JPH02117061A - Secondary electron detector and manufacture thereof - Google Patents

Secondary electron detector and manufacture thereof

Info

Publication number
JPH02117061A
JPH02117061A JP26991288A JP26991288A JPH02117061A JP H02117061 A JPH02117061 A JP H02117061A JP 26991288 A JP26991288 A JP 26991288A JP 26991288 A JP26991288 A JP 26991288A JP H02117061 A JPH02117061 A JP H02117061A
Authority
JP
Japan
Prior art keywords
light
shielding film
light shielding
secondary electron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26991288A
Other languages
Japanese (ja)
Inventor
Michio Okajima
道生 岡嶋
Narihiro Sato
成広 佐藤
Keishiro Ota
太田 慶四郎
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26991288A priority Critical patent/JPH02117061A/en
Publication of JPH02117061A publication Critical patent/JPH02117061A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good observation image without intruding na external light into a light guide and free from appearance of background in a display image by providing a light shielding film formed with a prescribed thickness of conductive material which efficiently transmits an incident electron, but hardly transmits light. CONSTITUTION:A transparent conductive film 2 is formed on the surface of the head chip 1 of a cylindrical light guide, and a fluorescent material layer 3 is formed thereon, and further, a light shielding film 4 made up of Al with a film thickness of 500A is formed closely attached to the upper part of the fluorescent material layer 4. A secondary electron which falls on the surface of the film 4 transmits the film 4, and falls on the surface of the fluorescent material layer 3 to stimulate it; and it emits fluorescence. Then, the inside of a sample chamber is bright, but the light there is screened by the light shielding film 4, so that external light does not intrude into the light guide and no background appears in a display image. Thereby, it is possible to obtain a good observation image.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、走査型電子顕微鏡等の2次電子検出器に関わ
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a secondary electron detector such as a scanning electron microscope.

従来の技術 従来の走査型電子顕微鏡や電子ビームテスタなどの2次
電子検出器の例を第4図に示す。また、その先端のシン
チレータ部の拡大した断面図を第5図に、その蛍光体層
の部分をさらに拡大した断面図を第6図に示す。電子光
学系51を経て出てきた電子ビーム52が試料53に照
射され、2次電子54が放出される。2次電子54は、
1okV程度の正DCバイアス電位が印加されたシンチ
レータ55に向かって加速し捕獲される。即ち、2次電
子54は、メタルバック56を透過して蛍光体層57に
入射し、これを刺激する。蛍光体F!57は蛍光を発す
る。この蛍光は光ガイド58を経て、光電子増倍管59
に入射する。光電子増倍管59では、外部光電効果によ
り、入射光の信号が再び電子に変換され、増幅され、電
気信号として後段の増幅器に送られる。以北が2次電子
検出の機構である。通常、メタルバック56および蛍光
体層57等より成る光電変換部をシンチレータ55と呼
び、2次電子信号を電気信号に増幅、変換するシンチレ
ータ55から光電子増倍管59までを総称して2次電子
検出器60と呼ぶ。
2. Description of the Related Art An example of a conventional secondary electron detector such as a scanning electron microscope or an electron beam tester is shown in FIG. FIG. 5 shows an enlarged cross-sectional view of the scintillator portion at the tip, and FIG. 6 shows a further enlarged cross-sectional view of the phosphor layer. An electron beam 52 emerging from an electron optical system 51 is irradiated onto a sample 53, and secondary electrons 54 are emitted. The secondary electrons 54 are
The light is accelerated toward the scintillator 55 to which a positive DC bias potential of about 1 okV is applied, and is captured. That is, the secondary electrons 54 pass through the metal back 56 and enter the phosphor layer 57, stimulating it. Phosphor F! 57 emits fluorescence. This fluorescence passes through a light guide 58 and a photomultiplier tube 59
incident on . In the photomultiplier tube 59, the incident light signal is converted into electrons again by the external photoelectric effect, amplified, and sent as an electric signal to a subsequent amplifier. To the north is the secondary electron detection mechanism. Usually, the photoelectric conversion section consisting of the metal back 56, the phosphor layer 57, etc. is called the scintillator 55, and the scintillator 55 that amplifies and converts the secondary electron signal into an electric signal, and the photomultiplier tube 59 are collectively called the scintillator 55. It is called a detector 60.

発明が解決しようとする課題 例えば、近年、走査型電子顕微鏡を応用して、液晶テレ
ビ用T F Tアレイの欠陥画素を検出しようとする試
みがある(例えば、特願昭61−193321号咄lD
、  これは、欠陥画素と正常画素の電位差を、2次電
子像のコントラスト差としてとらえるものである。この
装置により、液晶パネルに組み上げるまでもなく、TF
Tアレイの段階て、TFTアレイに起因する欠陥画素の
多くを検出することができるようになった。しかし、実
際の液晶パネルで欠陥画素でありながら、TFTアレイ
を上記装置で観察する段階では検出できないものもある
。これは、実際の駆動状態と上記装置での駆動状態が全
く等しいわけではないことによる。その一原因として、
実際の駆動状態では、TPTのトランジスタ部に入射す
るバックライト等からの漏れ光によって欠陥画素が誘起
される可能性がある。他方、前記の様な従来型のシンチ
レータを用いた2次電子検出器では、明るい状態で2次
電子像を取り込もうとしても、メタルバック56が光を
透過するため、光電子増倍管59に光が入射し、それが
表示画像にバックグラウンドとしてのってしまうため、
像を観察することは不可能であった。これは、つまり、
従来のシンチレータに用いられているメタルバック56
は、通常Alを蛍光体N57上に数10OA蒸着したも
のであって、第6図に示すように表面には無数のピンホ
ールや亀裂があり、ここから光が入射してしまうことに
よる。したがって、従来は、前記のいわば、光誘起型欠
陥画業の有無さえ分からない状態であった。
Problems to be Solved by the Invention For example, in recent years, there have been attempts to apply scanning electron microscopes to detect defective pixels in TFT arrays for liquid crystal televisions (for example, Japanese Patent Application No. 193321/1983).
, This captures the potential difference between a defective pixel and a normal pixel as a contrast difference between secondary electron images. With this device, TF
At the T-array stage, it has become possible to detect many defective pixels caused by TFT arrays. However, there are some defective pixels in an actual liquid crystal panel that cannot be detected when the TFT array is observed using the above-mentioned apparatus. This is because the actual driving state and the driving state of the device described above are not completely equal. One of the reasons is
In actual driving conditions, defective pixels may be induced by leakage light from a backlight or the like that enters the transistor portion of the TPT. On the other hand, in the conventional secondary electron detector using a scintillator as described above, even if an attempt is made to capture a secondary electron image in bright conditions, the metal back 56 transmits the light, so the photomultiplier tube 59 does not receive the light. is incident and appears on the displayed image as a background,
It was impossible to observe the image. This means that
Metal back 56 used in conventional scintillators
Usually, Al is deposited on a phosphor N57 at an amount of several tens of OA, and as shown in FIG. 6, there are numerous pinholes and cracks on the surface, through which light enters. Therefore, in the past, it was not even possible to know whether or not there was a photo-induced defect.

上記の例以外にも、試料に光を照射した状態でのSEM
像観察、もしくは、発光体自体のSEM像観察をしてみ
たい場合でも、従来のシンチレータでは出来なかった。
In addition to the above examples, SEM with the sample irradiated with light
Even if you want to observe the image or observe the SEM image of the light emitter itself, it is not possible with conventional scintillators.

本発明は、このような従来のシンチレータの課題を解決
することを目的とする。
The present invention aims to solve these problems of conventional scintillators.

課題を解決するための手段 本発明の2次電子検出器のシンチレータは、蛍光体層上
部に密着もしくは所定の空間を保って保持された、少な
くとも、入射電子は効率良く透過し、光は殆ど透過しな
い、所定の導電性材料で、所定の膜厚に形成された光遮
蔽膜を有する。その光遮蔽膜の作、成力法としては、ま
ず、所定の溶媒に溶解しろる下地層を基板上に平滑に形
成した上に、前記光遮蔽膜用の薄膜を所定の厚さで形成
し、その後で、前記溶媒に浸し、下地層を溶解、除去す
ることで前記薄膜を剥離し、その後で、所定の位置に剥
離した前記薄膜を設置する方法をとる。
Means for Solving the Problems The scintillator of the secondary electron detector of the present invention is held in close contact with or with a predetermined space above the phosphor layer, so that at least incident electrons are efficiently transmitted and almost no light is transmitted. The light shielding film is made of a predetermined conductive material and has a predetermined thickness. The light-shielding film is produced by forming a base layer on a substrate smoothly, which is soluble in a predetermined solvent, and then forming a thin film for the light-shielding film to a predetermined thickness. Then, the thin film is peeled off by immersing it in the solvent to dissolve and remove the base layer, and then the peeled off thin film is installed at a predetermined position.

前記光遮蔽膜は、CもしくはBe、AIその他の金属元
素のうち少なくとも1種類を含む金属もしくは合金の薄
膜である。
The light shielding film is a thin film of metal or alloy containing at least one of C, Be, AI, and other metal elements.

請求項3の本発明は、所定の電子ビーム電流量及び所定
のシンチレータバイアス電位に設定された2次電子検出
器であって、前記光遮蔽膜を透過した電子による蛍光体
層の発光からの光信号強度が、前記光電子増倍管の出力
段階で、その他の雑音レベルに対して、少なくとも2@
以上となるだけの電子透過率を有する光遮蔽膜である。
The present invention according to claim 3 provides a secondary electron detector set to a predetermined electron beam current amount and a predetermined scintillator bias potential, wherein light emitted from a phosphor layer by electrons transmitted through the light shielding film is detected. The signal strength at the output stage of the photomultiplier tube is at least 2 @ relative to other noise levels.
This is a light shielding film having an electron transmittance as high as the above.

請求項4の本発明は、光遮蔽膜を透過した電子による蛍
光体層の発光からの光信号強度が、前記光電子増倍管の
出力段階で、前記光遮蔽膜を透過した光による雑音レベ
ルに対して、少なくとも2倍以上となるだけの光遮蔽膜
を有する光遮蔽膜が利用されるものである。
The present invention according to claim 4 is characterized in that the intensity of the optical signal from the light emission of the phosphor layer due to the electrons transmitted through the light shielding film is reduced to the noise level due to the light transmitted through the light shielding film at the output stage of the photomultiplier tube. On the other hand, a light shielding film having at least twice the number of light shielding films is used.

作用 まず、所定の溶媒に溶解しうる下地層を基板上に平滑に
形成した上に、前記光遮蔽膜用の薄膜を所定の厚さで形
成し、その後で、前記溶媒に浸し、下地層を溶解、除去
することで前記薄膜を剥離する方法により、はとんどピ
ンホールのない、平滑な光遮蔽用の薄膜を得ることがで
きる。その後で、光を遮蔽できる所定の信置に、この剥
離した薄膜を設置することにより、明るい状態で2次電
子像を取り込む場合でも、もはや外光は光ガイド内には
侵入せず、表示画像にバックグラウンドは現れず、良好
な観察画像を得ることができる。
Operation: First, a base layer that can be dissolved in a predetermined solvent is smoothly formed on a substrate, and then a thin film for the light shielding film is formed to a predetermined thickness, and then the base layer is immersed in the solvent. By the method of peeling off the thin film by dissolving and removing it, a smooth light-shielding thin film with almost no pinholes can be obtained. After that, by installing this peeled thin film in a predetermined place that can block light, even when capturing a secondary electron image in bright conditions, external light will no longer enter the light guide, and the displayed image will be No background appears and a good observation image can be obtained.

実施例 以下に、本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の2次電子検出器のシンチレータの一実
施例を示す断面図である。直径10mmの円筒状の光ガ
イド先端チップlの表面に透明導電膜2が形成され、そ
の上に蛍光体層3が形成されている。本実施例では、蛍
光体N3の上部に密着して、膜厚500AのAl!!の
光遮蔽膜4が形成されている。
FIG. 1 is a cross-sectional view showing one embodiment of the scintillator of the secondary electron detector of the present invention. A transparent conductive film 2 is formed on the surface of a cylindrical light guide tip l having a diameter of 10 mm, and a phosphor layer 3 is formed thereon. In this example, a film of 500A thick Al! ! A light shielding film 4 is formed.

上部から入射した2次電子は、光遮蔽膜4を透過し、蛍
光体層3に入射し、これを刺激する。蛍光体層3は蛍光
を発する。この蛍光は、光ガイド先端チップlから、そ
の下部の光ガイドを経て、光電子増倍管59に入射する
。この際、たんに光遮蔽膜4を設けることで、試料室内
が明るい状態でも、その光は、光遮蔽膜4で遮蔽される
ため、もはや外光は光ガイド内には侵入せず、表示画像
にバックグラウンドは現れず、良好な観察画像を得るこ
とができる。
The secondary electrons incident from above pass through the light shielding film 4, enter the phosphor layer 3, and stimulate it. The phosphor layer 3 emits fluorescence. This fluorescence enters the photomultiplier tube 59 from the light guide tip l through the light guide below it. At this time, by simply providing the light shielding film 4, even if the inside of the sample chamber is bright, the light is blocked by the light shielding film 4, so that external light no longer enters the light guide, and the displayed image No background appears and a good observation image can be obtained.

光ガイド先端チップ1はガラス製で、光伝送効率が良い
ように両端面及び側面は研磨され、平滑である。これは
、場合に応じて、アクリル樹脂等でもよい。その上の透
明導電膜2は、蛍光体層3のチャージアップを防止する
ために設けるものである。これは、また、インジウム−
スズ−オキサイド(以後、ITOと略称する。)等の蛍
光体層3からの蛍光の光透過率の高いものが望ましい。
The light guide tip 1 is made of glass, and both end faces and side surfaces are polished and smooth to improve light transmission efficiency. This may be an acrylic resin or the like, depending on the case. The transparent conductive film 2 thereon is provided to prevent charge-up of the phosphor layer 3. This is also indium-
It is desirable to use a material with high light transmittance for fluorescence from the phosphor layer 3, such as tin oxide (hereinafter abbreviated as ITO).

本実施例では、膜厚的200〜400AのITO蒸着膜
を採用した。面積抵抗はlk/口、波長400nm〜7
00nmの可視光透過率は90%であった。蛍光体層3
用の蛍光体粉末は、P47を用いた。蛍光体層3は、イ
ソプロパツールを分散剤とした通常の沈澱法によって、
層厚約lθ〜20amに形成した。
In this example, an ITO vapor-deposited film having a thickness of 200 to 400 Å was used. Sheet resistance is lk/mouth, wavelength 400nm ~ 7
The visible light transmittance at 00 nm was 90%. Phosphor layer 3
P47 was used as the phosphor powder. The phosphor layer 3 is formed by a normal precipitation method using isopropanol as a dispersant.
The layer was formed to have a thickness of about lθ to 20 am.

つぎに、AI光遮蔽膜4の製造方法について、第2図に
基づいて説明する。まず、ガラス基板5(20mmX 
20mm)上にゼラチンをスピンコードする。
Next, a method for manufacturing the AI light shielding film 4 will be explained based on FIG. 2. First, glass substrate 5 (20mm
Spin code the gelatin onto the 20 mm).

ゼラチンはニッタゼラチン製RX12の50%水溶液を
用いた。これを、前記ガラス基板5J:、にスポイトで
1.2滴落し、スピナーで、2000rpmの回転速度
で30秒閉囲転させ、膜厚的2000Aの平滑なゼラチ
ン膜6を形成した。この上に八l′PJc7を蒸着した
。蒸着したAI膜7をガラス基板5ごと、45〜55℃
程度の温湯中に浸す。ゼラチンは水溶性なので、端部か
ら水分が徐々にゼラチン層に浸透し、10分〜15分で
Al膜が剥離する。AI膜は、水面に浮かび上がってぴ
んと張る性質を示す(第2図(e、)参照。)。これは
、膜表面に残留付着しているごく僅かの油脂外の作用に
よると考えられる。
As the gelatin, a 50% aqueous solution of RX12 manufactured by Nitta Gelatin was used. 1.2 drops of this was dropped onto the glass substrate 5J using a dropper and rotated in a spinner for 30 seconds at a rotation speed of 2000 rpm to form a smooth gelatin film 6 with a thickness of 2000 Å. On top of this, 8l'PJc7 was deposited. The vapor-deposited AI film 7 is heated to 45 to 55°C along with the glass substrate 5.
Soak in moderately warm water. Since gelatin is water-soluble, water gradually penetrates into the gelatin layer from the edges, and the Al film is peeled off in 10 to 15 minutes. The AI film exhibits the property of floating on the water surface and becoming taut (see Figure 2(e)). This is thought to be due to the effects of a very small amount of fat remaining on the membrane surface.

なお、水温は室温でもよいが、少し高くしてやったほう
がゼラチンの溶解が速い。しかし、水温が60℃以上に
なるとAI膜が透明になってしまう。
Note that the water temperature may be room temperature, but the gelatin will dissolve faster if the water temperature is slightly higher. However, when the water temperature reaches 60°C or higher, the AI film becomes transparent.

これは、Al膜が酸化したためと考えられる。剥離する
際、膜が裏返しになって折れてしまわないように、基板
面の水深は、5mm程度が適当である。
This is considered to be because the Al film was oxidized. In order to prevent the film from turning over and breaking during peeling, the depth of water on the substrate surface is preferably about 5 mm.

また、水面に浮き上がった膜の表面に、50%以下に希
釈したエタノール水溶液をスポイトで1〜2滴落とすと
、エタノールの拡散する力でしわを延ばすことができる
。次に、水面に張っているAt膜を、第2図(f)に示
す様に、光ガイド先端チップIJ:に、蛍光体N3まで
形成された状態のものを下からすくって、その蛍光体層
3の上にAl膜7をのせる。その際、できるだけしわが
残らないように注意する。しわがあると、そこに水分が
残り、減圧する際、気化して膜を破ってしまう。
Furthermore, if one or two drops of an aqueous ethanol solution diluted to 50% or less is dropped onto the surface of the membrane floating on the water surface using a dropper, wrinkles can be smoothed out by the diffusing power of the ethanol. Next, as shown in Fig. 2(f), scoop the At film stretched on the water surface from below onto the light guide tip IJ: with the phosphor N3 formed thereon. An Al film 7 is placed on the layer 3. At that time, be careful not to leave any wrinkles as much as possible. If there are wrinkles, moisture will remain there, and when the pressure is reduced, it will evaporate and break the membrane.

本実施例の方法では、僅かに残留している水分が気化し
て膜に小さな孔をあけてしまう場合もあるが、後述する
ように実用上は全く問題ない。なお、空気中で水分を乾
燥させ、再びもう1枚、第2図に示した作業を繰り返し
て、Al膜を2枚重ねにすることもあわせて試みた。こ
れは、重ね合わせることにより、ピンホールを殆どなく
すことを目的としている。以上の操作により、いずれの
方法も殆どピンホールのない光遮蔽膜4を形成すること
ができた。
In the method of this embodiment, a small amount of residual moisture may evaporate and create small holes in the membrane, but as will be described later, there is no problem in practice. In addition, we also attempted to stack two Al films by drying the moisture in the air and repeating the process shown in FIG. 2 for another film. The purpose of this is to almost eliminate pinholes by overlapping them. Through the above operations, the light shielding film 4 with almost no pinholes could be formed using either method.

以上のようにして作成したシンチレータ10を、コロナ
リング61で光ガイド58上端にセットする。コロナリ
ング61側縁部と光遮蔽膜4周辺部の隙間をAgペース
トでうめる。これは、放電防止と、周辺部の光遮蔽の2
つの理由による。組立終了後、−度真空にひいて、眉間
に残留したガスが膨張してAl膜を破らないことを確認
する。
The scintillator 10 created as described above is set on the upper end of the light guide 58 using the corona ring 61. The gap between the side edge of the corona ring 61 and the periphery of the light shielding film 4 is filled with Ag paste. This is to prevent discharge and to shield the peripheral area from light.
For two reasons. After assembly, apply a -degree vacuum and check that the gas remaining between the eyebrows does not expand and break the Al film.

なお、光ガイド58の側面は、黒色アクリル塗料で遮光
した。
Note that the side surface of the light guide 58 was shielded from light with black acrylic paint.

このシンチレータの性能を、前述の欠陥画素検査装置の
2次電子検出器に試着して評価した。その結果、電子ビ
ーム52の加速電圧が10kV、ビーム電流量が500
9A、シンチレータ55のバイアス電位カ月OkVの時
、AI光遮蔽膜の最適膜厚は、単層、多層を問わず、そ
の総計が40OA −100OAであった。 上記の膜
厚では、膜内のピンホールは、単層のもので、3〜5個
、2層にすれば、はぼ0〜1個となることが確認された
。遮光性については、前述の欠陥画素検査装置において
、試料面照度が20001uxでも、画像にバックグラ
ウンドは現れず、また、感度についても、従来例のもの
と全く同等な電位分解能を有し、S/Nの良い2次電子
像を得ることができた。前述の欠陥画素検査装置等、通
常の走査型電子顕微鏡のシンチレータのバイアス電位は
lokV程度なので、膜厚が200OA以上になると、
2次電子の透過率が減少し、感度が低下してし走った。
The performance of this scintillator was evaluated by trying it on the secondary electron detector of the defective pixel inspection device described above. As a result, the acceleration voltage of the electron beam 52 is 10 kV, and the beam current amount is 500 kV.
9A, when the bias potential of the scintillator 55 was OkV, the total optimal film thickness of the AI light shielding film was 40OA to 100OA regardless of whether it was a single layer or a multilayer. It was confirmed that with the above film thickness, there are 3 to 5 pinholes in the film in a single layer, and 0 to 1 in the case of two layers. Regarding light shielding properties, in the defective pixel inspection device described above, no background appears in the image even when the sample surface illuminance is 20,001 ux, and in terms of sensitivity, the potential resolution is exactly the same as that of the conventional example, and the S/ A good secondary electron image of N could be obtained. The bias potential of the scintillator of a normal scanning electron microscope, such as the defective pixel inspection device mentioned above, is about lokV, so if the film thickness becomes 200 OA or more,
The transmittance of secondary electrons decreased, resulting in a decrease in sensitivity.

無論、シンチレータ10のバイアス電位をlokV以上
に上げるか、電子ビーム52のビーム電流量を5009
A以上に上げてやれば、その分、蛍光体層3に入射する
2次電子のエネルギー密度が高まり、光遮蔽膜4の膜厚
が200OA以上でも、その蛍光量が増し、感度を上げ
てやることができる。しかし、ビーム電流量をこれ以上
増やすと、絶縁体試料の場合、チャージアップが顕著と
なったり、また、シンチレータのバイアス電位を12〜
131cV以」二にあげようとすると、シンチレータの
耐圧がもたなくなり、新たに、高耐圧の構造に変更する
必要が生じてくる。通常、前記のような一般的な使用条
件で適切な光遮蔽膜4の厚さは、2000^以下である
ことが望ましい。一方逆に、 単層でその膜厚を300
A以下にしようとしても、水中でAt膜を剥離しようと
する際に、膜が破壊してしまうことがわかった。
Of course, either raise the bias potential of the scintillator 10 to more than lokV or increase the beam current amount of the electron beam 52 to 5009
If it is increased above A, the energy density of the secondary electrons incident on the phosphor layer 3 will increase accordingly, and even if the thickness of the light shielding film 4 is 200 OA or more, the amount of fluorescence will increase and the sensitivity will be increased. be able to. However, if the beam current amount is increased beyond this level, charge-up will become noticeable in the case of insulator samples, and the bias potential of the scintillator will be increased from 12 to
If you try to raise the scintillator to 131 cV or higher, the withstand voltage of the scintillator will no longer hold, and it will be necessary to change the structure to a new one with a higher withstand voltage. Normally, it is desirable that the thickness of the light shielding film 4 is 2000^ or less, which is appropriate under the above-mentioned general usage conditions. On the other hand, if the thickness of a single layer is 300
It was found that even if an attempt was made to make the At film below A, the At film would be destroyed when attempting to peel it off in water.

本願発明のシンチレータの光遮蔽膜材料として、本実施
例では、AIを採用したが、遮光性と、適度な導電性と
、高い電子透過率があれば、他の材料であっても良い。
In this embodiment, AI was used as the light-shielding film material of the scintillator of the present invention, but other materials may be used as long as they have light-shielding properties, appropriate conductivity, and high electron transmittance.

例えば、Beやその合金などの軽金属元素の薄膜、Cも
しくは他の金属元素などを含む化合物よりなる薄膜であ
っても同様の効果を有する。
For example, a thin film made of a light metal element such as Be or an alloy thereof, or a thin film made of a compound containing C or other metal elements can have similar effects.

また、本実施例では、Al膜を剥離する際に、中間膜と
してゼラチンを、また、その溶媒として水を用いたが、
それぞれ、セロファン−有機溶剤、パラフィン−有機溶
剤、ポリ塩化ビニル−有機溶剤、ポリビニルアルコール
−水等の組合せを用いても良い。
Furthermore, in this example, gelatin was used as the intermediate film and water was used as the solvent when peeling the Al film.
Combinations such as cellophane-organic solvent, paraffin-organic solvent, polyvinyl chloride-organic solvent, and polyvinyl alcohol-water may be used, respectively.

次に、本願発明の構成について、他の実施例を第3図に
示す。本実施例では、光遮蔽膜4を、前実施例のように
蛍光体層3に密着させるのではなく、図示するように、
蛍光体層3との間に空間を保って配置する。 光遮蔽膜
4は、400−100OAと非常に薄いため、破れ易い
。そこで、図示するように、メツシュ11をコロナリン
グ12の筒内に設け、これを光遮蔽膜4の支持体とした
。メツシュ11は、ピッチが0.5〜3+aa+、  
メツシュ径が20〜10071mのものを用いた。製造
方法は、前記製造方法の実施例と同じ方法を用いた。減
圧時に、気圧差で光遮蔽膜4が破れないように、光遮蔽
膜4と蛍光体層3の間の空間は排気孔13を通じて外部
と同気圧になるようになっている。本実施例のシンチレ
ータを用いても、前記実施例同様、前述の欠陥画素検査
装置において、試料面照度が20001uxでも、画像
にバックグラウンドは現れず、また、感度についても、
従来例のものと全く同等な電位分解能を有し、S/Nの
良い2次電子像を得ることができた。
Next, FIG. 3 shows another embodiment of the configuration of the present invention. In this example, the light shielding film 4 is not brought into close contact with the phosphor layer 3 as in the previous example, but as shown in the figure.
It is arranged with a space maintained between it and the phosphor layer 3. The light shielding film 4 is very thin at 400 to 100 OA, so it is easily torn. Therefore, as shown in the figure, a mesh 11 was provided inside the cylinder of the corona ring 12, and this was used as a support for the light shielding film 4. The mesh 11 has a pitch of 0.5 to 3+aa+,
A mesh having a diameter of 20 to 10,071 m was used. The manufacturing method used was the same as in the example of the manufacturing method described above. During depressurization, the space between the light shielding film 4 and the phosphor layer 3 is made to have the same atmospheric pressure as the outside through the exhaust hole 13 so that the light shielding film 4 is not torn due to the pressure difference. Even if the scintillator of this example is used, no background will appear in the image even when the sample surface illuminance is 20001 ux in the defective pixel inspection apparatus described above, and the sensitivity will also be
It was possible to obtain a secondary electron image with a potential resolution completely equivalent to that of the conventional example and a good S/N ratio.

本発明のシンチレータを装着した前述の欠陥画素検査装
置を用いて、液晶テレビ用TFTアレイを観察した。実
際の液晶パネルで欠陥画素でありながら、TFTアレイ
を、上記装置で観察する段階において、暗い状態では、
検出できない欠陥画素のうちの一部が、可視白色光をT
FTアレイに照射した状態で観察すると、欠陥画素とし
て現れてくることを発見した。これは、何等かの原因で
、該当画素のトランジスタのみが、正常画素のそれより
も大きな光伝導を示し、画素電極にたまった電荷がディ
スチャージしたためと考えられる。以上、本願発明によ
り、初めて、光誘起型欠陥画素の存在が明かとなった。
A TFT array for a liquid crystal television was observed using the aforementioned defective pixel inspection apparatus equipped with the scintillator of the present invention. Although it is a defective pixel in an actual liquid crystal panel, when observing the TFT array with the above device, in a dark state,
Some of the defective pixels that cannot be detected emit visible white light to T
It was discovered that when observed while irradiating an FT array, it appears as a defective pixel. This is considered to be because, for some reason, only the transistor of the relevant pixel exhibited greater photoconduction than that of the normal pixel, and the charges accumulated in the pixel electrode were discharged. As described above, according to the present invention, the existence of photo-induced defective pixels has been revealed for the first time.

そして、光を照射した状態で2次電子像を観察すること
で、前述の欠陥画素検査装置の検出能力を向上させるこ
とができた。
By observing the secondary electron image while irradiated with light, it was possible to improve the detection ability of the defective pixel inspection apparatus described above.

発明の効果 以上述べたように、本発明の光遮蔽型シンチレータの実
現により、初めて、光誘起型欠陥画素の存在が明かとな
った。これは、T F T l−ランジスタの不良解析
に対して、新しい指針を与えうるものである。そして、
光を照射した状態で2次電子像を観察することで、前述
の欠陥画素検査装置の検出能力を向上させることができ
た。また、このことは、上記以外の多くの例においても
、試料に光を照射した状態でのSEM像観察、もしくは
、発光体自体のSEM像観察が、本発明のシンチレータ
で、初めて可能となったことを意味する。つまり、電子
ビームテスティングの新たな可能性が広がったわけで、
特に、その材料解析、電子デバイスの動作解析などへの
応用の面で、本願発明の意義は非常に大きい。
Effects of the Invention As described above, by realizing the light-shielding scintillator of the present invention, the existence of photo-induced defective pixels became clear for the first time. This can provide new guidelines for failure analysis of T F T l-transistors. and,
By observing the secondary electron image while irradiated with light, it was possible to improve the detection ability of the defective pixel inspection apparatus described above. In addition, in many cases other than those mentioned above, the scintillator of the present invention makes it possible for the first time to observe a SEM image of a sample while being irradiated with light, or to observe an SEM image of the light emitting body itself. It means that. In other words, new possibilities for electron beam testing have expanded.
In particular, the present invention has great significance in terms of its application to material analysis, operation analysis of electronic devices, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の2次電子検出器のシンチレータの一
実施例の構成を示す断面図、第2図は、同シンチレータ
の製造方法の一実施例を示す工程図、第3図は、本発明
の他の実施例を示す断面図、第4図は、従来のシンチレ
ータが走査型電子顕微鏡に装着されている様子を示す断
面図、第5図は、従来のシンチレータの断面図、第6図
は、同シンチレータの蛍光体層付近の断面図である。 2・・・透明導電膜、3・・・蛍光体層、4・・・光遮
蔽膜、6・・・ゼラチン膜、7・・・AI膜、8・・・
水、10・・・シンチレータ、11・・・メツシュ、1
3・・・排気孔代理人の氏名 弁理士 粟野重孝 はか
1名第1図 ] 光力”イド先缶除チツブ 第 図 第3図 58九力゛イド 第 図 第 図 第 5図 第 図 63光がイド先端テッフ。
FIG. 1 is a sectional view showing the structure of an embodiment of a scintillator for a secondary electron detector of the present invention, FIG. 2 is a process diagram showing an embodiment of a method for manufacturing the scintillator, and FIG. FIG. 4 is a cross-sectional view showing another embodiment of the present invention, and FIG. 4 is a cross-sectional view showing how a conventional scintillator is attached to a scanning electron microscope. FIG. 5 is a cross-sectional view of a conventional scintillator, and FIG. The figure is a cross-sectional view of the vicinity of the phosphor layer of the same scintillator. 2... Transparent conductive film, 3... Phosphor layer, 4... Light shielding film, 6... Gelatin film, 7... AI film, 8...
Water, 10...Scintillator, 11...Mesh, 1
3... Name of exhaust vent agent Patent attorney Shigetaka Awano (1 person) Figure 1] Light force "id tip" diagram Figure 3 Figure 58 Nine power side diagram Figure 5 Figure 63 The light is id tip teff.

Claims (1)

【特許請求の範囲】 (1)試料からの2次電子の入射によって発光する蛍光
体層を備えたシンチレータ及び、その発光を電気信号に
変換し増幅する光電子増倍管を備えた2次電子検出器に
おいて、前記シンチレータが、蛍光体層上部に密着もし
くは所定の空間を保って保持された、少なくとも、入射
電子は効率良く透過し、光は殆ど透過しない、所定の導
電性材料で、所定の膜厚に形成された光遮蔽膜を有する
ことを特徴とする2次電子検出器。 (2)光遮蔽膜が複数の枚数よりなることを特徴とする
請求項1記載の2次電子検出器。(3)所定の電子ビー
ム電流量及び所定のシンチレータバイアス電位に設定さ
れた2次電子検出器であつて、前記光遮蔽膜を透過した
電子による蛍光体層の発光からの光信号強度が、前記光
電子増倍管の出力段階で、その他の雑音レベルに対して
、少なくとも2倍以上となるだけの電子透過率を有する
光遮蔽膜であることを特徴とする請求項1又は2記載の
2次電子検出器。 (4)光遮蔽膜を透過した電子による蛍光体層の発光か
らの光信号強度が、前記光電子増倍管の出力段階で、前
記光遮蔽膜を透過した光による雑音レベルに対して、少
なくとも2倍以上となるだけの光遮蔽膜を有する光遮蔽
膜が利用されることを特徴とする請求項1又は2記載の
2次電子検出器。 (5)光遮蔽膜が、少なくとも単層もしくは多層のAl
薄膜より成り、その膜厚が計2000A以下であること
を特徴とする請求項1又は2記載2次電子検出器。 (6)シンチレータは、まず、所定の溶媒に溶解しうる
下地層を基板上に平滑に形成した上に、前記光遮蔽膜用
の薄膜を所定の厚さで形成し、その後で、前記溶媒に浸
し、下地層を溶解、除去することで前記薄膜を剥離し、
その後で、所定の位置に剥離した前記薄膜を設置するこ
とによって製造されることを特徴とする請求項1〜5の
いずれか1項記載の2次電子検出器の製造方法。 (7)溶媒として水、前記下地層としてゼラチンを用い
ることを特徴とする請求項6記載の2次電子検出器の製
造方法。
[Scope of Claims] (1) Secondary electron detection comprising a scintillator equipped with a phosphor layer that emits light when secondary electrons from a sample are incident thereon, and a photomultiplier tube that converts the emitted light into an electrical signal and amplifies it. In the device, the scintillator is made of a predetermined film made of a predetermined conductive material that is held in close contact with or with a predetermined space above the phosphor layer, and that transmits at least incident electrons efficiently but hardly transmits light. A secondary electron detector characterized by having a thick light shielding film. (2) The secondary electron detector according to claim 1, characterized in that the light shielding film consists of a plurality of sheets. (3) A secondary electron detector set to a predetermined electron beam current amount and a predetermined scintillator bias potential, wherein the optical signal intensity from light emission of the phosphor layer by electrons transmitted through the light shielding film is The secondary electron according to claim 1 or 2, characterized in that the light shielding film has an electron transmittance at least twice that of other noise levels at the output stage of a photomultiplier tube. Detector. (4) The optical signal intensity from the light emission of the phosphor layer due to the electrons transmitted through the light shielding film is at least 2 times higher than the noise level due to the light transmitted through the light shielding film at the output stage of the photomultiplier tube. The secondary electron detector according to claim 1 or 2, characterized in that a light shielding film having a light shielding film that is at least twice as large as the light shielding film is used. (5) The light shielding film is at least a single layer or multiple layers of Al.
3. The secondary electron detector according to claim 1, wherein the secondary electron detector is made of a thin film and has a total thickness of 2000A or less. (6) To make a scintillator, first, a base layer that can be dissolved in a predetermined solvent is smoothly formed on a substrate, and then a thin film for the light shielding film is formed to a predetermined thickness, and then a base layer that can be dissolved in a predetermined solvent is formed on the substrate. peel off the thin film by soaking, dissolving and removing the underlying layer,
6. The method of manufacturing a secondary electron detector according to claim 1, wherein the secondary electron detector is manufactured by subsequently installing the peeled thin film at a predetermined position. (7) The method for manufacturing a secondary electron detector according to claim 6, characterized in that water is used as the solvent and gelatin is used as the underlayer.
JP26991288A 1988-10-26 1988-10-26 Secondary electron detector and manufacture thereof Pending JPH02117061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26991288A JPH02117061A (en) 1988-10-26 1988-10-26 Secondary electron detector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26991288A JPH02117061A (en) 1988-10-26 1988-10-26 Secondary electron detector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02117061A true JPH02117061A (en) 1990-05-01

Family

ID=17478953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26991288A Pending JPH02117061A (en) 1988-10-26 1988-10-26 Secondary electron detector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02117061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237003A (en) * 2005-02-23 2006-09-07 Leica Microsystems Cms Gmbh Photoelectron multiplication system and microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237003A (en) * 2005-02-23 2006-09-07 Leica Microsystems Cms Gmbh Photoelectron multiplication system and microscope

Similar Documents

Publication Publication Date Title
US5075591A (en) Matrix addressing arrangement for a flat panel display with field emission cathodes
US6319381B1 (en) Methods of forming a face plate assembly of a color display
US7923926B2 (en) Organic electroluminescent panel and organic electroluminescent display device
JP2008244251A (en) Amorphous silicon photodiode, manufacturing method thereof and x-ray imaging apparatus
EP1154398A3 (en) Forming preformed images in organic electroluminescent devices
CN1113388C (en) Cathode ray tube
US20130052902A1 (en) Method of repairing a display panel and apparatus for performing the same
KR20090060215A (en) Light-assisted testing of an optoelectronic module
JP4118965B2 (en) Microchannel plate and photomultiplier tube
CN1755870A (en) Rectifying method of display device and production method
JPH02155157A (en) Scintillator and manufacture of its light shielding membrane
JPH02117061A (en) Secondary electron detector and manufacture thereof
JP3243471B2 (en) Method for manufacturing electron-emitting device
JPH02152153A (en) Manufacture of light shielding membrane for scintillator
JP2004253214A (en) Method for manufacturing organic el device, and organic el device
JP2606406Y2 (en) Vacuum sealing device and display device
JP2007066656A (en) Organic electroluminescent element, its manufacturing method, and repair method of organic electroluminescent element
FR2797520A1 (en) Light emitting cell, useful for large, energy efficient, high light output, monochrome or color displays, comprises a light emitting material responsive to electron emission from a carbon nanotube layer
KR102222724B1 (en) Defects inspection method in passivation layer of organic electronic device
CN110137372A (en) Display panel and display device
JPH04282441A (en) Method and apparatus for inspecting transparent conductive film
JP2008147061A (en) Defect inspection method
US5903100A (en) Reduction of smearing in cold cathode displays
JP2001221712A (en) Method for inspecting phosphor filter
KR20080062343A (en) Apparatus and control method for digital radiation detector based on plasma display panel