JPH02154958A - Moisture separator for refrigerant - Google Patents

Moisture separator for refrigerant

Info

Publication number
JPH02154958A
JPH02154958A JP30743988A JP30743988A JPH02154958A JP H02154958 A JPH02154958 A JP H02154958A JP 30743988 A JP30743988 A JP 30743988A JP 30743988 A JP30743988 A JP 30743988A JP H02154958 A JPH02154958 A JP H02154958A
Authority
JP
Japan
Prior art keywords
moisture
refrigerant
gas refrigerant
flow path
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30743988A
Other languages
Japanese (ja)
Other versions
JP2669016B2 (en
Inventor
Keiichi Kitamura
圭一 北村
Shin Honda
伸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30743988A priority Critical patent/JP2669016B2/en
Publication of JPH02154958A publication Critical patent/JPH02154958A/en
Application granted granted Critical
Publication of JP2669016B2 publication Critical patent/JP2669016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To separate moisture from the refrigerant having a high moisture content by a method wherein a closed flow path that is connected to a gas refrigerant flow path is cooled to condense the incoming gas refrigerant, the liquid refrigerant condensed is returned to the gas refrigerant flow path through the closed flow path while contacting with the gas refrigerant in the closed flow path. CONSTITUTION:A portion of the gas refrigerant flowing out from a compressor 2 reaches a cooler 14 of a moisture separator 10 from a pipe 11, and is condensed into liquid refrigerant D that enters a water reservoir 17 dripping along the inner wall of a pipe 12. The liquid refrigerant overflowing from the water reservoir 17 falls down along a moisture transfer section 15, comes into contact with the gas refrigerant A, and the moisture is transferred from the liquid refrigerant to the gas refrigerant due to the Henry's law. The moisture concentration of the gas refrigerant increases as the gas refrigerant flows up, and the moisture concentration of the liquid refrigerant decreases as the liquid refrigerant flows down. When the moisture transfer makes progress and the moisture concentration exceeds the moisture saturated concentration during condensation of the gas refrigerant, the excess moisture is separated and retained in the water reservoir 17. Although glass wool 19 catches the moisture having a high surface tension, the liquid refrigerant having a low surface tension does not adhere to the glass wool and flows towards the moisture transfer section 15. Thus, the moisture is separated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒に含まれた水分を低減するための除水装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a water removal device for reducing moisture contained in a refrigerant.

(従来伎術) 冷媒に水が混入していると、冷媒を用いる設備、例えば
冷凍サイクルの金属部分の内部腐食を引き起こしたり、
膨張器で氷結して冷却性能の低下或はコンプレッサ等の
故障の原因となる。特にカーエアコン用の冷凍サイクル
では振動吸収のためゴムホースを多用せざるを得ず、こ
れらゴムホースを通して冷凍サイクル内に水分が入り易
い。
(Conventional technique) If water is mixed into the refrigerant, it may cause internal corrosion of the metal parts of the equipment that uses the refrigerant, such as the refrigeration cycle.
It may freeze in the expander and cause a decline in cooling performance or failure of the compressor, etc. In particular, in a refrigeration cycle for a car air conditioner, rubber hoses are often used to absorb vibrations, and moisture easily enters the refrigeration cycle through these rubber hoses.

このため、実開昭57−50669号公報、実開昭57
−54972号公報、実開昭5’ 8−55263号公
報などでは、冷凍サイクル内の例えば受液器に乾燥剤を
配設して除湿を行うことが提案されている。また、特開
昭59−157462号公報には、液体窒素を用いたコ
ールドトラップで冷媒を冷し、冷媒中の水分を氷結させ
て冷凍サイクル内の水分濃度を下げる方法が示されてい
る。
For this reason, Utility Model Application No. 57-50669, Utility Model Application No. 57
Japanese Unexamined Patent Publication No. 54972, Japanese Utility Model Application No. 5'8-55263, and the like propose dehumidification by disposing a desiccant in, for example, a liquid receiver in a refrigeration cycle. Furthermore, Japanese Patent Application Laid-open No. 157462/1984 discloses a method of cooling a refrigerant in a cold trap using liquid nitrogen to freeze water in the refrigerant to reduce the water concentration in the refrigeration cycle.

(発明の課題) しかしながら、乾燥剤を用いる方法では吸湿能力に限度
があり、水分を吸収するに従って取り残す水分が増大す
る。一方、コールドトラップによる方法は、極低温を得
るために特別の追加装置を要し、自動車用冷凍サイクル
などのスペースの限られた設備に適用し難い。
(Problem to be solved by the invention) However, the method using a desiccant has a limit to its moisture absorption ability, and as moisture is absorbed, the amount of moisture left behind increases. On the other hand, the method using a cold trap requires special additional equipment to obtain extremely low temperatures, and is difficult to apply to equipment with limited space such as an automobile refrigeration cycle.

従って、本発明の目的は、簡易かつコンパクトな構造で
永続的に冷媒の水分濃度を低減することのできる除水装
置の提供にある。
Therefore, an object of the present invention is to provide a water removal device that has a simple and compact structure and can permanently reduce the water concentration of a refrigerant.

(課題を達成するための手段) 本発明は、一定温度で一定量の溶剤(この場合冷媒)に
含まれる溶質(この場合水分)の量はその溶質の分圧に
比例するという所謂ヘンリーの法則に基づき、設備内の
ガス冷媒を流れのよどみ部分に導入・冷却し凝縮させて
液冷媒を作り、この液冷媒から流れのよどみ部分のガス
冷媒へ水分を移すと共に、高水分濃度となったガス冷媒
をひき続いて凝縮させることにより余剰の水分の析出を
行うものである。
(Means for Achieving the Object) The present invention is based on the so-called Henry's law, which states that the amount of solute (water in this case) contained in a certain amount of solvent (refrigerant in this case) at a constant temperature is proportional to the partial pressure of that solute. Based on this, the gas refrigerant in the equipment is introduced into the stagnation part of the flow, cooled and condensed to create a liquid refrigerant, and the moisture is transferred from this liquid refrigerant to the gas refrigerant in the stagnation part of the flow, and the gas with a high moisture concentration is Excess moisture is precipitated by successively condensing the refrigerant.

本発明の1つの特徴によれば、ガス冷媒流路に接続した
閉鎖流路を含み、この閉鎖流路を冷却して流入したガス
冷媒を凝縮させ、閉鎖流路内のガス冷媒と接触して水分
をガス冷媒へ移すように凝縮した液冷媒を該閉鎖流路に
沿ってガス冷媒流路へ戻すと共に、この高水分濃度のガ
ス冷媒から凝縮の際に水分を析出させる冷媒用除水装置
が提供される。
According to one feature of the invention, the invention includes a closed channel connected to the gas refrigerant channel, the closed channel being cooled to condense the gas refrigerant entering the closed channel, and contacting the gas refrigerant in the closed channel. A refrigerant water removal device is provided that returns the condensed liquid refrigerant to the gas refrigerant flow path along the closed flow path so as to transfer moisture to the gas refrigerant, and also precipitates water from this high water concentration gas refrigerant during condensation. provided.

(作用、) 上述の構成では、閉鎖流路が流れのよどみ部分となり、
その中の流れは冷媒の凝縮によるもののみで流速が非常
に小さく、凝縮した液冷媒と流入するガス冷媒がほぼ平
衡状態にある。このため、両冷媒の水分濃度にヘンリー
の法則が成り立ち、飽和水分濃度の低い液冷媒から高い
ガス冷媒へ水分が移り、高水分濃度となったガス冷媒が
続いて凝縮する際に液冷媒の飽和濃度を越える量の水分
が析出する。かくして、低水濃度となった液冷媒を設備
へ戻すことで、同設備内の冷媒の水分濃度が下がる。作
動中に冷媒が循環する冷凍サイクルなどの設備では、こ
の作用の繰り返しにより、冷媒から水分が次第に除去さ
れる。
(Function) In the above configuration, the closed flow path becomes a stagnation part of the flow,
The flow inside is only due to the condensation of the refrigerant, and the flow rate is very low, and the condensed liquid refrigerant and the inflowing gas refrigerant are almost in equilibrium. Therefore, Henry's law holds true for the moisture concentration of both refrigerants, and moisture transfers from the liquid refrigerant with a low saturated moisture concentration to the gas refrigerant with a high saturated moisture concentration, and when the gas refrigerant with a high moisture concentration subsequently condenses, the liquid refrigerant becomes saturated. Water precipitates in an amount exceeding the concentration. By returning the liquid refrigerant with a low water concentration to the equipment, the water concentration of the refrigerant in the equipment is reduced. In equipment such as refrigeration cycles in which refrigerant circulates during operation, water is gradually removed from the refrigerant by repeating this action.

(実施例) 以下、添付図面に示す実施例に基づいて本発明を説明す
る。
(Example) Hereinafter, the present invention will be described based on an example shown in the accompanying drawings.

本発明の除水装置は、第10a図から第10c図に示す
様な作動原理に基づいている。すなわち、液相冷媒より
気相冷媒の飽和水分濃度の方が大きい際に:(1)ガス
冷媒Aを閉鎖流路Bへ導入し、風Cにより冷却して凝縮
させる(第10a図、第1、Ob図);(2)凝縮した
液冷媒りは重力により流下するが、前段で述べた通り同
流路内ではガス冷媒と液冷媒がほぼ平衡状態で両者の界
面にてヘンリーの法則が成り立ち、飽和水分濃度の低い
液冷媒から水分Eがガス冷媒中へ移動する(第JOb図
、第10c図);(3)こうして出来た高水分濃度のガ
ス冷媒をひき続き冷却し凝縮させることにより、液冷媒
に溶は込めなくなった水分を析出させ、液冷媒Fを閉鎖
流路から冷媒の流れに戻す(第10c図)。かくして、
上述の (+1、(2) 、(3)の過程を連続して行
うことにより、水分を取り除いて純粋な冷媒を得ること
ができる。
The water removal device of the present invention is based on the operating principle as shown in FIGS. 10a to 10c. That is, when the saturated water concentration of the gas phase refrigerant is higher than that of the liquid phase refrigerant: (1) Gas refrigerant A is introduced into the closed channel B, and is cooled and condensed by the wind C (Fig. 10a, (2) The condensed liquid refrigerant flows down due to gravity, but as mentioned in the previous section, the gas refrigerant and liquid refrigerant are in almost equilibrium state in the same flow path, and Henry's law holds at the interface between the two. , moisture E moves from the liquid refrigerant with a low saturated moisture concentration into the gas refrigerant (Figure JOb, Figure 10c); (3) By continuing to cool and condense the gas refrigerant with a high moisture concentration thus created, The water that can no longer be dissolved in the liquid refrigerant is precipitated, and the liquid refrigerant F is returned to the refrigerant flow from the closed channel (FIG. 10c). Thus,
By sequentially performing the above steps (+1, (2), and (3)), water can be removed and a pure refrigerant can be obtained.

続いて、カーエアコン用の冷凍サイクル内の冷媒R1,
2から水を分離する場合の実施例について説明する。第
1a図に概略示す様に、除水装置10はガス冷媒管路1
1に立設しかつ上端を閉じた管12より成る閉鎖流路1
3を含むものである。
Next, refrigerant R1 in the refrigeration cycle for the car air conditioner,
An example in which water is separated from 2 will be described. As schematically shown in FIG. 1a, the water removal device 10 includes a gas refrigerant pipe 1
A closed flow path 1 consisting of a tube 12 which is erected and whose upper end is closed.
3.

この閉鎖流路13の上部は外気で冷やされる冷却部14
となっており、この冷却部14の下方には液冷媒が流下
する水分移動部15と、グラスウール16を含んだ貯水
部17とが設けられている。
The upper part of this closed flow path 13 is a cooling section 14 that is cooled by outside air.
Below this cooling section 14, a moisture transfer section 15 through which liquid refrigerant flows and a water storage section 17 containing glass wool 16 are provided.

除水装置10は、第2図に示す如きカーエアコン用冷凍
サイクルに組み込まれている。この冷凍サイクルはコン
プレッサ2、コンデンサ3、レシ−バ4、膨張弁5、ぞ
してエバポレータ6を管路により順次つないで形成され
、それ自体の構成は従来のものと同様で良く、ここでは
詳細な説明を省略する。除水装置10はコンプレッサ2
とコンデンサ3の間に配置され、管12は継手を介して
ガス冷媒管路11に接続される。
The water removal device 10 is incorporated into a refrigeration cycle for a car air conditioner as shown in FIG. This refrigeration cycle is formed by sequentially connecting a compressor 2, a condenser 3, a receiver 4, an expansion valve 5, and an evaporator 6 through pipes. Omit detailed explanation. The water removal device 10 is a compressor 2
and the condenser 3, and the pipe 12 is connected to the gas refrigerant line 11 via a joint.

なお、除水装置110の冷凍サイクルへの取付位置は、
冷媒が飽和ガス状態にあるコンデンサ3からレシーバ4
の間が最も適しており、例えばレシーバ・タンクの上部
でも良く、この場合は前述の取付位置に比べてガス冷媒
の過熱度の分だけ冷却の面で有利である。また、冷凍サ
イクルの低圧側管路に除水装置10を配設しても良いが
、この場合には前述の高圧側設置がコンデンサ3への冷
却風を利用出来るに対して、除水装置の冷却部14を冷
やすために低圧冷媒の温度以下の低温源が必要となる。
The mounting position of the water removal device 110 on the refrigeration cycle is as follows:
From the condenser 3 to the receiver 4 where the refrigerant is in a saturated gas state
For example, the upper part of the receiver tank may be used, and in this case, compared to the above-mentioned mounting position, cooling is advantageous by the degree of superheating of the gas refrigerant. Further, the water removal device 10 may be installed in the low pressure side pipe of the refrigeration cycle, but in this case, whereas the above-mentioned installation on the high pressure side can utilize the cooling air to the condenser 3, the water removal device 10 In order to cool the cooling unit 14, a low temperature source that is lower than the temperature of the low pressure refrigerant is required.

除水装置10の構造をより詳しく述べると、管12はス
チール製で耐食性のため内部にフェノール等のコーティ
ングが施されている。管12の下部には第3図に見られ
る様に、合成樹脂製のパイプ18が圧入され、貯水部1
7を形成している。
To describe the structure of the water removal device 10 in more detail, the pipe 12 is made of steel, and the inside is coated with phenol or the like for corrosion resistance. As shown in FIG. 3, a synthetic resin pipe 18 is press-fitted into the lower part of the pipe 12, and the water storage part 1
7 is formed.

パイプ18は下端の外径を管12の内径より大きくかつ
それより上方の外径を管12の内径より小さく設定され
ていて、圧入により下端が管12内に固定されると共に
それより上方では管12の内壁との間に空間が画定され
る。この空間にはグラスウール19が詰め込まれ、また
パイプ18の内壁は水分移動部15を構成している。管
12は下部のナツト20により、シール部材21を介し
て、ガス冷媒管路11に設けた継手へ締付けられるよう
になっている。
The pipe 18 has an outer diameter at the lower end larger than the inner diameter of the pipe 12 and an outer diameter above it smaller than the inner diameter of the pipe 12, and the lower end is fixed within the pipe 12 by press-fitting, and the pipe 18 above it is fixed within the pipe 12. A space is defined between the 12 inner walls. This space is filled with glass wool 19, and the inner wall of the pipe 18 constitutes a moisture transfer section 15. The pipe 12 is tightened by a lower nut 20 via a sealing member 21 to a joint provided in the gas refrigerant line 11.

次に、上述の構成になる除水装置10の作動を述べる。Next, the operation of the water removal device 10 configured as described above will be described.

なお、説明の便宜上、ここではコンプレッサ2を出た過
熱ガス状の冷媒温度を60℃とし、冷凍サイクルの作動
開始時の冷媒中の水分濃度を100 PPMとする。ま
た、温度60℃における冷媒R−12の飽和水分濃度は
、第4図から判る通り、液相で400 ppmで気相で
は1.500ppmである。
For convenience of explanation, the temperature of the superheated gaseous refrigerant exiting the compressor 2 is assumed to be 60° C., and the water concentration in the refrigerant at the start of operation of the refrigeration cycle is assumed to be 100 PPM. Further, as can be seen from FIG. 4, the saturated water concentration of refrigerant R-12 at a temperature of 60° C. is 400 ppm in the liquid phase and 1.500 ppm in the gas phase.

冷凍サイクルの作動中、コンプレッサ2を出たガス冷媒
の一部Aは、管路11から除水装置10に流入し、流路
13を通って冷却部14に達する(第1a図)。ガス冷
媒Aはここで凝縮して液冷媒りとなり、管12の内壁を
ったって流れ貯水部17へ入る。ひき続くガス冷媒の凝
縮に伴い、貯水部17の液冷却も増大し、貯水部からあ
ふれ出す。あふれ出した液冷媒は、水分移動部15に沿
って重力で落下し、回部15に充満しているガス冷媒A
と接触する。
During operation of the refrigeration cycle, a portion A of the gas refrigerant leaving the compressor 2 flows into the water removal device 10 through the line 11 and reaches the cooling section 14 through the flow path 13 (FIG. 1a). The gas refrigerant A condenses here to become a liquid refrigerant, flows down the inner wall of the pipe 12, and enters the water storage section 17. As the gas refrigerant continues to condense, the liquid cooling in the water reservoir 17 also increases and overflows from the water reservoir. The overflowing liquid refrigerant falls by gravity along the moisture transfer section 15, and the gas refrigerant A filling the circulating section 15
come into contact with.

この様に、液冷媒とガス冷媒が共存する状態になると、
除水装置の水分移動部15内でガス冷媒の水分濃度Cg
(ppm)と液冷媒の水分濃度CI(ppm)との間に
ヘンリーの法則が成立し、60℃における冷媒R−12
の飽和水分濃度(第4図参照)から1500ppi /
400ppm =3.75と一定になる。従って、液冷
媒りが水分移動部15を落下する際に、その水分濃度C
Iと液冷媒に接触するガス冷媒Aの少なくとも界面層の
水分濃度Cg(いずれも冷凍サイクルの作動開始時には
10100ppがCg=3.75CIの関係になるまで
、液冷媒からガス冷媒へ水分が移動する。第1b図はこ
の状態を示している。この結果、ガス冷媒全体の水分濃
度Cgは水分移動部15を上昇するに従って高くなり、
除水装置10への流入時のCgl (100++pm)
から水分移動部の上端でCg 2  (1,00+’l
’1以上)となる。一方、液冷媒の水分濃度C1は下降
するに従って低くなり、除水装置10を流出する際にC
I、  (1001111111以下)となる。
In this way, when liquid refrigerant and gas refrigerant coexist,
The moisture concentration Cg of the gas refrigerant in the moisture transfer unit 15 of the water removal device
(ppm) and the water concentration CI (ppm) of the liquid refrigerant, Henry's law is established, and the refrigerant R-12 at 60°C
from the saturated water concentration (see Figure 4) to 1500 ppi/
It becomes constant at 400ppm = 3.75. Therefore, when the liquid refrigerant falls through the moisture transfer section 15, its moisture concentration C
Moisture concentration Cg of at least the interface layer of gas refrigerant A that contacts I and liquid refrigerant (in both cases, at the start of operation of the refrigeration cycle, moisture moves from the liquid refrigerant to the gas refrigerant until 10100 pp becomes the relationship Cg = 3.75 CI) 1b shows this state. As a result, the moisture concentration Cg of the entire gas refrigerant increases as it moves up the moisture transfer section 15.
Cgl when flowing into the water removal device 10 (100++pm)
Cg 2 (1,00+'l
'1 or more). On the other hand, the water concentration C1 of the liquid refrigerant decreases as it descends, and when it flows out of the water removal device 10, the water concentration C1 decreases.
I, (1001111111 or less).

冷却部14に達したガス冷媒はここで水分濃度Cg 2
のまま凝縮するが、水分の移動が進んでガス冷媒の水分
濃度が400ppm以上になるき、凝縮の際に液冷媒の
飽和水分濃度を越えた余剰の水分Eが析出する。
The gas refrigerant that has reached the cooling section 14 has a moisture concentration Cg 2
However, as the movement of moisture progresses and the moisture concentration of the gas refrigerant reaches 400 ppm or more, excess moisture E exceeding the saturated moisture concentration of the liquid refrigerant precipitates during condensation.

析出した水分Eは当初その表面張力で冷却部14の内壁
に付着しているが、析出水分の増加に伴って重力により
落下し、貯水部17にたまる。この貯水部17には、前
述の様に、水ぬれ性が良くかつ水乏の界面張力の大きい
グラスウール19が詰め込まれている。そのため、表面
張力の大きい水分(δ=6.74XL03kg/m  
60℃)はグラスウール19に付着して捕捉されるが、
表面張力の非常に小さい冷媒R−12(δ=0. 4X
10−3kg/m  60℃)はグラスウール19に付
着することなく水分移動部15へ流れる。かくして、冷
媒から水分を分離することができる。
The precipitated water E initially adheres to the inner wall of the cooling section 14 due to its surface tension, but as the precipitated water increases, it falls due to gravity and accumulates in the water storage section 17. As described above, this water storage portion 17 is filled with glass wool 19 which has good water wettability and a large interfacial tension when water is depleted. Therefore, water with high surface tension (δ=6.74XL03kg/m
60°C) is attached to the glass wool 19 and captured,
Refrigerant R-12 with extremely low surface tension (δ=0.4X
10-3 kg/m (60°C) flows to the moisture transfer section 15 without adhering to the glass wool 19. In this way, water can be separated from the refrigerant.

なお、水分移動部15の長さを伸すことによって、ガス
冷媒への加湿量を増大させ、ガス冷媒を容易に400 
ppm以上の水分濃度とすることができる。この様に構
成すれば、冷凍サイクル側の冷媒の水分濃度が非常に低
い場合であっても、迅速に除湿を行うことが可能である
Note that by increasing the length of the moisture transfer section 15, the amount of humidification to the gas refrigerant can be increased, and the gas refrigerant can be easily
The water concentration can be higher than ppm. With this configuration, even if the moisture concentration of the refrigerant on the refrigeration cycle side is very low, it is possible to quickly dehumidify.

次に、本発明の他の実施例による除水装置を、第5図か
ら第8b図を参照して説明する。これら実施例の除水装
置は前述の実施例と同様な基本構造で良く、ここでは相
違点のみを概略的に述べる。
Next, a water removal device according to another embodiment of the present invention will be described with reference to FIGS. 5 to 8b. The water removal devices of these embodiments may have the same basic structure as the embodiments described above, and only the differences will be briefly described here.

第5図に示す除水装置30は、その冷却部34に多数の
冷却フィン35を設けたものである。冷却フィン35は
溶接、圧力等の公知の方法によって冷却部34の外周に
固定され、冷却部34の放熱性を向上する。この構成に
より、単位時間当りの冷媒凝縮量が増加し、除水装置3
0の除湿速度が増大する。なお、除湿速度の向上のため
には、内壁に凹凸を設けるなど冷却部34内の熱伝達性
を増大しても良い。
The water removal device 30 shown in FIG. 5 has a cooling section 34 provided with a large number of cooling fins 35. The cooling fins 35 are fixed to the outer periphery of the cooling unit 34 by a known method such as welding or pressure, and improve the heat dissipation of the cooling unit 34. With this configuration, the amount of refrigerant condensed per unit time increases, and the water removal device 3
0 dehumidification rate increases. Note that in order to improve the dehumidification rate, heat transfer within the cooling section 34 may be increased, such as by providing unevenness on the inner wall.

第6a図に示す除水袋rj140は、液冷媒とガス冷媒
の接触時間及び面積を増すために水分移動部45内にら
せん状の段46を備えている。第6b図に示す様に、段
46はらせん状に成形された金属や合膚樹脂材料などの
弾性片で、水分移動部45内に巻き縮めて挿入されその
反発力で固定する。
The water removal bag rj 140 shown in FIG. 6a is provided with a spiral step 46 in the moisture transfer section 45 in order to increase the contact time and area between the liquid refrigerant and the gas refrigerant. As shown in FIG. 6b, the step 46 is a helically formed elastic piece of metal or synthetic resin material, which is rolled and inserted into the moisture transfer section 45 and fixed by its repulsive force.

第7図に示す除水装置では、同じ目的で水分移動部55
内にコイルスプリング56を取り付けている。液冷媒は
、同図中に矢印で示す如く、スプリング56に沿って水
分移動部55内をらせん状に流下する。このため、液冷
媒とガス冷媒が比較的長時間接触し、水分の移動が十分
に行われる。
In the water removal device shown in FIG.
A coil spring 56 is attached inside. The liquid refrigerant spirally flows down inside the moisture moving part 55 along the spring 56, as shown by the arrow in the figure. Therefore, the liquid refrigerant and the gas refrigerant are in contact for a relatively long period of time, and moisture is sufficiently transferred.

本発明による除水装置はこれまで説明した実施例の如き
二重管構造に限られるものではなく、例えば第8a図に
示すように、冷却部64と貯水部67の間から水分移動
部65の管路が分岐する構造としても良い。この実施例
の除水装置60はさらに、析出した水分を貯水部67か
ら外部へ排出するようになっている。このため、貯水部
67の下端が開放されると共にその径が拡大され、ここ
イ にポリffミドPIなどの水透過性が良くかつ冷媒透過
性の小さい材質の透過板63が取り付けられ、その上方
にグラスウール66が収納されている。
The water removal device according to the present invention is not limited to the double pipe structure as in the embodiments described so far. For example, as shown in FIG. It is also possible to have a structure in which the pipeline branches. The water removal device 60 of this embodiment is further configured to discharge precipitated water from the water storage section 67 to the outside. Therefore, the lower end of the water storage section 67 is opened and its diameter is expanded, and a transmission plate 63 made of a material with good water permeability and low refrigerant permeability, such as polyFFmide PI, is attached here, and the upper end thereof is Glass wool 66 is stored in the .

透過板63は貯水部67下端の拡径部に嵌合し、その下
に多数の通し孔を穿ったパンチプレート68とパツキン
69を当てて、拡径部の下縁を内方にかしめることで除
水装置160に固定される。
The transmission plate 63 is fitted into the enlarged diameter portion at the lower end of the water storage portion 67, and a punch plate 68 with a large number of through holes and a packing 69 are placed under it to swage the lower edge of the enlarged diameter portion inward. is fixed to the water removal device 160.

本実施例の除水装置60では、透過板63内側の貯水部
67は析出した水分で相対湿度100%であり、かつ内
圧が高いため水蒸気分圧が高い。
In the water removal device 60 of this embodiment, the water storage section 67 inside the permeable plate 63 has a relative humidity of 100% due to precipitated water, and has a high internal pressure, so the water vapor partial pressure is high.

一方、透過板63の外側は大気にさらされ、水蒸気分圧
が低いので、貯水部67内の水分が分圧差により透過板
63を通して除水装置外へ放出される。
On the other hand, since the outside of the permeable plate 63 is exposed to the atmosphere and has a low water vapor partial pressure, the water in the water storage section 67 is discharged to the outside of the water removal device through the permeable plate 63 due to the partial pressure difference.

本発明の除水装置は前述の冷凍サイクル以外にも冷媒を
用いる多くの設備に適用可能であり、例えば第9a図に
示す如き冷媒製造システムの乾燥塔70とすることもで
きる。この場合、第9b図に見られる様に、乾燥塔70
となる除水装置は前述の実施例と同様な構成で良いが、
乾燥塔70上流の洗浄塔を出た冷媒が液体状態である場
合、乾燥塔70の上流側に加熱装置71を設けて、管路
を流れる冷媒をガス化する必要がある。この実施例でも
、前述の実施例の場合と同様に、乾燥塔70内でガス冷
媒の凝縮および液冷媒からガス冷媒への水分移動が行わ
れ、下流側の精流基へ流れる冷媒から水分を除去する。
The water removal device of the present invention can be applied to many facilities that use refrigerants in addition to the above-mentioned refrigeration cycle, and can be used, for example, as a drying tower 70 of a refrigerant production system as shown in FIG. 9a. In this case, as seen in Figure 9b, the drying tower 70
The water removal device may have the same configuration as the above embodiment, but
When the refrigerant exiting the cleaning tower upstream of the drying tower 70 is in a liquid state, it is necessary to provide a heating device 71 upstream of the drying tower 70 to gasify the refrigerant flowing through the pipes. In this embodiment as well, as in the previous embodiment, condensation of the gas refrigerant and transfer of moisture from the liquid refrigerant to the gas refrigerant are performed in the drying tower 70, and moisture is removed from the refrigerant flowing to the downstream stream group. Remove.

なお、以上の説明では、各実施例の貯水部にグラスウー
ルを詰めるとしたが、これに代えて乾燥剤を用いても良
い。この場合、従来技術について述べた通り乾燥剤の吸
湿能力には限度が有るものの、従来技術と異って本発明
の除水装置は乾燥剤の吸湿能力にかかわらず除湿を行う
ものであるため、除湿能力の大幅な低下を招かない。
In addition, in the above description, although the water storage part of each Example was filled with glass wool, a desiccant may be used instead. In this case, although there is a limit to the moisture absorption capacity of the desiccant as described in the related art, unlike the conventional technology, the water removal device of the present invention performs dehumidification regardless of the moisture absorption capacity of the desiccant. Does not cause a significant decrease in dehumidification capacity.

(発明の効果) 本発明の説明から明らかであろうが、本発明はガス冷媒
流路に閉鎖流路を設け、この閉鎖流路を冷却するといっ
た簡易な構造で、永続的かつ確実に冷媒の水分濃度を低
減するものである。そのため、冷媒を用いる多くの設備
に経済的に用いることができ、これら設備の信頼性なら
びに寿命改善に寄与し得るものである。
(Effects of the Invention) As will be clear from the description of the present invention, the present invention has a simple structure in which a closed flow path is provided in the gas refrigerant flow path and this closed flow path is cooled, and the refrigerant is permanently and reliably cooled. It reduces moisture concentration. Therefore, it can be economically used in many facilities that use refrigerants, and can contribute to improving the reliability and life of these facilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は本発明の除水装置の第1実施例を示す概略図
、第1b図は、その作動を説明するための線図、第2図
は第1a図の除水装置を組み込んだ冷凍サイクルの構成
図、第3図は第1a図の除水装置の構造を詳細に示す断
面図、第4図は冷媒R−12の飽和水分濃度を示す線図
、第5図は本発明の除水装置の第2実施例を示す概略図
、第6a図はさらに第3実施例を示す概略図、第6b図
は第3実施例の要部を拡大して示す部分断面図、第7図
は第3実施例の変更例を示す部分断面図、第8a図は本
発明の除水装置の第4実施例を示す概略図、第8b図は
第4実施例に組み付けられる構成部品を示す斜視図、第
9a図は本発明の除水装置を組み込んだ冷媒製造システ
ムの構成図、第9b図はその要部を示す概略図、そして
第10a図から第10c図は本発明の除水装置の作動説
明図である。 図中、10.30.40.60・・・・・・除水装置、
11・・・・・・ガス冷媒管路、13・・・・・・閉鎖
流路、14.34.64・・・・・・冷却部、?5. 
45. 55゜65・・・・・・水分移動部、17.6
7・・・・・・貯水部、70・・・・・・乾燥塔、A・
・・・・・ガス冷媒、D・・・・・・液冷媒、E・・・
・・・水分。
Fig. 1a is a schematic diagram showing a first embodiment of the water removal device of the present invention, Fig. 1b is a diagram for explaining its operation, and Fig. 2 is a refrigeration system incorporating the water removal device of Fig. 1a. A block diagram of the cycle, Figure 3 is a sectional view showing the structure of the water removal device in Figure 1a in detail, Figure 4 is a diagram showing the saturated water concentration of refrigerant R-12, and Figure 5 is a diagram showing the structure of the water removal device of Figure 1a. FIG. 6a is a schematic diagram showing a second embodiment of the water device, FIG. 6a is a schematic diagram further showing a third embodiment, FIG. 6b is a partial sectional view showing an enlarged main part of the third embodiment, and FIG. 7 is a schematic diagram showing a third embodiment. FIG. 8a is a schematic diagram showing a fourth embodiment of the water removal device of the present invention, and FIG. 8b is a perspective view showing components assembled into the fourth embodiment. , FIG. 9a is a block diagram of a refrigerant production system incorporating the water removal device of the present invention, FIG. 9b is a schematic diagram showing the main parts thereof, and FIGS. 10a to 10c are operation diagrams of the water removal device of the present invention. It is an explanatory diagram. In the diagram, 10.30.40.60...Water removal device,
11...Gas refrigerant pipe, 13...Closed channel, 14.34.64...Cooling section, ? 5.
45. 55゜65...Moisture transfer part, 17.6
7...Water storage section, 70...Drying tower, A.
...Gas refrigerant, D...Liquid refrigerant, E...
···moisture.

Claims (3)

【特許請求の範囲】[Claims] (1) ガス冷媒流路に接続した閉鎖流路を含み、この
閉鎖流路を冷却して流入したガス冷媒を凝縮させ、閉鎖
流路内のガス冷媒と接触して水分をガス冷媒へ移すよう
に凝縮した液冷媒を該閉鎖流路に沿つてガス冷媒流路へ
戻すと共に、この高水分濃度のガス冷媒から凝縮の際に
水分を析出させることを特徴とする冷媒用除水装置。
(1) It includes a closed flow path connected to the gas refrigerant flow path, and is configured to cool the closed flow path to condense the gas refrigerant that has flown in, and to contact the gas refrigerant in the closed flow path to transfer moisture to the gas refrigerant. A water removal device for a refrigerant, characterized in that the liquid refrigerant condensed in water is returned to the gas refrigerant flow path along the closed flow path, and water is precipitated from the gas refrigerant having a high water concentration during condensation.
(2) 冷凍サイクル用除水装置にして、冷凍サイクル
の凝縮器と受液器の間の高圧ガス冷媒流路に接続しかつ
上端を閉じた管より成る閉鎖流路を含み、前記管の上方
部分を冷却してこの閉鎖流路に流入したガス冷媒を凝縮
させ、凝縮した液冷媒を前記管に沿つて流下させガス冷
媒と接触してガス冷媒へ水分を移させつつ冷凍サイクル
へ戻すと共に、この高水分濃度となつたガス冷媒から凝
縮の際に水分を析出させ、前記管内の冷却部分の下方に
貯水部分を設けて析出した水分を捕捉することを特徴と
する冷凍サイクル用除水装置。
(2) A water removal device for a refrigeration cycle, including a closed flow path consisting of a pipe connected to a high-pressure gas refrigerant flow path between a condenser and a liquid receiver of the refrigeration cycle and closed at an upper end, above the pipe. The part is cooled to condense the gas refrigerant that has entered the closed flow path, and the condensed liquid refrigerant is allowed to flow down the tube and come into contact with the gas refrigerant to transfer moisture to the gas refrigerant while returning it to the refrigeration cycle; A water removal device for a refrigeration cycle, characterized in that moisture is precipitated from the gas refrigerant having a high moisture concentration during condensation, and a water storage portion is provided below the cooling portion in the pipe to capture the precipitated moisture.
(3) 捕捉した水をポリイミドよりなる透過板を透過
させることによりガス冷媒流路外の大気へ放出すること
を特徴とする請求項1又は2に記載の冷媒用除水装置。
(3) The refrigerant water removal device according to claim 1 or 2, characterized in that the captured water is transmitted to the atmosphere outside the gas refrigerant flow path by passing through a transmission plate made of polyimide.
JP30743988A 1988-12-05 1988-12-05 Dewatering device for refrigerant Expired - Fee Related JP2669016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30743988A JP2669016B2 (en) 1988-12-05 1988-12-05 Dewatering device for refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30743988A JP2669016B2 (en) 1988-12-05 1988-12-05 Dewatering device for refrigerant

Publications (2)

Publication Number Publication Date
JPH02154958A true JPH02154958A (en) 1990-06-14
JP2669016B2 JP2669016B2 (en) 1997-10-27

Family

ID=17969088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30743988A Expired - Fee Related JP2669016B2 (en) 1988-12-05 1988-12-05 Dewatering device for refrigerant

Country Status (1)

Country Link
JP (1) JP2669016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566600A1 (en) * 2004-02-20 2005-08-24 Delphi Technologies, Inc. Desiccant unit
JP2011047634A (en) * 2009-07-29 2011-03-10 Showa Denko Kk Heat exchanger
JP2012159265A (en) * 2011-02-02 2012-08-23 Denso Corp Dewatering device for refrigerant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566600A1 (en) * 2004-02-20 2005-08-24 Delphi Technologies, Inc. Desiccant unit
JP2011047634A (en) * 2009-07-29 2011-03-10 Showa Denko Kk Heat exchanger
JP2012159265A (en) * 2011-02-02 2012-08-23 Denso Corp Dewatering device for refrigerant

Also Published As

Publication number Publication date
JP2669016B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US4939903A (en) Refrigerant recovery and purification system and method
US5301520A (en) Water removing device in refrigerating system
CA1105728A (en) Refrigerant accumulator and method of manufacture thereof
JP2000227265A (en) Refrigerant condenser integrated with liquid receiver
JP4032548B2 (en) Receiver integrated refrigerant condenser
JPH02154958A (en) Moisture separator for refrigerant
US5787573A (en) Method of making air conditioner receiver dryer
KR20100020173A (en) Refrigeration cycle with heat exchanger
JP3134435B2 (en) Refrigerator water removal equipment
US20120210745A1 (en) Drier and refrigerating cycle
JP3361765B2 (en) Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP4221823B2 (en) Receiver integrated refrigerant condenser
JP3158596B2 (en) Refrigerator water removal equipment
JP3751091B2 (en) Water removal trial operation method of refrigeration cycle apparatus and refrigeration cycle apparatus
JP2559220Y2 (en) Refrigeration equipment
JPS6298158A (en) Refrigeration cycle
JPH01196472A (en) Method and device for retrieving refrigerant
KR100193437B1 (en) Refrigeration cycle of air conditioner with intermediate cooler attached to dryer
JPH01277175A (en) Refrigerating cycle
JPH0989398A (en) Refrigerating cycle
KR0124664Y1 (en) Freezer
KR200257246Y1 (en) Cooling device for a air conditioner and a refrigerator
KR20240051445A (en) Integral pipe for refrigerating cycle, manufacturing system and method thereof
KR100290544B1 (en) Device for condensing of air conditioner for cooling
JPH10141811A (en) Oil separator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees