JPH0215503A - Navigation lamp - Google Patents

Navigation lamp

Info

Publication number
JPH0215503A
JPH0215503A JP16469588A JP16469588A JPH0215503A JP H0215503 A JPH0215503 A JP H0215503A JP 16469588 A JP16469588 A JP 16469588A JP 16469588 A JP16469588 A JP 16469588A JP H0215503 A JPH0215503 A JP H0215503A
Authority
JP
Japan
Prior art keywords
cam
elevation angle
optical system
frame
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16469588A
Other languages
Japanese (ja)
Other versions
JP2683042B2 (en
Inventor
Kiyoaki Inaba
稲葉 清章
Toshio Kurotsu
黒津 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP63164695A priority Critical patent/JP2683042B2/en
Publication of JPH0215503A publication Critical patent/JPH0215503A/en
Application granted granted Critical
Publication of JP2683042B2 publication Critical patent/JP2683042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable an elevation angle to be controlled automatically by providing an elevation angle adjusting mechanism which vertically moves the other end side of a frame which mounts an optical system and has a rotation fulcrum on one end side. CONSTITUTION:A motor 171 is coupled with a reduction gear 172, and a rotary shaft 173 is taken out from the reduction gear 172. A cam 18 buries a bush 182 in the bore part of a ball bearing 181 and is mounted by decentering the rotary shaft 173 of a rotation driving source 17 by DELTAd from the center of a ball bearing 181 to the bush 182. In the case that the cam 18 is rotated by the rotation driving source 17, the distance from the rotary shaft 173 to the peripheral face of the cam 18 changes according to the rotational position of the cam 18. By this cam 18, the other end side of a frame 9 which mounts an optical system and has a rotation fulcrum on one end side is moved vertically. Hereby, the elevation angle of the optical system on the frame can be controlled automatically.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光信号を所定の仰角で照射して航空機進入角
度を指示する光学系を備える航空灯器に関し、モータを
含む回転駆動源と、回転駆itt源の回転軸に取付けた
カムとにより、光学系を搭載したフレームを回動させる
仰角調整機構を構成させることにより、仰角を微細な分
解能で遠隔制御できるようにし、仰角変化試験の容易化
及び高能率化を達成すると共に、仰角の自動制御ができ
るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an aviation lamp equipped with an optical system that directs an aircraft approach angle by emitting a light signal at a predetermined elevation angle, and the present invention relates to an aviation lamp equipped with an optical system that directs an aircraft approach angle by emitting a light signal at a predetermined elevation angle. By configuring an elevation adjustment mechanism that rotates the frame on which the optical system is mounted using a cam attached to the rotation shaft of the rotation drive source, the elevation angle can be remotely controlled with fine resolution, making it possible to perform elevation angle change tests. This makes it easier and more efficient, and also allows for automatic control of the elevation angle.

〈従来の技術〉 航空機に進入角度を指示するための視覚的進入角表示シ
ステムとしては、従来より、VASISと称されるシス
テムが知られていたが、航空機運行方式の発達によって
種々の問題点が指摘されるようになり、最近、VASI
Sに代る新しいシステムとして、精密進入経路指示器(
PrecisionApproach Path  I
ndicator。以下PAPIと称する)が提案され
、実用に供されている。
<Prior Art> A system called VASIS has been known as a visual approach angle display system for instructing aircraft about the approach angle, but various problems have arisen due to the development of aircraft operation methods. Recently, it has been pointed out that VASI
As a new system to replace S, a precision approach route indicator (
Precision Approach Path I
ndicator. (hereinafter referred to as PAPI) has been proposed and put into practical use.

第5図はPAPIの原理を示す図で、1は滑走路、A−
Dは航空灯器である。航空灯器A−Dは横列配置され、
仰角01〜θ4で光信号し1〜L4を照射する。仰角0
1〜θ4はごく微小の角度差で、滑走路1から見て外側
の航空灯器はど小さくなるように、つまりθ1くθ、く
θ、くθ4となるように設定されている。具体的数値を
上げると、仰角θ、〜θ4は、2度30分〜3度30分
の範囲において、20分の角度差で設定されている。
Figure 5 is a diagram showing the principle of PAPI, where 1 is the runway, A-
D is an aviation light device. Aviation lights A-D are arranged in rows,
Optical signals are sent at elevation angles of 01 to θ4, and 1 to L4 are irradiated. Elevation angle 0
1 to θ4 are extremely small angular differences, and are set so that the outer aircraft lighting equipment becomes smaller when viewed from the runway 1, that is, θ1 × θ, × θ, × θ4. To give concrete numerical values, the elevation angles θ and θ4 are set with an angular difference of 20 minutes in the range of 2 degrees 30 minutes to 3 degrees 30 minutes.

航空灯器A−Dは、第6図に示すように、上層が白色光
、下層が赤色層で、中間にピンクの転穆層を有する光信
号を照射する。第6図において、2はハロゲンランプ等
の白色光源、3は赤色干渉膜フィルタ、4はレンズであ
る。
As shown in FIG. 6, the aviation lamps A to D emit light signals having white light in the upper layer, red light in the lower layer, and a pink transmuting layer in the middle. In FIG. 6, 2 is a white light source such as a halogen lamp, 3 is a red interference film filter, and 4 is a lens.

航空機側からの進入角度の適否判断は、航空灯器A−D
の横列灯火の視覚判断によって行なわれる。4個の航空
灯器A−Dは滑走路1寄りからり、C,B、Aの順に仰
角01〜θ4が小さくなるから、見え方と航空機のグラ
イド、スロープとの関係は、オングライド、スロープで
は、航空灯器A、Bが白色、航空灯器C%Dが赤色に見
え、オングライド、スロープより高くなる程、白色に見
える航空灯器が増え、オングライド5スロープより低く
なる程、赤色に見える航空灯器が増えてくる。
To judge the suitability of the approach angle from the aircraft side, use the aviation light equipment A-D.
This is done by visual judgment of the row of lights. The four aviation lights A-D are located closer to Runway 1, and the elevation angles 01 to θ4 decrease in the order of C, B, and A, so the relationship between visibility and the aircraft's glide and slope is on-glide and slope. In this case, the aircraft lights A and B appear white, and the aircraft light C%D appears red.The higher you go above the on-glide slope, the more aircraft lights appear white, and the lower you go below the on-glide 5 slope, the red. The number of visible aviation light equipment is increasing.

前空灯器A−Dのそれぞれは第6図で示される光学特性
が同一の光学系を3系備え、各光学系を同一のフレーム
上で一体化してカバーによって保護しである。第7図は
その外観斜視図で、5は基台、6はカバー 71〜73
は各光学系、8は支柱である。第8図は第7図の要部に
おける拡大部分断面図、第9図は投光面側から見た部分
破断面図である。光学系71〜73は、白色光源2、フ
ィルタ3及びレンズ4は光軸o1を合せて、フレーム9
上に取付は固定しである。フレーム9の前部には、両側
に位置する光学系71.73のレンズ4の側部に支柱9
1.92を立設すると共に、カバー6の底面61に固定
したベース10上に、支柱91.92と対向する支柱1
01.102を立設し、支柱91−101.92−10
2間に軸11.12を通し、光学系71〜73を取付け
たフレーム9を、軸11.12で回動可能に支持しであ
る。軸11.12は実際にはベアリング等による精密軸
受構造となっている。
Each of the front sky lights A to D includes three optical systems having the same optical characteristics as shown in FIG. 6, and each optical system is integrated on the same frame and protected by a cover. Fig. 7 is a perspective view of its appearance, where 5 is a base, 6 is a cover 71-73
denotes each optical system, and 8 denotes a support. FIG. 8 is an enlarged partial sectional view of the main part of FIG. 7, and FIG. 9 is a partially broken sectional view seen from the light projection surface side. The optical systems 71 to 73 include the white light source 2, the filter 3, and the lens 4, which are arranged in a frame 9 with their optical axes o1 aligned.
The installation is fixed on the top. In the front part of the frame 9, a support 9 is attached to the side of the lens 4 of the optical system 71, 73 located on both sides.
1.92 is erected, and on the base 10 fixed to the bottom surface 61 of the cover 6, there is a support 1 facing the support 91.92.
01.102 is erected, and the support column 91-101.92-10
A shaft 11.12 is passed between the two, and the frame 9 to which the optical systems 71 to 73 are attached is rotatably supported by the shaft 11.12. The shafts 11, 12 actually have a precision bearing structure using bearings or the like.

フレーム9の後部には受板93を固定して設け、この受
板93に一端をベース10上に固定して立設した調整ネ
ジ13を通し、受板93を、調整ネジ13にネジ結合さ
せた調整ナツト14及び15.16によって上下から挟
み込んで締付けて、仰角調整機構を構成しである。調整
ナツト14〜16を調整ネジ13上で上下動させ、受板
93の締付は位置を調整すると、フレーム9が受板93
の締付位置に応じて、軸11.12を支点として回動す
る。これにより、フレーム9上に取付けられている光学
系71〜73の仰角θが調整される。
A receiving plate 93 is fixedly provided at the rear of the frame 9, and an adjustment screw 13, which is erected with one end fixed on the base 10, is passed through the receiving plate 93, and the receiving plate 93 is screwed to the adjusting screw 13. The elevation adjustment mechanism is constructed by sandwiching and tightening adjustment nuts 14 and 15 and 16 from above and below. When the adjustment nuts 14 to 16 are moved up and down on the adjustment screw 13 and the tightening position of the receiving plate 93 is adjusted, the frame 9 is adjusted to the position of the receiving plate 93.
It rotates about the shaft 11, 12 as a fulcrum depending on the tightening position. As a result, the elevation angle θ of the optical systems 71 to 73 mounted on the frame 9 is adjusted.

〈発明が解決しようとする課題〉 上述のように、PAPIは各航空灯器A−Dの仰角01
〜θ4によって、航空機に適正な進入角度を指示するも
のであるから、仰角01〜θ4を所定値に調整設定する
ことは極めて重要である。
<Problem to be solved by the invention> As mentioned above, PAPI is the elevation angle 01 of each aviation light device A-D.
.about..theta.4 indicates an appropriate approach angle to the aircraft, so it is extremely important to adjust and set the elevation angles 01 to .theta.4 to predetermined values.

ところが、従来の仰角調整機構は、手動操作により、調
整ナツト14〜16を調整ネジ13上で上下動させ、受
板93の締付は位置を調整するという構造となっていた
ため、次のような問題点があった。
However, the conventional elevation adjustment mechanism has a structure in which the adjustment nuts 14 to 16 are manually moved up and down on the adjustment screw 13, and the tightening position of the receiving plate 93 is adjusted by adjusting the position. There was a problem.

(イ)仰角01〜θ4は、前述したように、2度30分
〜3度30分の範囲において、各々20分の角度差で設
定しなければならい。従来は、このような微小角度設定
を、調整ネジ13と調整ナツト14〜16の手締めによ
って行なっていたため、高度の分解能を得るための調整
作業が面倒で、長時間を要するという問題点があった。
(a) As described above, the elevation angles 01 to θ4 must be set with an angular difference of 20 minutes each in the range of 2 degrees 30 minutes to 3 degrees 30 minutes. Conventionally, such minute angle settings were made by manually tightening the adjustment screw 13 and adjustment nuts 14 to 16, which resulted in the problem that adjustment work to obtain high resolution was troublesome and took a long time. Ta.

(ロ)所定の仰角01〜θ4が得られるか否か、事前に
仰角変化試験を行なう場合、調整ナツト13〜15を手
作業によフて回転させて受板93の締付は位置を可変調
整しなければならない。しかも、航空灯器側で仰角を調
整する作業員と、所定の仰角が設定できたか否かを判定
するための仰角監視装置側の作業員の複数の作業員を必
要とする。このため、光学系71〜73の仰角変化試験
作業が面倒で、非能率的であった。
(b) When conducting an elevation angle change test in advance to determine whether the predetermined elevation angles 01 to θ4 are obtained, the tightening position of the receiving plate 93 can be varied by manually rotating the adjustment nuts 13 to 15. have to adjust. Moreover, a plurality of workers are required: one on the aircraft lighting equipment side to adjust the elevation angle, and the other on the elevation angle monitoring device side to determine whether a predetermined elevation angle has been set. For this reason, the elevation angle change test work for the optical systems 71 to 73 was troublesome and inefficient.

(ハ)手動操作による仰角調整機構であるため、仰角θ
、〜θ4を自動的に制御するシステムをとることができ
なかった。
(c) Since the elevation angle adjustment mechanism is manually operated, the elevation angle θ
, ~θ4 could not be established automatically.

く課題を解決するための手段〉 上述する従来の課題を解決するため、本発明は、光信号
を所定の仰角で照射して航空機進入角度を指示する光学
系を備える航空灯器において、モータを含む回転駆動源
と、前記回転駆動源の回転軸に取付けたカムとにより、
前記光学系を搭載し一端側に回動支点を有するフレーム
の他端側を上下動させる仰角調整機構を構成させたこと
を特徴とする。
Means for Solving the Problems〉 In order to solve the above-mentioned conventional problems, the present invention provides an aircraft light device that is equipped with an optical system that directs an aircraft approach angle by emitting a light signal at a predetermined elevation angle. A rotary drive source including a rotary drive source and a cam attached to the rotating shaft of the rotary drive source,
The present invention is characterized in that an elevation adjustment mechanism is configured to vertically move the other end of a frame on which the optical system is mounted and which has a rotation fulcrum on one end.

く作用〉 回転駆動源によってカムを回転させた場合、回転軸心か
らカムの周面までの距離がカムの回転位置に応じて変化
する。このカムにより、光学系を搭載し一端側に回動支
点を有するフレームの他端側を上下動させることにより
、フレーム上の光学系の仰角が制御される。
Effect> When the cam is rotated by a rotational drive source, the distance from the rotational axis to the circumferential surface of the cam changes depending on the rotational position of the cam. This cam controls the elevation angle of the optical system on the frame by vertically moving the other end of the frame on which the optical system is mounted and which has a pivot point at one end.

ここで、仰角の単位時間当りの制御量はカムの角速度に
よって定まるので、角速度を低下させ、単位時間当りの
仰角の制御量を小さくすることにより、仰角の分解能を
微細化、高度化できる。カムの角速度は、回転駆動源に
備えられたモータの回転数を減速装置によって減速し、
回転軸の回転速度を低下させることにより、簡単に低下
させることができるので、仰角を微細な分解能で容易に
微調整できる。また、航空灯器の仰角が所定の角度に到
達時点で回転駆動源を停止させることにより、仰角を所
定の正確な値に設定できる。
Here, since the control amount of the elevation angle per unit time is determined by the angular velocity of the cam, by lowering the angular velocity and reducing the control amount of the elevation angle per unit time, the resolution of the elevation angle can be made finer and more sophisticated. The angular velocity of the cam is determined by reducing the rotation speed of the motor provided in the rotational drive source using a reduction gear.
This can be easily lowered by lowering the rotational speed of the rotating shaft, so the elevation angle can be easily fine-tuned with fine resolution. Furthermore, by stopping the rotational drive source when the elevation angle of the aircraft light device reaches a predetermined angle, the elevation angle can be set to a predetermined accurate value.

また、回転駆動源に結合されたカムによって光学系の仰
角を制御できるので、仰角変化試験を行なう場合、遠隔
制御によって、航空灯器から離れた仰角監視装置のある
位置で仰角制御を行ない、仰角監視装置を見ながら調整
することが可能になる。このため、従来、航空灯器側と
仰角監視側とにれぞれ1人づつ必要とした調整作業員が
1人で済み、仰角変化試験を容易に能率良く行なうこと
ができるようになる。
In addition, since the elevation angle of the optical system can be controlled by a cam connected to the rotational drive source, when conducting an elevation angle change test, the elevation angle can be controlled by remote control at the location of the elevation angle monitoring device, which is far from the aircraft light equipment. It becomes possible to make adjustments while viewing the monitoring device. For this reason, only one adjustment operator is required for each of the aircraft lighting device side and the elevation angle monitoring side, and the elevation angle change test can be performed easily and efficiently.

また、回転駆動源の制御によって仰角を制御できるので
、仰角の自動制御が可能となる。
Furthermore, since the elevation angle can be controlled by controlling the rotational drive source, automatic control of the elevation angle becomes possible.

〈実施例〉 第1図は本発明に係る航空灯器の部分断面図、第2図及
び第3図は同じく要部の拡大部分断面図である。図にお
いて、第8図、第9図と同一の参照符号は同一性ある構
成部分を示している。17は回転駆動源、18はカムで
あり、これらは仰角調整機構を構成する。
<Embodiment> FIG. 1 is a partial cross-sectional view of an aircraft lighting device according to the present invention, and FIGS. 2 and 3 are enlarged partial cross-sectional views of the main parts. In the figure, the same reference numerals as in FIGS. 8 and 9 indicate the same components. 17 is a rotational drive source, and 18 is a cam, which constitute an elevation adjustment mechanism.

回転駆動源17は、第2図に示すように、モータ171
に減速装置172を結合させ、減速装置172から出力
軸となる回転軸173を取り出す構造とし、カバー6の
底板61に取付けられたベース174上に固定して設け
られている。
The rotational drive source 17 includes a motor 171 as shown in FIG.
A speed reduction device 172 is coupled to the speed reduction device 172, and a rotary shaft 173 serving as an output shaft is taken out from the speed reduction device 172, and is fixedly provided on a base 174 attached to the bottom plate 61 of the cover 6.

175は減速装置172の端面にネジ止め等の手段によ
って固着された支持部材、176は支持部材175の一
端をベース174上に固着するネジ、177はベース1
74をカバー6の底板61に固定するネジである。
175 is a support member fixed to the end surface of the reduction gear 172 by means such as screwing; 176 is a screw that fixes one end of the support member 175 onto the base 174; 177 is the base 1
74 to the bottom plate 61 of the cover 6.

カム18はボールベアリング181の内径部にブツシュ
182を埋め込むと共に、ブツシュ182に対し、回転
駆動源17の回転軸173を、ボールベアリング181
の中心から△dだけ偏心して取付けである。ブツシュ1
82と回転軸173とは、スプリングピン19によって
一体的に結合しである。20はベース174上にネジ2
1によって取付は固定した軸受板、22は軸受板20に
装着したボールベアリングである。回転軸173の先端
部はボールベアリング22によって受けられている。ブ
ツシュ182に対し、回転駆動源17の回転軸173を
、ボールベアリング181の中心から△dだけ偏心して
取付けであるので、回転軸173を回転させた場合、ボ
ールベアリング181の周面は、偏心量Δdに応じた軌
跡(イ)を描く。
The cam 18 embeds a bushing 182 in the inner diameter of the ball bearing 181 and connects the rotating shaft 173 of the rotary drive source 17 to the bushing 182.
It is installed eccentrically by △d from the center. Bush 1
82 and the rotating shaft 173 are integrally connected by a spring pin 19. 20 is screw 2 on the base 174
1 is a fixed bearing plate, and 22 is a ball bearing mounted on the bearing plate 20. The tip of the rotating shaft 173 is received by a ball bearing 22. The rotary shaft 173 of the rotary drive source 17 is mounted eccentrically by Δd from the center of the ball bearing 181 with respect to the bush 182, so when the rotary shaft 173 is rotated, the circumferential surface of the ball bearing 181 is Draw a trajectory (a) according to Δd.

カム18の上方には、フレーム9の後端部に取付は固定
されたカムフォロア94を配置しである。カムフォロア
94はフレーム9にネジ941によって取付けられてお
り、カムフォロア94のカムとの接触部942はカム1
8のほぼ真上に位置し、カム18が回転したときに描く
軌跡(イ)により、下端面(ロ)がボールベアリング1
81の周面に当接して摺動し、振幅△dで上下方向に駆
動される。
A cam follower 94 fixedly attached to the rear end of the frame 9 is disposed above the cam 18. The cam follower 94 is attached to the frame 9 with screws 941, and the contact portion 942 of the cam follower 94 with the cam is connected to the cam 1.
The lower end surface (b) is located almost directly above the ball bearing 1 due to the locus (a) drawn when the cam 18 rotates.
It slides in contact with the circumferential surface of 81 and is driven in the vertical direction with an amplitude Δd.

カム18の構造に関し、ボールベアリング181とブツ
シュ182との組合せは1例であリ、第5図に示すよう
に、板カム18に溝183を設け、溝183内にカムフ
ォロア部材95を挿入した確動カム構造によって実現す
ることも可能である。
Regarding the structure of the cam 18, the combination of a ball bearing 181 and a bush 182 is only one example, and as shown in FIG. It is also possible to realize this by a dynamic cam structure.

〈発明の効果〉 以上述べたように、本発明によれば、次のような効果が
得られる。
<Effects of the Invention> As described above, according to the present invention, the following effects can be obtained.

(a)モータを含む回転駆動源と、前記回転駆動源の回
転軸に取付けたカムとにより、前記光学系を搭載し一端
側に回動支点を有するフレームの他端側を上下動させる
仰角調整機構を構成させたから、回転軸の回転速度の選
定により、仰角を微細な分解能で容易に微調整し得る航
空灯器を提供できる。
(a) Elevation angle adjustment using a rotary drive source including a motor and a cam attached to the rotating shaft of the rotary drive source to vertically move the other end of the frame on which the optical system is mounted and which has a pivot point at one end. Since the mechanism is constructed, it is possible to provide an aircraft light device in which the angle of elevation can be easily finely adjusted with fine resolution by selecting the rotation speed of the rotating shaft.

(b)仰角が所定の角度に到達時点で回転駆動源を停止
させることにより、仰角を所定の正確な値に設定し得る
航空灯器を提供できる。
(b) By stopping the rotational drive source when the elevation angle reaches a predetermined angle, it is possible to provide an aircraft lighting device that can set the elevation angle to a predetermined accurate value.

(c)回転駆動源によるカムの回転制御によって光学系
の仰角を制御できるので、仰角の遠隔制御が可能であり
、仰角変化試験を容易に能率良く行ない得る航空灯器を
提供できる。
(c) Since the elevation angle of the optical system can be controlled by controlling the rotation of the cam by the rotational drive source, remote control of the elevation angle is possible, and it is possible to provide an aircraft light device that allows elevation angle change tests to be performed easily and efficiently.

(d)回転駆動源によるカムの回転制御によって仰角制
御を行なうので、仰角自動制御の可能な航空灯器を提供
できる。
(d) Since the elevation angle is controlled by controlling the rotation of the cam by the rotational drive source, it is possible to provide an aircraft lamp capable of automatically controlling the elevation angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る航空灯器の部分断面図、第2図は
同じく要部の拡大部分断面図、第3図は同じく要部の拡
大部分断面図、第4図は本発明に係る航空灯器の別の実
施例における要部の断面図、第5図はPAPIの原理を
示す図、第6図はPAPIに使用される航空灯器の原理
的構成を示す図、第7図は航空灯器の外観斜視図、第8
図は第7図の要部における拡大部分断面図、第9図は投
光面側から見た部分破断面図である。 2・・・光源      3・・・フィルタ4・・・レ
ンズ     9・・・フレーム17・・・回転駆動源
 18・・・カム171・・・モータ  172・・・
減速装置第3図 94゜ 第4図 第5図 第7図
FIG. 1 is a partial sectional view of an aviation light device according to the present invention, FIG. 2 is an enlarged partial sectional view of the main part, FIG. 3 is an enlarged partial sectional view of the main part, and FIG. 4 is a partial sectional view of the main part. FIG. 5 is a diagram showing the principle of PAPI, FIG. 6 is a diagram showing the basic configuration of the aircraft lighting device used in PAPI, and FIG. External perspective view of aviation light equipment, No. 8
The figure is an enlarged partial sectional view of the main part of FIG. 7, and FIG. 9 is a partially broken sectional view seen from the light projection surface side. 2... Light source 3... Filter 4... Lens 9... Frame 17... Rotation drive source 18... Cam 171... Motor 172...
Deceleration gear Fig. 3 94゜ Fig. 4 Fig. 5 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1)光信号を所定の仰角で照射して航空機進入角度を
指示する光学系を備える航空灯器において、モータを含
む回転駆動源と、前記回転駆動源の回転軸に取付けたカ
ムとにより、前記光学系を搭載し一端側に回動支点を有
するフレームの他端側を上下動させる仰角調整機構を構
成させたことを特徴とする航空灯器。
(1) In an aviation lamp equipped with an optical system that directs an aircraft approach angle by emitting a light signal at a predetermined elevation angle, a rotary drive source including a motor and a cam attached to the rotation shaft of the rotary drive source, An aircraft lighting device comprising an elevation adjustment mechanism for vertically moving the other end of a frame on which the optical system is mounted and having a rotation fulcrum at one end.
JP63164695A 1988-07-01 1988-07-01 Aviation light Expired - Fee Related JP2683042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63164695A JP2683042B2 (en) 1988-07-01 1988-07-01 Aviation light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164695A JP2683042B2 (en) 1988-07-01 1988-07-01 Aviation light

Publications (2)

Publication Number Publication Date
JPH0215503A true JPH0215503A (en) 1990-01-19
JP2683042B2 JP2683042B2 (en) 1997-11-26

Family

ID=15798112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164695A Expired - Fee Related JP2683042B2 (en) 1988-07-01 1988-07-01 Aviation light

Country Status (1)

Country Link
JP (1) JP2683042B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279065A (en) * 2004-03-30 2005-10-13 Kokuyo Co Ltd Chair
JP2007314154A (en) * 2006-05-25 2007-12-06 Harumasa Tanaka Halmer caster
US9409819B2 (en) 2012-09-24 2016-08-09 Panasonic Corporation Water repellent sand mixture and water repellent sand structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250083B1 (en) * 2020-09-14 2021-05-10 한국광기술원 Precision approach path indicator lighting device using optical axis rotation and ellipsoid reflector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218441A (en) * 1982-06-14 1983-12-19 Honda Motor Co Ltd Adjuster of optical axis of lamp
JPS60119659U (en) * 1984-01-23 1985-08-13 アスモ株式会社 Optical axis adjustment device for retractable headlights

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218441A (en) * 1982-06-14 1983-12-19 Honda Motor Co Ltd Adjuster of optical axis of lamp
JPS60119659U (en) * 1984-01-23 1985-08-13 アスモ株式会社 Optical axis adjustment device for retractable headlights

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279065A (en) * 2004-03-30 2005-10-13 Kokuyo Co Ltd Chair
JP2007314154A (en) * 2006-05-25 2007-12-06 Harumasa Tanaka Halmer caster
US9409819B2 (en) 2012-09-24 2016-08-09 Panasonic Corporation Water repellent sand mixture and water repellent sand structure

Also Published As

Publication number Publication date
JP2683042B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US5485266A (en) Laser beam survey instrument having a tiltable laser beam axis and tilt detectors
US20040177523A1 (en) Multidirectional laser indicator
US6043879A (en) Automatic laser level
US4827387A (en) Two-axis beam steering system for use in automated light fixtures
SE0002713D0 (en) Device for horizontal and vertical adjustment of geodetic instruments
US4832425A (en) Rotation system for a rotating, tilting reflector
US4945459A (en) Two-axis beam steering system for use in automated light fixtures
JPH0215503A (en) Navigation lamp
CN100567893C (en) Self-balancing rotary laser
US6781689B2 (en) Continuous inspection apparatus
CN218327093U (en) Demonstration rack of head-up display
CN102927416A (en) Micro adjusting platform for monitoring device, and monitoring device
JP3170759B2 (en) Radio-controlled unmanned helicopter
US5200748A (en) Path guidance indication apparatus for vehicles or craft
KR100200357B1 (en) Measuring apparatus for light properties
JPH02124255A (en) Pattern simulator used for grinder
JPH0241605Y2 (en)
JP2917261B2 (en) Laser surveying machine
CN206248277U (en) For the uneven point automatic tracking device on dynamic wheelo balancer
JP2969022B2 (en) Laser surveying machine
CN101063739A (en) Light path regulating organ of projection display
CN215848940U (en) Concrete mixer truck material video monitoring device
JPS61283811A (en) Apparatus for automatically tracking surveying equipment
CN106352859A (en) Target plate component, laser marker component and working method thereof
CN208255511U (en) A kind of aligning regulating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees