JPH02155157A - Scintillator and manufacture of its light shielding membrane - Google Patents

Scintillator and manufacture of its light shielding membrane

Info

Publication number
JPH02155157A
JPH02155157A JP63307388A JP30738888A JPH02155157A JP H02155157 A JPH02155157 A JP H02155157A JP 63307388 A JP63307388 A JP 63307388A JP 30738888 A JP30738888 A JP 30738888A JP H02155157 A JPH02155157 A JP H02155157A
Authority
JP
Japan
Prior art keywords
light
film
light shielding
scintillator
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63307388A
Other languages
Japanese (ja)
Other versions
JPH0750596B2 (en
Inventor
Narihiro Sato
成広 佐藤
Michio Okajima
道生 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63307388A priority Critical patent/JPH0750596B2/en
Publication of JPH02155157A publication Critical patent/JPH02155157A/en
Publication of JPH0750596B2 publication Critical patent/JPH0750596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to take in a secondary electron image under a visible light by using a scintillator which has a light shielding membrane, and a backing membrane consisting of a light permeable high polymer closely attached to the light shielding membrane, at the upper side of a phosphor layer. CONSTITUTION:Electron beams 52 are radiated on a sample 53, and the secondary electrons 52 released from the sample 53 are detected. A scintillator 11 or 55 to be a secondary electron detector of a scanning type electron microscope, an electron beam tester, or the like, has a light shielding membrane 4 which consists of C, or a metal or an alloy of Be, Al, and the like, and a backing membrane 5 closely attached to the light shielding membrane 4, which consists of a light permeable high polymer, on the upper side of a phosphor layer 3. That is, since the membrane 4 for light shielding purpose which is smooth with almost no pinhole is formed on the surface, the external light never invades in a light guide 58 even though the secondary electron image is taken in in a bright condition. Consequently, a good secondary electron observation image can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、走査型電子顕微鏡等の2次電子検出器等に用
いるシンチレータ、特にその光遮蔽膜の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a scintillator used in a secondary electron detector such as a scanning electron microscope, and particularly to a method for manufacturing a light shielding film thereof.

従来の技術 従来の走査型電子顕微鏡や電子ビームテスタなどの2次
電子検出器の例を第4図に示す。また、その先端のシン
チレータ部の拡大した断面図を第5図に、その蛍光体層
の部分をさらに拡大した断面図を第6図に示す。電子光
学系51を経て出てきた電子ビーム52が試料53に照
射され、試料から2次電子54が放出される。2次電子
54は、10kV程度の正DCバイアス電位が印加され
たシンチレータ55に向かって加速され、し捕獲される
2. Description of the Related Art An example of a conventional secondary electron detector such as a scanning electron microscope or an electron beam tester is shown in FIG. FIG. 5 shows an enlarged cross-sectional view of the scintillator portion at the tip, and FIG. 6 shows a further enlarged cross-sectional view of the phosphor layer. An electron beam 52 emerging from an electron optical system 51 is irradiated onto a sample 53, and secondary electrons 54 are emitted from the sample. The secondary electrons 54 are accelerated toward a scintillator 55 to which a positive DC bias potential of about 10 kV is applied, and then captured.

即ち、2次電子54は、メタルバック56を透過して蛍
光体層57に入射し、これを刺激する。蛍光体層57は
蛍光を発する。この蛍光は光ガイド58を経て、光電子
増倍管59に入射する。光電子増倍管69では、外部充
電効果により、入射光の信号が再び電子に変換され、増
幅され、電気信号として後段の増幅器に送られる。
That is, the secondary electrons 54 pass through the metal back 56 and enter the phosphor layer 57, stimulating it. The phosphor layer 57 emits fluorescence. This fluorescence passes through a light guide 58 and enters a photomultiplier tube 59 . In the photomultiplier tube 69, due to the external charging effect, the incident light signal is converted into electrons again, amplified, and sent as an electric signal to a subsequent amplifier.

以上が2次電子検出の機構である。通常、メタルバック
56および蛍光体層57等より成る光電変換部をシンチ
レータ(55)と呼び、2次電子信号を電気信号に増幅
、変換するシンチレータ55から光電子増倍管59まで
を総称して2次電子検出器(60)と呼ぶ。なお61は
コロナリング、62はキャップである。
The above is the mechanism of secondary electron detection. Usually, the photoelectric conversion unit consisting of the metal back 56, the phosphor layer 57, etc. is called a scintillator (55), and the scintillator 55 that amplifies and converts the secondary electron signal into an electric signal to the photomultiplier tube 59 is collectively called 2. It is called a secondary electron detector (60). Note that 61 is a corona ring and 62 is a cap.

近年、走査型電子顕微鏡を応用して、液晶テレビ用TF
Tアレイの欠陥画素を検出しようとする試みがある(例
えば、特開昭83−48473号公報)。これは、欠陥
画素と正常画素の電位差を、2次電子像のコントラスト
差としてとらえるものである。この装置により、液晶パ
ネルに組み上げるまでもなく、TFTアレイの段階で、
TFTアレイに起因する欠陥画素の多くを検出すること
ができるようになった。しかし、実際の液晶パネルで欠
陥画素でありながら、TFTアレイを上記装置で観察す
る段階では検出できないものもある。
In recent years, scanning electron microscopes have been applied to develop TF for LCD TVs.
There have been attempts to detect defective pixels in T-arrays (for example, Japanese Patent Laid-Open No. 83-48473). This captures the potential difference between a defective pixel and a normal pixel as a contrast difference between secondary electron images. With this device, there is no need to assemble it into a liquid crystal panel, but at the TFT array stage.
Many defective pixels caused by TFT arrays can now be detected. However, there are some defective pixels in an actual liquid crystal panel that cannot be detected when the TFT array is observed using the above-mentioned apparatus.

これは、実際の駆動状態と上記装置での駆動状態が全く
等しいわけではないことによる。その−原因として、実
際の駆動状態では、TFTのトランジスタ部に入射する
バックライト等からの漏れ光によって欠陥画素が誘起さ
れる可能性がある。
This is because the actual driving state and the driving state of the device described above are not completely equal. One reason for this is that in actual driving conditions, defective pixels may be induced by leakage light from a backlight or the like that enters the transistor portion of the TFT.

方、前記の様な従来型のシンチレータを用いた2次電子
検出器では、明るい状態で2次電子像を取り込もうとし
ても、メタルバック56が光を透過するため、光電子増
倍管59に光が入射し、それが表示画像にバックグラウ
ンドとしてのってしまうため、像を観察することは不可
能であった。これは、つまり、従来のシンチレータに用
いられているメタルバック56は、 通常アルミニウム
(入l)を蛍光体層57上に数100  蒸着したもの
であって、第6図に示すように表面には無数のピンホー
ルや亀裂があり、ここから光が入射してしまうことによ
る。したがって、従来は、前記のいわば、光誘起型欠陥
画素の有無さえ分からない状態であった。
On the other hand, in the conventional secondary electron detector using a scintillator as described above, even if an attempt is made to capture a secondary electron image in bright conditions, the metal back 56 transmits the light, so the photomultiplier tube 59 does not receive the light. It was impossible to observe the image because it appeared on the displayed image as a background. This means that the metal back 56 used in conventional scintillators is usually made by depositing several hundred aluminum layers on the phosphor layer 57, and as shown in FIG. This is because there are countless pinholes and cracks through which light enters. Therefore, in the past, it was not even possible to know whether or not there was a photo-induced defective pixel, so to speak.

上記の例以外にも、試料に光を照射した状態でのSEM
像観察、もしくは、発光体自体のSEM像観察をしてみ
たい場合でも、従来のシンチレータでは、いかんともし
難かった。
In addition to the above examples, SEM with the sample irradiated with light
Even if you want to observe images or SEM images of the light-emitting body itself, it is difficult to do so using conventional scintillators.

発明が解決しようとする課題 本発明は、可視光下で2次電子像を取り込むことのでき
るシンチレータ用光遮蔽膜を提供することを目的とする
Problems to be Solved by the Invention An object of the present invention is to provide a light shielding film for a scintillator that can capture a secondary electron image under visible light.

課題を解決するための手段 本発明のシンチレータは、蛍光体層上部に、Cもしくは
Be、  Alその他の金属もしくは合金の薄膜からな
る光遮蔽膜とこの光遮蔽膜に密着した光透過性の高分子
からなる裏打ち膜を保持することを特徴とする。
Means for Solving the Problems The scintillator of the present invention has a light-shielding film made of a thin film of C, Be, Al, or other metal or alloy, and a light-transmitting polymer in close contact with the light-shielding film, on the top of the phosphor layer. It is characterized by retaining a backing film consisting of.

裏打ち膜を有する光遮蔽膜の作成方法としては、溶媒に
溶解しつる下地層を基板上に平滑に形成し、該下地層表
面に溶媒に不溶の裏打ち膜を形成し、前記裏打ち膜表面
に光遮蔽膜用の薄膜を形成し、その後で、前記溶媒に浸
し、下地層を溶解、除去することで裏打ち膜とともに光
遮蔽膜の薄膜を剥離する。
As a method for producing a light shielding film having a lining film, a base layer that is soluble in a solvent is smoothly formed on a substrate, a lining film that is insoluble in the solvent is formed on the surface of the base layer, and a light shielding film is formed on the surface of the backing film. A thin film for the shielding film is formed, and then the thin film for the light shielding film is peeled off together with the backing film by immersing it in the solvent to dissolve and remove the underlayer.

作用 本発明のシンチレータは、平滑でほとんどピンホールが
ない光遮蔽膜の薄膜をその表面に仔しているため、明る
い状態で2次電子像を取り込む場合でも、もはや外光は
光ガイド内には侵入せず、表示画像にバックグラウンド
は現れず、良好な観察画像を得ることができる。また光
遮蔽膜の薄膜が裏打ち膜を有しているため、強度が大き
くなりシンチレータ製造時の歩留まりが向上する。
Function The scintillator of the present invention has a thin light-shielding film on its surface that is smooth and has almost no pinholes, so even when capturing a secondary electron image in bright conditions, external light no longer enters the light guide. No intrusion occurs, no background appears in the displayed image, and a good observation image can be obtained. Furthermore, since the thin film of the light shielding film has a backing film, the strength is increased and the yield rate during scintillator manufacturing is improved.

実施例 第1図は本発明のシンチレータの一実施例を示す断面図
である。直径10mmの円筒状の光ガイド先端チップ1
の表面に透明導電膜2が形成され、その上に蛍光体層3
が形成されている。本実施例では、蛍光体層3の上部に
密着して、膜厚500  のAl製の光遮蔽膜4および
膜厚200  の裏打ち膜5が形成されている。
Embodiment FIG. 1 is a sectional view showing an embodiment of the scintillator of the present invention. Cylindrical light guide tip 1 with a diameter of 10 mm
A transparent conductive film 2 is formed on the surface of the phosphor layer 3.
is formed. In this embodiment, a light shielding film 4 made of Al having a thickness of 500 mm and a backing film 5 having a thickness of 200 mm are formed in close contact with the upper part of the phosphor layer 3.

上部から入射した2次電子は、光遮蔽膜4および裏打ち
膜5を透過し、蛍光体層3に入射し、これを刺激する。
The secondary electrons incident from above pass through the light shielding film 4 and the lining film 5, enter the phosphor layer 3, and stimulate it.

蛍光体層3は蛍光を発する。この蛍光は、光ガイド先端
チップ1から、その下部の光ガイドを経て、光電子増倍
管59に入射する。
The phosphor layer 3 emits fluorescence. This fluorescence enters the photomultiplier tube 59 from the light guide tip 1 through the light guide below it.

光ガイド先端チップ1はガラス製で、光伝送効率が良い
ように両端面及び側面は研磨され、平滑である。これは
、場合に応じて、アクリル樹脂等でもよい。その上の透
明導電膜2は、蛍光体層3のチャージアップを防止する
ために設けるものである。これは、また、インジウム−
スズ−オキサイド(以後、■TOと略称する。)等の蛍
光体層3からの蛍光の光透過率の高いものが望ましい。
The light guide tip 1 is made of glass, and both end faces and side surfaces are polished and smooth to improve light transmission efficiency. This may be an acrylic resin or the like, depending on the case. The transparent conductive film 2 thereon is provided to prevent charge-up of the phosphor layer 3. This is also indium-
It is desirable to use a material having a high light transmittance for fluorescence from the phosphor layer 3, such as tin oxide (hereinafter abbreviated as ``TO'').

本実施例では、膜厚約200〜400  のITO蒸着
膜を採用した。  面積抵抗は1にΩ/口、波長400
n擺〜700r+mの可視光透過率は90%であった。
In this example, an ITO vapor-deposited film having a thickness of approximately 200 to 400 mm was used. Area resistance is 1Ω/mouth, wavelength 400
The visible light transmittance from n to 700 r+m was 90%.

蛍光体層3用の蛍光体粉末は、P47を用いた。蛍光体
層3は、インプロパツールを分散剤とした通常の沈澱法
によって、層厚約10〜20μmに形成した。
P47 was used as the phosphor powder for the phosphor layer 3. The phosphor layer 3 was formed to a thickness of about 10 to 20 μm by a normal precipitation method using Improper Tool as a dispersant.

本発明のシンチレータの光遮蔽膜材料として本実施例で
は、Alを採用したが、遮光性と適度な導電性と高い電
子透過率があれば、他の材料であっても良い。例えば、
Beやその合金などの軽金属元素の薄膜、Cもしくは他
の金属元素などよりなる薄膜であっても同様の効果を有
する。
In this embodiment, Al was used as the light-shielding film material of the scintillator of the present invention, but other materials may be used as long as they have light-shielding properties, appropriate conductivity, and high electron transmittance. for example,
A thin film made of a light metal element such as Be or an alloy thereof, or a thin film made of C or another metal element has the same effect.

また裏打ち膜5としてはアクリル樹脂、ポリイミド、ゼ
ラチン(平均分子ff1lO万以上の高分子lのもの)
再挿々の高分子薄膜を用いることができる。裏打ち膜5
として必要な条件は、光遮蔽膜4をリフトオフするさい
に溶媒に溶解しないこと、光遮蔽膜4に接着性があるこ
とである。
The backing film 5 may be made of acrylic resin, polyimide, or gelatin (polymer l with an average molecular weight of 110,000 or more).
Interspersed polymeric thin films can be used. Backing film 5
The necessary conditions for this are that the light shielding film 4 should not be dissolved in a solvent during lift-off, and that the light shielding film 4 should have adhesive properties.

つぎに、Al光遮蔽膜4および裏打ち膜5の製造方法に
ついて、第2図に基づいて説明する。まず、ガラス基板
6 (20mmX 20++m)上にゼラチン水溶液に
ツタゼラチン製RX12.平均分子量4万)をもちいて
膜厚約2000Aの平滑なゼラチン膜7をスピンコード
により形成した。この表面にポリイミド樹脂(東しセミ
コファイン5P810)をスピンコードし膜厚200 
 の裏打ち膜5を作成した。
Next, a method for manufacturing the Al light shielding film 4 and the backing film 5 will be explained based on FIG. 2. First, on a glass substrate 6 (20 mm x 20++ m), a gelatin aqueous solution was applied to a gelatin RX12. A smooth gelatin film 7 with an average molecular weight of 40,000 Å and a thickness of about 2000 Å was formed using a spin cord. Spin code polyimide resin (Toshi Semico Fine 5P810) on this surface to a film thickness of 200.
A backing film 5 was prepared.

この上にAl膜8を蒸着した。蒸着したAl膜8をガラ
ス基板θごと、40℃の温湯中に浸しリフトオフした。
An Al film 8 was deposited on top of this. The deposited Al film 8 was immersed together with the glass substrate θ in hot water at 40° C. and lifted off.

ゼラチン(平均分子量4万)は室温の水にも容易に溶解
する。そのため端部から水分が徐々にゼラチン層に浸透
し、10分〜15分で裏打ち膜ををするAl膜が剥離し
た。Al膜は、水面に浮かび上がってぴんと張る性質を
示した。これは、膜表面に残留付着しているごく僅かの
油脂性の作用によると考えられる。なお、水温は室温で
もよいが、少し高くしてやったほうがゼラチンの溶解が
速い。しかし、水温が60°C以上になるとAl膜が透
明になってしまう。これは、Al膜が酸化したためと考
えられる。剥離する際、膜が裏返しになって折れてしま
わないように、基板面の水深は、5mm程度が適当であ
る。また、水面に浮き上がった膜の表面に、50%以下
に希釈したエタノール水溶液を1〜2滴落とすと、エタ
ノールの拡散する力でしわを延ばすことができる。
Gelatin (average molecular weight 40,000) is easily dissolved in water at room temperature. As a result, water gradually penetrated into the gelatin layer from the edges, and the Al film forming the lining film was peeled off in 10 to 15 minutes. The Al film showed the property of floating on the water surface and becoming taut. This is thought to be due to the effect of a very small amount of oil remaining on the membrane surface. Note that the water temperature may be room temperature, but the gelatin will dissolve faster if the water temperature is slightly higher. However, when the water temperature exceeds 60°C, the Al film becomes transparent. This is considered to be because the Al film was oxidized. In order to prevent the film from turning over and breaking during peeling, the depth of water on the substrate surface is preferably about 5 mm. Furthermore, if 1 to 2 drops of an aqueous ethanol solution diluted to 50% or less is dropped on the surface of the film floating on the water surface, wrinkles can be smoothed out by the diffusing power of ethanol.

次に、水面に張っているAl膜を、第2図(g)に示す
様に、光ガイド先端チップ1上に、蛍光体層3まで形成
された状態のものを下からすくって、その蛍光体層3の
上にAl膜8をのせた。その際、できるだけしわが残ら
ないように注意する。しわがあると、そこに水分が残り
、減圧する際、気化して膜を破ってしまう。本実施例の
方法では、僅かに残留している水分が気化して膜に小さ
な孔をあけてしまう場合もあるが、後述するように実用
上は全く問題ない。なお、空気中で水分を乾燥させ、再
びもう1枚第2図に示した作業を繰り返して、A1膜を
2枚重ねにすることもあわせて試みた。これは、重ね合
わせることにより、ピンホールを殆どなくすことを目的
としている。以上の操作により、いずれの方法も殆どピ
ンホールのない光遮蔽膜4を形成することができた。
Next, as shown in Fig. 2 (g), the Al film stretched on the water surface, with the phosphor layer 3 formed on the tip 1 of the light guide, is scooped up from below, and the phosphor layer 3 is removed. An Al film 8 was placed on the body layer 3. At that time, be careful not to leave any wrinkles as much as possible. If there are wrinkles, moisture will remain there, and when the pressure is reduced, it will evaporate and break the membrane. In the method of this embodiment, a small amount of residual moisture may evaporate and create small holes in the membrane, but as will be described later, there is no problem in practice. In addition, we also attempted to stack two A1 films by drying the moisture in the air and repeating the process shown in FIG. 2 for another film. The purpose of this is to almost eliminate pinholes by overlapping them. Through the above operations, the light shielding film 4 with almost no pinholes could be formed using either method.

以」二のようにして作成したシンチレータ11を、コロ
ナリング61で光ガイド58上端にセットする。コロナ
リング61側縁部と光遮蔽膜4周辺部の隙間をAgペー
ストでうめる。これは、放電防止と、周辺部の光遮蔽の
2つの理由による。組立終了後、−度真空にひいて、層
間に残留したガスが膨張してA1膜を破らないことを確
認する。
The scintillator 11 prepared as described above is set on the upper end of the light guide 58 using the corona ring 61. The gap between the side edge of the corona ring 61 and the periphery of the light shielding film 4 is filled with Ag paste. This is due to two reasons: preventing discharge and shielding the peripheral area from light. After the assembly is completed, apply a -degree vacuum and confirm that the gas remaining between the layers does not expand and break the A1 membrane.

なお、光ガイド58の側面は、黒色アクリル塗料で遮光
した。
Note that the side surface of the light guide 58 was shielded from light with black acrylic paint.

このシンチレータの性能を、前述の欠陥画素検査装置の
2次電子検出器に試着して評価した。その結果、Al光
遮蔽膜の最適膜厚は、単色、多層を問わず、その総計が
400A〜100OAであった。
The performance of this scintillator was evaluated by trying it on the secondary electron detector of the defective pixel inspection device described above. As a result, the optimum thickness of the Al light shielding film was 400A to 100OA in total, regardless of whether it was monochrome or multilayered.

上記の膜厚では、膜内のピンホールは、単層のもので、
3〜5個、2層にすれば、はぼ0〜1個となることが確
認された。遮光性については、前述の欠陥画素検査装置
において、試料面照度が20001uxでも、 画像に
バックグラウンドは現れず、また、感度についても、従
来例のものと全く同等な電位分解能を暮し、S/Hの良
い2次電子像を得ることができた。前述の欠陥画素検査
装置等、通常の走査型電子顕微鏡のシンチレータのバイ
アス電位は10kV程度なので、膜厚が1500A以上
になると、2次電子の透過率が減少し、感度が低下して
しまった。
At the above film thickness, the pinholes in the film are from a single layer;
It was confirmed that if there were 3 to 5 pieces and two layers, the number would be 0 to 1 piece. Regarding light shielding properties, in the aforementioned defective pixel inspection system, no background appears in the image even when the sample surface illuminance is 20,001 ux, and in terms of sensitivity, the potential resolution is exactly the same as that of the conventional example, and the S/H We were able to obtain a good secondary electron image. The bias potential of a scintillator in a normal scanning electron microscope, such as the above-mentioned defective pixel inspection device, is about 10 kV, so when the film thickness exceeds 1500 A, the transmittance of secondary electrons decreases, resulting in a decrease in sensitivity.

また、本実施例では、Al膜を剥離する際に、下地層膜
としてゼラチンを、また、その溶媒として水を用いたが
、それぞれ、セロファン−有機溶剤、ハラフィン−有機
溶剤1、ポリ塩化ビニル−有機溶剤、ポリビニルアルコ
ール−水等の組合せを用いても良い。リフトオフに有機
溶媒を用いる場合は裏打ち膜は有機溶媒に不溶なゼラチ
ンやポリビニルアルコールを、水を用いる場合裏打ち膜
は水に不溶性のポリイミドやポリ塩化ビニルをもちいれ
ばよい。またリフトオフの条件をコントロールする場合
は、中間膜さ裏打ち膜の溶媒に対する溶解度の差を利用
することもできる。たとえば中間膜として低分子量のゼ
ラチンを、裏打ち膜として高分子量のゼラチンをもちい
て、溶媒を水とする場合である。
In addition, in this example, when peeling the Al film, gelatin was used as the base layer film and water was used as the solvent. Combinations such as organic solvents and polyvinyl alcohol-water may also be used. When an organic solvent is used for lift-off, the backing film may be gelatin or polyvinyl alcohol that is insoluble in the organic solvent, and when water is used, the backing film may be polyimide or polyvinyl chloride that is insoluble in water. Furthermore, when controlling the lift-off conditions, it is also possible to utilize the difference in solubility of the interlayer film and the backing film in the solvent. For example, a low molecular weight gelatin is used as the interlayer film, a high molecular weight gelatin is used as the backing film, and water is used as the solvent.

次に、本発明の他の実施例を第3図に示す。本実施例で
は、裏打ち膜5を有する光遮蔽膜4を、前実施例のよう
に蛍光体層3に密着させるのではなく、図示するように
、蛍光体層3との間に空間を保って配置する。ここで補
強のため、メツシュ12をコロナリング13の筒内に設
け、これを裏打ち膜5を有する光遮蔽膜4の支持体とし
た。メツシュ12は、ピッチが0.5〜3mm 1  
メツシュ径が20〜皿00μmのものを用いた。製造方
法は、前記製造方法の実施例と同じ方法を用いた。減圧
時に、気圧差で光遮蔽膜4が破れないように、光遮蔽膜
4と蛍光体層3の間の空間は排気孔14を通じて外部と
同気圧になるようになっている。本発明では光m両膜4
は裏打ち膜5を有している。裏打ちM5をもたない場合
には、光遮蔽膜4がメツシュにのせる際に破損すること
が多かったが、裏打ち膜5をつけることでメツシュ12
にのせる際に破損しにくくなった。本実施例のシンチレ
ータを用いても、前実施例同様、前述の欠陥画素検査装
置において、試料面照度が20001uxでも、画像に
バックグラウンドは現れず、また、感度についても、従
来例のものと全く同等な電位分解能を存し、S/Nの良
い2次電子像を得ることができた。
Next, another embodiment of the present invention is shown in FIG. In this example, the light shielding film 4 having the backing film 5 is not brought into close contact with the phosphor layer 3 as in the previous example, but is kept with a space between it and the phosphor layer 3 as shown in the figure. Deploy. Here, for reinforcement, a mesh 12 was provided inside the cylinder of the corona ring 13, and this was used as a support for the light shielding film 4 having the backing film 5. The mesh 12 has a pitch of 0.5 to 3 mm 1
A mesh having a diameter of 20 to 00 μm was used. The manufacturing method used was the same as in the example of the manufacturing method described above. During depressurization, the space between the light shielding film 4 and the phosphor layer 3 is made to have the same atmospheric pressure as the outside through the exhaust hole 14 so that the light shielding film 4 is not torn due to the pressure difference. In the present invention, the optical m film 4
has a backing membrane 5. When the lining M5 was not provided, the light shielding film 4 was often damaged when placed on the mesh, but by adding the lining film 5, the mesh 12
It is now less likely to be damaged when placed on. Even if the scintillator of this example is used, as in the previous example, no background appears in the image even when the sample surface illuminance is 20001 ux in the defective pixel inspection apparatus described above, and the sensitivity is also completely different from that of the conventional example. Secondary electron images with equivalent potential resolution and good S/N ratio could be obtained.

本発明のシンチレータを装着した前述の欠陥画素検査装
置を用いて、液晶テレビ用TFTアレイを観察した。実
際の液晶パネルで欠陥画素でありながら、TFTアレイ
を、上記装置で観察する段階において、暗い状態では、
検出できない欠陥画素のうちの一部が、可視白色光をT
FTアレイに照射した状態で観察すると、欠陥画素とし
て現れてくることを発見した。これは、何等かの原因で
、該当画素のトランジスタのみが、正常画素のそれより
も大きな光伝導を示し、画素電極にたまった電荷がディ
スチャージしたためと考えられる。以上、本発明により
、初めて、光誘起型欠陥画素の存在が明かとなった。そ
して、光を照射した状態で2次電子像を観察することで
、前述の欠陥画素検査装置の検出能力を向上させること
ができる。
A TFT array for a liquid crystal television was observed using the aforementioned defective pixel inspection apparatus equipped with the scintillator of the present invention. Although it is a defective pixel in an actual liquid crystal panel, when observing the TFT array with the above device, in a dark state,
Some of the defective pixels that cannot be detected emit visible white light to T
It was discovered that when observed while irradiating an FT array, it appears as a defective pixel. This is considered to be because, for some reason, only the transistor of the relevant pixel exhibited greater photoconduction than that of the normal pixel, and the charges accumulated in the pixel electrode were discharged. As described above, the present invention has revealed the existence of photo-induced defective pixels for the first time. By observing the secondary electron image while irradiated with light, the detection ability of the defective pixel inspection apparatus described above can be improved.

発明の効果 本発明の、光遮蔽型シンチレータの実現により可視光下
で2次電子像を取り込むことができる。
Effects of the Invention By realizing the light-shielding scintillator of the present invention, it is possible to capture a secondary electron image under visible light.

可視光下で2次電子像を取り込むことが可能となりTF
Tアレイの光誘起型欠陥画素の存在が明らかとなった。
TF makes it possible to capture secondary electron images under visible light.
The existence of photo-induced defective pixels in the T-array was revealed.

これは、TPTトランジスタの不良解析に対して、新し
い指針を与えうるものである。
This can provide new guidelines for failure analysis of TPT transistors.

また、このことは、上記以外の多くの例においても、試
料に光を照射した状態でのSEM像観察、もしくは、発
光体自体のSEM像観察が、本発明のシンチレータで、
初めて可能となったこきを意味する。つまり、電子ビー
ムテスティングの新たな可能性が広がったわけで、特に
、その材料解析、電子デバイスの動作解析などへの応用
の面で、本発明の意義は非常に大きい。
This also means that in many cases other than the above, SEM image observation with the sample irradiated with light or SEM image observation of the light emitting body itself is possible using the scintillator of the present invention.
It means the first time that this was possible. In other words, new possibilities for electron beam testing have been expanded, and the present invention has great significance, especially in terms of its application to material analysis, operation analysis of electronic devices, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のシンチレータの一実施例の構成を示
す断面図、第2図は、同シンチレータの製造方法の一実
施例を示す工程図、第3図は、他の実施例を示す断面図
、第4図は、従来のシンチレータが走査型電子顕微鏡に
装着されている様子を示す断面図、第5図は、従来のシ
ンチレータの断面図、第6図、は同シンチレータの蛍光
体層付近の断面図である。 2・・・透明導電膜、3・・・蛍光体層、4・・・光遮
蔽膜、5・・・裏打ち膜、7・・・ゼラチン膜、8・・
・A11li、9・・・水、11・・・シンチレータ、
 12・・・メツシュ、 14・・・排気孔 代理人の氏名 弁理士 栗野重孝 はか18菖 図 8Al# \ j1シソチレーダ / たがイト先j+・ンプ 第 図 I2メソシュ \ S6 光わイト 第 図
FIG. 1 is a sectional view showing the configuration of one embodiment of the scintillator of the present invention, FIG. 2 is a process diagram showing one embodiment of the method for manufacturing the same scintillator, and FIG. 3 is a diagram showing another embodiment. 4 is a sectional view showing a conventional scintillator installed in a scanning electron microscope, FIG. 5 is a sectional view of a conventional scintillator, and FIG. 6 is a phosphor layer of the same scintillator. It is a sectional view of the vicinity. 2... Transparent conductive film, 3... Phosphor layer, 4... Light shielding film, 5... Backing film, 7... Gelatin film, 8...
・A11li, 9...Water, 11...Scintillator,
12...Metshu, 14...Exhaust hole agent's name Patent attorney Shigetaka Kurino Haka18 Iris figure 8Al# \j1 Shisochi radar/Tagaito destination j+・ump figure I2 Metosh\ S6 Shining light figure

Claims (3)

【特許請求の範囲】[Claims] (1)蛍光体層上部に、光遮蔽膜とこの光遮蔽膜に密着
した光透過性の高分子からなる裏打ち膜を有することを
特徴とするシンチレータ。
(1) A scintillator characterized by having a light-shielding film and a backing film made of a light-transmitting polymer in close contact with the light-shielding film above the phosphor layer.
(2)前記光遮蔽膜が、少なくとも単層もしくは多層の
Al薄膜より成り、その膜厚が計1500A以下である
請求項1記載のシンチレータ。
(2) The scintillator according to claim 1, wherein the light shielding film is made of at least a single-layer or multi-layer Al thin film, and has a total thickness of 1500A or less.
(3)基板上に、特定の溶媒に溶解する下地層と前記溶
媒には溶解しない透光性の高分子からなる裏打ち膜と光
遮蔽膜用の薄膜とを順次形成した後、前記溶媒に浸して
前記下地層を溶解、除去することにより前記光遮蔽膜の
薄膜を裏打ち膜と共に剥離することを特徴とするシンチ
レータ用光遮蔽膜の製造方法。
(3) After sequentially forming a base layer that dissolves in a specific solvent, a backing film made of a transparent polymer that does not dissolve in the solvent, and a thin film for a light shielding film on the substrate, the substrate is immersed in the solvent. A method for producing a light shielding film for a scintillator, characterized in that the thin film of the light shielding film is peeled off together with the backing film by dissolving and removing the base layer.
JP63307388A 1988-12-05 1988-12-05 Method of manufacturing scintillator and light shielding film thereof Expired - Lifetime JPH0750596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307388A JPH0750596B2 (en) 1988-12-05 1988-12-05 Method of manufacturing scintillator and light shielding film thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307388A JPH0750596B2 (en) 1988-12-05 1988-12-05 Method of manufacturing scintillator and light shielding film thereof

Publications (2)

Publication Number Publication Date
JPH02155157A true JPH02155157A (en) 1990-06-14
JPH0750596B2 JPH0750596B2 (en) 1995-05-31

Family

ID=17968452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307388A Expired - Lifetime JPH0750596B2 (en) 1988-12-05 1988-12-05 Method of manufacturing scintillator and light shielding film thereof

Country Status (1)

Country Link
JP (1) JPH0750596B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184340A (en) * 2000-09-29 2002-06-28 Schlumberger Technol Inc Small size high efficiency scintillation detector for secondary electron detection
CN103594310A (en) * 2013-11-22 2014-02-19 北京中科科仪股份有限公司 High-temperature secondary electronic detector collection assembly and high-temperature scanning electron microscope
WO2020100205A1 (en) * 2018-11-13 2020-05-22 株式会社日立ハイテク Charged particle beam device and sample observation method
JP2020528137A (en) * 2017-07-28 2020-09-17 ▲蘇▼州瑞派▲寧▼科技有限公司Raycan Technology Co., Ltd. Nuclear detector
JP2021533354A (en) * 2018-08-02 2021-12-02 アプライド マテリアルズ イスラエル リミテッド Sensor for electron detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169269U (en) * 1980-05-19 1981-12-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169269U (en) * 1980-05-19 1981-12-14

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184340A (en) * 2000-09-29 2002-06-28 Schlumberger Technol Inc Small size high efficiency scintillation detector for secondary electron detection
CN103594310A (en) * 2013-11-22 2014-02-19 北京中科科仪股份有限公司 High-temperature secondary electronic detector collection assembly and high-temperature scanning electron microscope
JP2020528137A (en) * 2017-07-28 2020-09-17 ▲蘇▼州瑞派▲寧▼科技有限公司Raycan Technology Co., Ltd. Nuclear detector
JP2021533354A (en) * 2018-08-02 2021-12-02 アプライド マテリアルズ イスラエル リミテッド Sensor for electron detection
WO2020100205A1 (en) * 2018-11-13 2020-05-22 株式会社日立ハイテク Charged particle beam device and sample observation method
JPWO2020100205A1 (en) * 2018-11-13 2021-09-24 株式会社日立ハイテク Charged particle beam device and sample observation method
US11393658B2 (en) 2018-11-13 2022-07-19 Hitachi High-Tech Corporation Charged particle beam apparatus and sample observation method

Also Published As

Publication number Publication date
JPH0750596B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US7141517B2 (en) Method of repairing and apparatus for repairing multi-color organic light-emitting display device
TW594617B (en) Organic EL display panel and method for making the same
CN108257886A (en) It checks equipment and uses its inspection method
KR20120046186A (en) Radiation detector and method for manufacturing same
CN101097946A (en) Organic light emitting display device and method for fabricating the same
US7893609B2 (en) Organic electroluminescence element defect inspection apparatus, organic electroluminescence element and organic electroluminescence element defect inspection method
US20130052902A1 (en) Method of repairing a display panel and apparatus for performing the same
TW577136B (en) Detecting repairing system and method
JP5654037B2 (en) Manufacturing method and evaluation method of organic EL element
US20220352430A1 (en) Micro light emitting diode array and manufacturing method thereof
CN1113388C (en) Cathode ray tube
CN101800195A (en) The manufacture method of display device and display device
CN108253898A (en) Detection device and the detection method using the detection device
JPH02155157A (en) Scintillator and manufacture of its light shielding membrane
US20170170434A1 (en) Method for manufacturing substrate, substrate, method for manufacturing organic electroluminescence device, and organic electroluminescence device
KR20040104910A (en) Organic electroluminescence device and method for producing the same
US6803583B2 (en) Scintillator for electron microscope and method of making
US9570709B2 (en) Method for manufacturing ultrathin organic light-emitting device
JPH02152153A (en) Manufacture of light shielding membrane for scintillator
JPH02117061A (en) Secondary electron detector and manufacture thereof
JP2008286728A (en) Inspection device and method
US6482556B1 (en) Thermosensible transfer film and method of using the same
JP2004253214A (en) Method for manufacturing organic el device, and organic el device
JP2007066656A (en) Organic electroluminescent element, its manufacturing method, and repair method of organic electroluminescent element
KR102222724B1 (en) Defects inspection method in passivation layer of organic electronic device