
正極中における導電補助剤の含量が少ない場合にもその
優れた導電性により効果的に電池の内部抵抗を低減させ
、急速充放電特性を改善することが可能となる。また、
上記正極は粉体圧縮形成により容易に作成できる。した
がって、高エネルギー密度を有し環境保全性に優れるア
ルカリ二次電池が高い生産性、経済性をもって提供でき
るようになる。
(Effects of the Invention) As is clear from the above explanation, if the present invention is applied, the internal resistance of the battery can be effectively reduced due to its excellent conductivity even when the content of the conductive aid in the positive electrode is small. , it becomes possible to improve the rapid charging and discharging characteristics.
The above positive electrode can be easily produced by powder compression molding. Therefore, an alkaline secondary battery with high energy density and excellent environmental protection can be provided with high productivity and economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したボタン型ニッケル水素11池
の一構成例を示す概略断面図である。第2図は本発明の
実施例および比較例にかかるボタン型ニッケル水素電池
の正極中におけるニッケル粉末の含量による内部抵抗の
変化を示す特性図である。第3図は本発明の実施例およ
び比較例にかかるボタン型ニッケル水素電池の急速充放
電サイクルを経た後の放電特性を示す特性図である。 正極缶 正極 セパレーク ガスケット 負極 負極化
FIG. 1 is a schematic cross-sectional view showing a configuration example of a button-type nickel-metal hydride 11 pond to which the present invention is applied. FIG. 2 is a characteristic diagram showing changes in internal resistance depending on the content of nickel powder in the positive electrodes of button-type nickel-metal hydride batteries according to examples and comparative examples of the present invention. FIG. 3 is a characteristic diagram showing the discharge characteristics of button-type nickel-metal hydride batteries according to Examples and Comparative Examples of the present invention after undergoing rapid charge/discharge cycles. Positive electrode can Positive electrode separate gasket Negative electrode

Claims (1)

【特許請求の範囲】 ニッケル酸化物を主体とする正極活物質と導電補助剤を
含有する粉体圧縮成形体を正極とするアルカリ二次電池
であって、 上記導電補助剤がテトラカルボニルニッケルの熱分解に
より得られる粒径1〜5μmのニッケル粉末であること
を特徴とするアルカリ二次電池。
[Scope of Claims] An alkaline secondary battery whose positive electrode is a compressed powder body containing a positive electrode active material mainly composed of nickel oxide and a conductive additive, the conductive additive being a thermally active material of tetracarbonyl nickel. An alkaline secondary battery characterized in that it is a nickel powder with a particle size of 1 to 5 μm obtained by decomposition.
JP63307703A 1988-12-07 1988-12-07 Alkaline secondary battery Pending JPH02155167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307703A JPH02155167A (en) 1988-12-07 1988-12-07 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307703A JPH02155167A (en) 1988-12-07 1988-12-07 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH02155167A true JPH02155167A (en) 1990-06-14

Family

ID=17972218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307703A Pending JPH02155167A (en) 1988-12-07 1988-12-07 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH02155167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196158A (en) * 1992-07-28 1994-07-15 Furukawa Battery Co Ltd:The Paste type nickel electrode for alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196158A (en) * 1992-07-28 1994-07-15 Furukawa Battery Co Ltd:The Paste type nickel electrode for alkaline storage battery
JP2623413B2 (en) * 1992-07-28 1997-06-25 古河電池株式会社 Paste nickel electrode for alkaline storage batteries

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
US5004657A (en) Battery
JPH02155167A (en) Alkaline secondary battery
JPH09115543A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP2530281B2 (en) Alkaline storage battery
JPH0810591B2 (en) Hydrogen storage alloy electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP3377576B2 (en) Manufacturing method of alkaline secondary battery
JPH1021904A (en) Alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH02162648A (en) Paste type electrode for storage battery
JPS59114767A (en) Manufacture of hydrogen electrode
JPH04264362A (en) Hydrogen storage alloy electrode
JPH05314982A (en) Alkaline storage battery and manufacture thereof
JPH01112663A (en) Alkaline secondary battery
JPS63264866A (en) Hydrogen storage electrode
JPH0963580A (en) Nickel positive electrode for alkaline storage battery
JP2000188125A (en) Manufacture of sealed alkaline storage battery