JPH02154148A - Inspecting device for structure - Google Patents

Inspecting device for structure

Info

Publication number
JPH02154148A
JPH02154148A JP63306847A JP30684788A JPH02154148A JP H02154148 A JPH02154148 A JP H02154148A JP 63306847 A JP63306847 A JP 63306847A JP 30684788 A JP30684788 A JP 30684788A JP H02154148 A JPH02154148 A JP H02154148A
Authority
JP
Japan
Prior art keywords
self
mobile dolly
flaw detection
wall
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306847A
Other languages
Japanese (ja)
Other versions
JP2651382B2 (en
Inventor
Kazuto Sawaragi
椹木 和人
Kiyoshi Tachibana
橘 清志
Junji Nakayama
中山 淳二
Tomio Aoyama
青山 富夫
Kyoichi Yoshioka
京一 吉岡
Takeo Omichi
武生 大道
Akihisa Okino
晃久 沖野
Hiroyuki Shudo
首藤 浩行
Shinichi Murakawa
村川 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63306847A priority Critical patent/JP2651382B2/en
Publication of JPH02154148A publication Critical patent/JPH02154148A/en
Application granted granted Critical
Publication of JP2651382B2 publication Critical patent/JP2651382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To make a device small in size and light in weight, to facilitate assemblage and installation, to save labor and to shorten the time required for inspection by providing a self-traveling mobile dolly capable of moving along the wall-surface of the structure. CONSTITUTION:The device is furnished with the self-traveling mobile dolly 21 capable of moving along the wall-surface 2a of the structure 2. An attracting means, a multi-joint type manipulator 39, an inspection tool 40 fitted to a tip end of the multi-joint manipulator 39, and a non-contact type position locating means 28 to measure the position of the mobile dolly 21 on the wall-surface, are provided in the self-traveling mobile dolly 21. The mobile dolly 21 is furnished with a self-traveling function and attracting function capable of self- traveling on the vertical wall-surface 2a of the construction 2. Also the mobile dolly 21, the position of which is measured by the non-contact position locating means 28, is made to stop when it reaches the specified position. Further, the inspection tool 40 is fitted to the manipulator 39 of the mobile dolly 21, and a flaw-detection for welded parts of the wall-surface 2a is performed by the inspection tool 40 during the mobile dolly 21 stops at the specified position.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、構造物の検査装置に関し、特に、例えば原子
力発電所における原子炉の定期検査時に各種配管や原子
炉圧力容器等のi遺物を検査するために使用される自動
検査装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an inspection device for structures, and in particular, for inspecting relics such as various piping and reactor pressure vessels during periodic inspections of nuclear reactors at nuclear power plants. This invention relates to an automatic inspection device used for inspection.

[従来の技術] 従来、上述したような自動検査装置の一種として、例え
ば超音波探傷装置が一般に使用されている。
[Prior Art] Conventionally, an ultrasonic flaw detection device, for example, has been generally used as a type of automatic inspection device as described above.

第5図を参照して、原子炉圧力容器2の溶接部の検査に
使用される超音波探傷装置1について説明すると、同超
音波深傷装置1は、本体部から放射状に延びる旋回脚6
の先端に設けられたリング状の旋回レール4を有し、該
旋回レール4から延びる支持脚5とガイドスタッド11
とを介して、蓋体(図示せず)が取り外された原子炉圧
力容器2の上部フランジ3に据え付けられる。超音波探
傷装置1の本体部からは支柱7が垂下しており、探触子
アセンブリ9を備えたマニピュレータ10は、駆動装置
8によりこの支柱7に沿って移動自在である。かかる超
音波探傷装置1においては、マニピュレータlOの位置
決めは、旋回レール4の回転運動及び駆動装置8の上下
運動によって行われ、原子炉圧力容器2内の各溶接部の
超音波探傷を可能にしている。
Referring to FIG. 5, the ultrasonic flaw detection device 1 used for inspecting the welds of the reactor pressure vessel 2 will be described.
It has a ring-shaped turning rail 4 provided at the tip thereof, and a support leg 5 and a guide stud 11 extending from the turning rail 4.
The lid body (not shown) is installed on the upper flange 3 of the reactor pressure vessel 2 from which it has been removed. A column 7 hangs down from the main body of the ultrasonic flaw detection device 1 , and a manipulator 10 equipped with a probe assembly 9 is movable along this column 7 by a drive device 8 . In such an ultrasonic flaw detection apparatus 1, the positioning of the manipulator 1O is performed by the rotational movement of the swing rail 4 and the vertical movement of the drive device 8, thereby enabling ultrasonic flaw detection of each weld in the reactor pressure vessel 2. There is.

第6図は、各種配管12の検査に使用される二種の超音
波探傷システムを示している。半自動探傷システムでは
、配管12にレール16を介して探傷器18を取り付け
、作業員が探傷器18に取り付けられたハンドル17を
回すことにより配管12を円周方向に走査し、その信号
を中継装fi19を介して超音波探傷器20に送り探傷
を実現している。また、全自動探傷システムでは、ハン
ドル17の代わりにリング状の案内軌道装置13を装着
し、そこに取り付けられたマニピュレータ14を位置決
め装置15により遠隔操作して、配管12を円周方向に
走査し、その信号を中継装置19を介して超音波探傷器
20に送り探傷を実現している。
FIG. 6 shows two types of ultrasonic flaw detection systems used to inspect various types of piping 12. In the semi-automatic flaw detection system, a flaw detector 18 is attached to the pipe 12 via a rail 16, and a worker scans the pipe 12 in the circumferential direction by turning a handle 17 attached to the flaw detector 18, and transmits the signal to the relay device. It is sent to the ultrasonic flaw detector 20 via fi19 to perform flaw detection. In addition, in a fully automatic flaw detection system, a ring-shaped guide track device 13 is installed in place of the handle 17, and a manipulator 14 attached thereto is remotely controlled by a positioning device 15 to scan the pipe 12 in the circumferential direction. , the signal is sent to the ultrasonic flaw detector 20 via the relay device 19 to realize flaw detection.

[発明が解決しようとする課題1 しかし、第5図の超音波探傷装置を使用すると、大きく
て重量のある旋回レール4及び支柱7等の取付及び組立
を要するので、作業員の労力が増すだけでなく作業速度
が遅くなり、その結果、取付及び組立に多くの時間が費
やされるため、原子炉圧力容器の探傷に用いた場合、作
業員の被曝低減化に大きな影響が出る。
[Problem to be Solved by the Invention 1] However, when the ultrasonic flaw detection device shown in FIG. This slows down the work speed, and as a result, a lot of time is spent on installation and assembly, so when used for flaw detection in nuclear reactor pressure vessels, this has a significant impact on reducing radiation exposure for workers.

また、第6図の超音波探傷システムでは、半自動式でも
全自動式でも、探傷器18又はマニピュレータ14は、
レール16もしくは案内軌道装置13のような案内装置
に沿って回動しうる範囲でしか移動できないので、配管
12の長さに沿って探傷するためには、作業員が現場に
張り付いて組立、取付を繰り返し、案内装置13.16
内体の位置を変えねばならず、これは、作業員の被曝低
減にはならない。
Further, in the ultrasonic flaw detection system shown in FIG. 6, whether it is a semi-automatic type or a fully automatic type, the flaw detector 18 or the manipulator 14 is
Since it can only move as far as it can rotate along a guide device such as the rail 16 or the guide track device 13, in order to detect flaws along the length of the pipe 12, workers must stick to the site and assemble it. Repeat installation and guide device 13.16
The position of the internal body must be changed, which does not reduce the exposure of the worker.

しかも、検査対象となる配管の直径に応じて、案内装置
そのものを別の大きさのものと交換しなければならない
ため、種々の大きさの案内装置を予め用意しておく必要
がある。
Moreover, since the guide device itself must be replaced with one of a different size depending on the diameter of the pipe to be inspected, it is necessary to prepare guide devices of various sizes in advance.

従って、本発明の目的は、小形且つ軽址であり、組立及
び取付に比較的に労力及び時間を要しない、構造物の検
査装置を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a structure inspection device that is small and lightweight, and requires relatively little effort and time to assemble and install.

し課題を解決するための手段] この目的を達成するために、本発明に従って構成された
構造物の検査装置は、同構造物の壁面に沿って移動可能
な自走式移動台車と、該自走式移動台車に設けられた、
前記壁面への該自走式移動台車の吸着手段と、該自走式
移動台車に装備された多関節型マニピュレータと、該多
関節型マニピュレータの先端に取り付けられた検査工具
と、前記壁面上における前記自走式移動台車の位置を計
測する非接触式の位置標定手段とを具備している。
[Means for Solving the Problems] To achieve this object, a structure inspection device configured according to the present invention includes a self-propelled mobile cart that can move along the wall surface of the structure, and a self-propelled mobile cart that can move along the wall surface of the structure. Installed on a mobile trolley,
an adsorption means for the self-propelled mobile trolley to the wall surface; an articulated manipulator equipped on the self-propelled mobile trolley; an inspection tool attached to the tip of the articulated manipulator; and non-contact position locating means for measuring the position of the self-propelled mobile trolley.

[作用] 実施例では、この検査装置は原子炉圧力容器に(構造物
)適用されている。移動台車は、自走機能と吸着機能と
を有し、原子炉圧力容器の垂直な壁面上を自刃で走行で
きる。この移動台車は、その位置が非接触式の位置標定
手段によって測定されており、所定位置に至ると停止す
る。また、移動台車に装備されたマニピュレータには検
査工具が取り付けられており、移動台車が所定位置に停
止中に該検査工具により壁面の溶接部の探傷が行われる
[Function] In the embodiment, this inspection device is applied to a nuclear reactor pressure vessel (structure). The mobile cart has a self-propelling function and an adsorption function, and can run on the vertical wall of the reactor pressure vessel with its own blades. The position of this mobile cart is measured by a non-contact position locating means, and stops when it reaches a predetermined position. Furthermore, an inspection tool is attached to a manipulator equipped on the movable trolley, and the welded portion of the wall is detected by the inspection tool while the movable trolley is stopped at a predetermined position.

[実施例] 次に、本発明の好適な実施例について添付図面を参照し
て詳細に説明するが、図中、同一符号は同−又は対応部
分を示すものとする。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts.

第1図は、原子力発電所の原子炉圧力容器く構造物)2
における溶接部の探傷に適用された本発明の自動検査装
置の一実施例の概要を示している。
Figure 1 shows the reactor pressure vessel structure of a nuclear power plant)2
1 shows an overview of an embodiment of the automatic inspection device of the present invention applied to flaw detection of welded parts in .

この自動検査装Wはその自走式移動台車21で原子炉圧
力容器2の内壁面2aを走査し探傷する。探傷を行う前
に、キャビティビット24の底壁の下方に位置しコンク
リート製壁体25により回りを囲まれた原子炉圧力容器
2からは図示しない蓋体が既に除去されており、この原
子炉圧力容器2及びキャビティビット24内には水を充
満させて放射線を遮蔽している。原子炉圧力容器2の上
部フランジ3はキャビティビット24の底壁にシールさ
れている。
This automatic inspection equipment W scans the inner wall surface 2a of the reactor pressure vessel 2 with its self-propelled mobile cart 21 for flaw detection. Before performing flaw detection, the lid body (not shown) has already been removed from the reactor pressure vessel 2, which is located below the bottom wall of the cavity bit 24 and surrounded by a concrete wall body 25, and the reactor pressure The container 2 and the cavity bit 24 are filled with water to shield radiation. The upper flange 3 of the reactor pressure vessel 2 is sealed to the bottom wall of the cavity bit 24.

また、上述の原子炉圧力容器2、キャビティビット24
等は原子炉格納容器22と呼ばれるコンクリート製の容
器で覆われ、この容器が放射線を完全に遮蔽している。
In addition, the above-mentioned reactor pressure vessel 2, cavity bit 24
etc. are covered with a concrete container called the reactor containment vessel 22, which completely shields radiation.

さて、自走式移動台車21には、探傷信号や制御信号等
の信号を伝達するためのライン及び動力ラインを含むケ
ーブル30が接続されており、このケーブル30は、移
動台車21の吊り下げも兼ねている。
Now, a cable 30 including a power line and a line for transmitting signals such as flaw detection signals and control signals is connected to the self-propelled mobile trolley 21, and this cable 30 also serves to suspend the mobile trolley 21. Also serves as.

キャビティピット24の上方部位には、移動台車21の
位置に応じて水中に沈めるケーブル30の長さを調節し
ながら該ケーブル30を案内するケーブル調節・案内装
置31が設置されており、ケーブル30は、該ケーブル
調節・案内装置31を経て、移動台車21より送信され
てくる探傷データの処理を行うための超音波探傷装置3
2と、移動台車21の位置を制御するための位置制御装
置33とに連絡している。超音波探傷装置32及び位置
制御装置33は放射線遮蔽のため原子炉格納容器22の
外部に設置されている。
A cable adjustment/guiding device 31 is installed above the cavity pit 24 to guide the cable 30 while adjusting the length of the cable 30 to be submerged in the water according to the position of the moving cart 21. , an ultrasonic flaw detection device 3 for processing flaw detection data transmitted from the movable cart 21 via the cable adjustment/guidance device 31;
2 and a position control device 33 for controlling the position of the movable trolley 21. The ultrasonic flaw detection device 32 and the position control device 33 are installed outside the reactor containment vessel 22 for radiation shielding.

また、図示しない蓋体をボルトにより原子炉圧力容器2
の上部フランジ3に着脱自在に固定するために該上部7
ランジ3に穿孔された複数のボルト穴3aの1つには、
ガイドスタッド11が垂直に螺合しており、実施例では
このガイドスタ・ンド11のほぼ中間部位に、移動台車
21の位夏標定を行うための後述の視覚センサ及び距離
センサを具備したセンサヘッド(位置標定手段)28と
、該センサヘッド28を移動台車21の方向に位置決め
するための位置検出・駆動機構(位置標定手段)29と
が配置されている。ケーブル27は、その一端で上述し
たセンサヘッド28及び位置検出・駆動機構29に接続
され、他端で、原子炉格納容器22の外部にある上述の
位置制御装置33と位置測定装置(位置標定手段)34
とに連絡している6位置制御装置33は、上述のように
移動台車21の位置制御だけでなく、位置検出・駆動機
構29の位置制御も行い、また、位置測定装置34はこ
の位置制御装置33に電気的に接続されていて、位置制
御装置33を介してセンサヘッド28から送信されてく
る距離データと、位置検出・駆動機構29の位置データ
とから移動台車21の絶対位置を計算する機能を有する
In addition, the lid body (not shown) is attached to the reactor pressure vessel 2 with bolts.
The upper part 7 is detachably fixed to the upper flange 3 of the
In one of the plurality of bolt holes 3a drilled in the lunge 3,
A guide stud 11 is vertically screwed together, and in the embodiment, a sensor head equipped with a visual sensor and a distance sensor, which will be described later, is installed approximately in the middle of the guide stud 11 for positioning the movable cart 21. (position locating means) 28 and a position detection/drive mechanism (position locating means) 29 for positioning the sensor head 28 in the direction of the movable cart 21. The cable 27 is connected at one end to the above-mentioned sensor head 28 and position detection/drive mechanism 29, and at the other end to the above-mentioned position control device 33 and position measurement device (position locating means) located outside the reactor containment vessel 22. )34
The 6-position control device 33, which is in communication with the 6-position control device 33, not only controls the position of the movable cart 21 as described above, but also controls the position of the position detection/drive mechanism 29, and the position measurement device 34 33, and calculates the absolute position of the movable trolley 21 from the distance data sent from the sensor head 28 via the position control device 33 and the position data of the position detection/drive mechanism 29. has.

次に、第2図を参照して、自走式移動台車21の詳細に
ついて説明すると、この移動台車21は、比較的に薄い
角形の本体部35を有し、その中心の円形開口部には、
上述したケーブル30の動力ラインから動力を併給され
る駆動装置(図示せず)により回転されるようになって
いる回転羽根(吸着手段)36が装着されている。この
回転羽根36を所定方向に回転させることにより、本体
部35の下面から上面〈第2図の紙面において下から上
)に向かう空気流が生じて、原子炉圧力容器2の壁面2
aと本体部35の下面との間に負圧が発生し、移動台車
2Iは原子炉圧力容器2の壁面2aに吸着する。また、
本木部35の下面には、図示しない周知のステアリング
機構を有する駆動装置(図示せず)により全方向に首振
り可能に回転する適数個(実施例では各隅部にある総計
4個〉の車輪37が回転自在に設けられており、従って
、移動台車21は原子炉圧力容器2の壁面2a上を自在
に走行することができる。
Next, referring to FIG. 2, the details of the self-propelled mobile trolley 21 will be explained. The mobile trolley 21 has a relatively thin rectangular main body part 35, and a circular opening in the center thereof has a rectangular main body part 35. ,
A rotary vane (adsorption means) 36 is mounted to be rotated by a drive device (not shown) which is supplied with power from the power line of the cable 30 described above. By rotating this rotating blade 36 in a predetermined direction, an air flow is generated from the lower surface of the main body 35 toward the upper surface (from the bottom to the top in the paper of FIG. 2), and the wall surface 2 of the reactor pressure vessel 2
Negative pressure is generated between a and the lower surface of the main body portion 35, and the movable trolley 2I is attracted to the wall surface 2a of the reactor pressure vessel 2. Also,
The lower surface of the main wooden part 35 has an appropriate number of pieces (in the embodiment, a total of four pieces at each corner) that can be rotated in all directions by a drive device (not shown) having a well-known steering mechanism (not shown). Wheels 37 are rotatably provided, so that the movable trolley 21 can freely run on the wall surface 2a of the reactor pressure vessel 2.

また、本体部35からは実施例では6自由度の多関節型
マニピュレータ39が延びており、その先端には探触子
アセンブリ(検査工具)40が取り付けられている。こ
の探触子アセンブリ40が原子炉圧力容器2の壁面2a
を探傷する。更に、実施例では本体部35の側部から位
置標定用の目標(位置標定手段)38が装着されている
。後述するように球光源及びコーナーキューブプリズム
からなるこの目標3日と、前述した位置標定用のセンサ
ヘッド2Bと、位置検出・駆動機t1429とを組み合
わせることにより、後述する態様で移動台車本体部35
の絶対位置の標定が可能になる。
Further, in the embodiment, an articulated manipulator 39 having six degrees of freedom extends from the main body 35, and a probe assembly (inspection tool) 40 is attached to the tip thereof. This probe assembly 40 is connected to the wall surface 2a of the reactor pressure vessel 2.
Detect flaws. Furthermore, in the embodiment, a position locating target (position locating means) 38 is attached to the side of the main body 35 . As will be described later, by combining this target 3 days consisting of a spherical light source and a corner cube prism, the aforementioned sensor head 2B for positioning, and the position detection/driver t1429, the movable trolley main body 35 can be set in the manner described later.
It becomes possible to determine the absolute position of

即ち、第3図において、センサヘッド28は、同センサ
ヘッド28の視覚センサ28aによって見た移動台車本
体部35の目標38である球光源38aの重心位置を測
定するための画像処理装置41<第1図では図示を省略
)に結合されている。画像処理装置41には予め基準位
置が設定されており、同画像処理装置41は、測定した
重心位置とこの基準位置との偏差をトラッキング信号と
して位置制御装置33に入力する。位置制御装置33は
そのトラッキング信号に基づいて、回転方向の角度θの
位置決め用機構29a及び首振り方向の角度ψの位置決
め機構29bからなる位置検出・駆動機構29に目標位
置を表す位置指令信号を送出し、位置検出・駆動機構2
9が移動台車本体部35に指向するように制御する。
That is, in FIG. 3, the sensor head 28 has an image processing device 41<th (not shown in Figure 1). A reference position is set in advance in the image processing device 41, and the image processing device 41 inputs the deviation between the measured center of gravity position and this reference position to the position control device 33 as a tracking signal. Based on the tracking signal, the position control device 33 sends a position command signal representing the target position to the position detection/drive mechanism 29, which includes a positioning mechanism 29a at an angle θ in the rotation direction and a positioning mechanism 29b at an angle ψ in the swing direction. Delivery, position detection/drive mechanism 2
9 is controlled so that it is directed toward the movable trolley main body part 35.

また、この時の位置検出・駆動機構29の回転方向及び
首振り方向の角度θ、ψは位置測定装置34にも入力さ
れる。
Further, the angles θ and ψ of the rotation direction and swing direction of the position detection/drive mechanism 29 at this time are also input to the position measurement device 34 .

一方、位置検出・駆動機構29と移動台車本体部35と
の間の距離は距離センサ28bによって測定される。実
施例では、距離センサ28bは距離測定用の非接触媒体
としてレーザを使用している。しかし、音波、光等も使
用可能である。レーザ変調信号発生器43から送信され
たレーザ信号は、距離センサ28bを介して、移動台車
本体部35に装着されたもう一つの目標であるレーザ反
射用のコーナーキューブプリズム38bに入射され、該
プリズム38bによって反射される。送信された信号と
上述の反射信号とは位相差計42に入力され、そこで両
信号の位相差が測定され距離センサ28bから目標38
までの距離Disが算出され、この距離データが同様に
位置測定装置34に入力される。
On the other hand, the distance between the position detection/drive mechanism 29 and the movable trolley body 35 is measured by the distance sensor 28b. In the embodiment, the distance sensor 28b uses a laser as a non-contact medium for distance measurement. However, sound waves, light, etc. can also be used. The laser signal transmitted from the laser modulation signal generator 43 is incident on the corner cube prism 38b for laser reflection, which is another target mounted on the movable trolley body 35, via the distance sensor 28b, and the prism 38b. The transmitted signal and the above-mentioned reflected signal are input to the phase difference meter 42, where the phase difference between both signals is measured and the distance sensor 28b sends the signal to the target 38.
The distance Dis to is calculated, and this distance data is similarly input to the position measuring device 34.

そして、位置測定装置34では、位置検出・駆動機構2
9の回転軸線から原子炉圧力容器2の壁面2aまでの水
平距離をRとすると、移動台車本体部35の絶対位置の
標定が次の計算によって行われる。
In the position measuring device 34, the position detecting/driving mechanism 2
Assuming that the horizontal distance from the rotation axis 9 to the wall surface 2a of the reactor pressure vessel 2 is R, the absolute position of the movable trolley body 35 is determined by the following calculation.

円周方向・・・・角度θをそのまま使用標定し、これに
基づいて超音波探傷を行うため、本発明の自動検査装置
は、信号の流れをブロック図で示す第4図から了解され
るように、移動台車21の壁面の探傷順序や、移動台車
21の壁面上の停止位置や、マニピュレータ39の動作
手順等のいわゆる地図情報を予め計算して格納した記憶
装置44を含んでおり、超音波探傷は以下の手順によっ
て行われる。
Circumferential direction: The angle θ is used as it is, and ultrasonic flaw detection is performed based on this. It includes a storage device 44 in which so-called map information such as the order of flaw detection on the wall surface of the movable trolley 21, the stop position on the wall surface of the movable trolley 21, and the operation procedure of the manipulator 39 is calculated and stored in advance. Flaw detection is performed by the following steps.

■ センサヘッド28、位置検出・駆動機構29及び位
置測定装置34により、移動台車本体部35の絶対位置
を前述のように標定する。
(2) The sensor head 28, the position detection/drive mechanism 29, and the position measuring device 34 locate the absolute position of the movable cart main body 35 as described above.

■ 地図情報記憶装置44から次の探傷位置を引き出し
て位置制御装置33に送り、同位置制御装置33におい
て、現在の移動台車本体部35の位置との偏差から目標
位置指令を計算し、移動台車本体部35に装着された車
輪37の駆動装置(図示せず)と位置検出 駆動81横
29とに与える。
■ The next flaw detection position is retrieved from the map information storage device 44 and sent to the position control device 33. The position control device 33 calculates a target position command from the deviation from the current position of the movable trolley main body 35, and A drive device (not shown) for the wheels 37 mounted on the main body 35 and a position detection drive 81 are applied to the lateral side 29.

■ 移動台車本体部35が停止した時点で再びその位置
を測定し、その位置が目標位置から外れていれば、位置
修正を行う。
(2) When the movable trolley body 35 stops, its position is measured again, and if the position deviates from the target position, the position is corrected.

■ 次に、地図情報記憶装置44からマニピュレータ3
9の動作情報を引き出して位置制御装置33に送り、こ
の動作情報に基づいてマニピュレータ39に内蔵された
駆動装置(図示せず)を作動して、マニピュレータ39
の先端に設けられた探触子アセンブリ40の位置を制御
する。
■ Next, from the map information storage device 44, the manipulator 3
9 is extracted and sent to the position control device 33, and based on this motion information, a drive device (not shown) built in the manipulator 39 is actuated to control the manipulator 39.
The position of the probe assembly 40 provided at the tip of the probe is controlled.

探触子アセンブリ40が探傷すべき位置にきたら、超音
波探傷装置32は、位置制御装置33からの探傷位置信
号を受けて、探触子アセンブリ40に探傷指令を出し、
これにより探傷データを実時間で収集する。超音波探傷
装置32へは現在の探傷位置が位置制御装置33から入
力されているため、欠陥が発見された場合、その位置を
判断し特定することができる。
When the probe assembly 40 is at the position to be inspected, the ultrasonic flaw detection device 32 receives a flaw detection position signal from the position control device 33 and issues a flaw detection command to the probe assembly 40.
This allows flaw detection data to be collected in real time. Since the current flaw detection position is input to the ultrasonic flaw detection device 32 from the position control device 33, when a defect is discovered, the position can be determined and specified.

■ ■〜■の手順を繰り返す。■ Repeat steps from ■ to ■.

尚、本発明の検査装置を原子炉圧力容器の内壁の超音波
探傷に使用した実施例について説明したが、当業者にと
って明らかなように、本発明の検査装置は、原子力発電
所等の種々のプラントにおいて各種配管やその他の構造
物の探傷にも応用可能である。また、マニピュレータの
先端に検査工具としてECT (渦流探傷式@)ツール
や[TV右カメラ産業用テレビジョンカメラ)等を取り
付ければ、ECT装置、点検装置のように広い範囲での
位置決めと要する検査装置にも本発明を実施可能である
Although an embodiment in which the inspection device of the present invention is used for ultrasonic flaw detection on the inner wall of a nuclear reactor pressure vessel has been described, as is clear to those skilled in the art, the inspection device of the present invention can be used in various applications such as nuclear power plants, etc. It can also be applied to flaw detection of various piping and other structures in plants. In addition, if you attach an ECT (eddy current flaw detection @) tool or [TV right camera industrial television camera] as an inspection tool to the tip of the manipulator, you can use it as an inspection tool that requires positioning over a wide range, such as an ECT device or inspection device. The present invention can also be practiced.

[発明の効果] 以上のように、本発明によれば、検査装置は、構造物の
壁面に吸着し移動可能な自走式移動台車を備えており、
この移動台車に検査工具を有するマニピュレータを装備
すると共に、移動台車の位置を非接触式の位置標定手段
により計測するように構成されているので、装置が小形
になり、第5図に示した従来の装置と比較して、重量が
約1740以下となるため、その組立、取付、1!整が
容易となる。従って、作業員の数を減少させることがで
きるだけでなく、原子炉圧力容器の場合、その探傷に要
する日数も174〜115に短縮でき、作業員の被曝低
減、検査日数の短縮及びコスト低減に大きく寄与するこ
とができる。
[Effects of the Invention] As described above, according to the present invention, the inspection device includes a self-propelled mobile cart that can be moved by adhering to the wall surface of a structure,
This moving trolley is equipped with a manipulator having an inspection tool, and is configured to measure the position of the moving trolley using a non-contact position locating means. Since the weight is about 1740 yen or less compared to the device of , assembly, installation, 1! Easy to adjust. Therefore, not only can the number of workers be reduced, but in the case of nuclear reactor pressure vessels, the number of days required for flaw detection can also be shortened to 174 to 115, which greatly reduces worker exposure, shortens the number of inspection days, and reduces costs. can contribute.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、原子力発電所の原子炉圧力容器における溶接
部の探傷に適用された本発明の検査装置の一実施例を示
す概要図、第2図は、第1図の検査装置で用いられてい
る自走式移動台車の斜視図、第3図は、第1図の検査装
置における移動台車の位置標定について説明するための
概要図、第4図は、第1図の検査装置における信号の流
れについて説明するためのブロック図、第5図は、原子
炉圧力容器に適用された従来の超音波探傷装置を示す断
面図、第6図は、配管に適用された従来の半自動式及び
全自動式超音波探傷システムを示す斜視図である。 2・・・構造物(原子炉圧力容器) 2a・・・構造物の壁面  21・・・自走式移動台車
28・・・位置標定手段(センサヘッド)29・・・位
置標定手段(位置検出・駆動機1ll)34・・・位置
標定手段(位置測定装置)36・・・吸着手段(回転羽
根) 38・・・位置標定手段(目標) 39・・・多関節型マニピュレータ
FIG. 1 is a schematic diagram showing an embodiment of the inspection device of the present invention applied to flaw detection of welds in a reactor pressure vessel of a nuclear power plant, and FIG. FIG. 3 is a schematic diagram for explaining the positioning of the mobile cart in the inspection device shown in FIG. 1, and FIG. A block diagram for explaining the flow, Fig. 5 is a sectional view showing a conventional ultrasonic flaw detection device applied to a reactor pressure vessel, and Fig. 6 is a conventional semi-automatic and fully automatic flaw detection device applied to piping. 1 is a perspective view showing an ultrasonic flaw detection system. 2...Structure (reactor pressure vessel) 2a...Wall surface of structure 21...Self-propelled mobile trolley 28...Position locating means (sensor head) 29...Position locating means (position detection・Driver 1ll) 34...Position locating means (position measuring device) 36...Adsorption means (rotary vane) 38...Position locating means (target) 39...Articulated manipulator

Claims (1)

【特許請求の範囲】[Claims] 構造物の壁面に沿つて移動可能な自走式移動台車と、該
自走式移動台車に設けられた、前記壁面への該自走式移
動台車の吸着手段と、該自走式移動台車に装備された多
関節型マニピュレータと、該多関節型マニピュレータの
先端に取り付けられた検査工具と、前記壁面上における
前記自走式移動台車の位置を計測する非接触式の位置標
定手段とを具備した、構造物の検査装置。
A self-propelled mobile trolley movable along a wall surface of a structure; a means for adhering the self-propelled mobile trolley to the wall surface provided on the self-propelled mobile trolley; A multi-joint manipulator, an inspection tool attached to the tip of the multi-joint manipulator, and a non-contact position locating means for measuring the position of the self-propelled mobile trolley on the wall surface. , structure inspection equipment.
JP63306847A 1988-12-06 1988-12-06 Structure inspection equipment Expired - Lifetime JP2651382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306847A JP2651382B2 (en) 1988-12-06 1988-12-06 Structure inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306847A JP2651382B2 (en) 1988-12-06 1988-12-06 Structure inspection equipment

Publications (2)

Publication Number Publication Date
JPH02154148A true JPH02154148A (en) 1990-06-13
JP2651382B2 JP2651382B2 (en) 1997-09-10

Family

ID=17961970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306847A Expired - Lifetime JP2651382B2 (en) 1988-12-06 1988-12-06 Structure inspection equipment

Country Status (1)

Country Link
JP (1) JP2651382B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218600A (en) * 1990-04-07 1992-08-10 Daikin Ind Ltd Leather treating agent and leather treatment using the same
JPH04257795A (en) * 1991-02-08 1992-09-11 Yamaha Motor Co Ltd Water jet propulsion boat
JPH04115062U (en) * 1991-03-25 1992-10-12 三菱重工業株式会社 Underwater mobile inspection device
JPH0525356U (en) * 1991-09-18 1993-04-02 三菱重工業株式会社 Submersible equipment, scanning device for pipe volume inspection
JPH08201568A (en) * 1995-01-20 1996-08-09 Toshiba Corp Incore inspection system, inspection equipment and position detector thereof and method for inspection thereof
JPH0995925A (en) * 1995-10-03 1997-04-08 Ishikawajima Harima Heavy Ind Co Ltd Underwater moving device
JP2004298991A (en) * 2003-03-31 2004-10-28 Toshiba Corp Repair inspection system for structure surface
JP2008209189A (en) * 2007-02-26 2008-09-11 Hitachi Ltd Position determination system for underwater moving apparatus
EP2804181A1 (en) * 2013-05-15 2014-11-19 ECA Robotics Device for monitoring and collecting information in an area with a potential risk of irradiation
JP2017003306A (en) * 2015-06-05 2017-01-05 株式会社国際電気通信基礎技術研究所 Simulation system, material parameter setting method and material parameter setting device
JP2018063179A (en) * 2016-10-13 2018-04-19 三菱重工業株式会社 Probe plate exchange system and probe plate exchange method
WO2021253096A1 (en) * 2020-06-18 2021-12-23 Stealth Technologies Pty Ltd Testing of perimeter detection systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467896B1 (en) * 2013-01-31 2014-12-03 삼성중공업(주) Robot position and posture measuring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144540A (en) * 1979-04-24 1980-11-11 Westinghouse Electric Corp Device for testing reactor container during operation
JPS58213203A (en) * 1982-06-07 1983-12-12 Fuji Electric Corp Res & Dev Ltd Position detecting device of moving body
JPS60214253A (en) * 1984-04-10 1985-10-26 Mitsubishi Heavy Ind Ltd Device for submergence inspection
JPS6344122A (en) * 1986-08-11 1988-02-25 Mitsubishi Heavy Ind Ltd Measurement of position of self-propelled working truck
JPS6383604A (en) * 1986-09-29 1988-04-14 Yamaha Motor Co Ltd Three-dimensional coordinate measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144540A (en) * 1979-04-24 1980-11-11 Westinghouse Electric Corp Device for testing reactor container during operation
JPS58213203A (en) * 1982-06-07 1983-12-12 Fuji Electric Corp Res & Dev Ltd Position detecting device of moving body
JPS60214253A (en) * 1984-04-10 1985-10-26 Mitsubishi Heavy Ind Ltd Device for submergence inspection
JPS6344122A (en) * 1986-08-11 1988-02-25 Mitsubishi Heavy Ind Ltd Measurement of position of self-propelled working truck
JPS6383604A (en) * 1986-09-29 1988-04-14 Yamaha Motor Co Ltd Three-dimensional coordinate measuring instrument

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218600A (en) * 1990-04-07 1992-08-10 Daikin Ind Ltd Leather treating agent and leather treatment using the same
JPH04257795A (en) * 1991-02-08 1992-09-11 Yamaha Motor Co Ltd Water jet propulsion boat
JPH04115062U (en) * 1991-03-25 1992-10-12 三菱重工業株式会社 Underwater mobile inspection device
JPH0525356U (en) * 1991-09-18 1993-04-02 三菱重工業株式会社 Submersible equipment, scanning device for pipe volume inspection
JPH08201568A (en) * 1995-01-20 1996-08-09 Toshiba Corp Incore inspection system, inspection equipment and position detector thereof and method for inspection thereof
JPH0995925A (en) * 1995-10-03 1997-04-08 Ishikawajima Harima Heavy Ind Co Ltd Underwater moving device
JP2004298991A (en) * 2003-03-31 2004-10-28 Toshiba Corp Repair inspection system for structure surface
JP2008209189A (en) * 2007-02-26 2008-09-11 Hitachi Ltd Position determination system for underwater moving apparatus
EP2804181A1 (en) * 2013-05-15 2014-11-19 ECA Robotics Device for monitoring and collecting information in an area with a potential risk of irradiation
FR3005779A1 (en) * 2013-05-15 2014-11-21 Eca Robotics DEVICE FOR MONITORING AND COLLECTING INFORMATION OF A POTENTIALLY RISKY IRRADIATION AREA
JP2017003306A (en) * 2015-06-05 2017-01-05 株式会社国際電気通信基礎技術研究所 Simulation system, material parameter setting method and material parameter setting device
JP2018063179A (en) * 2016-10-13 2018-04-19 三菱重工業株式会社 Probe plate exchange system and probe plate exchange method
WO2021253096A1 (en) * 2020-06-18 2021-12-23 Stealth Technologies Pty Ltd Testing of perimeter detection systems

Also Published As

Publication number Publication date
JP2651382B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US5193405A (en) Underwater mobile type inspection system
US9726569B2 (en) Piping inspection robot and method of inspecting piping
JPH02154148A (en) Inspecting device for structure
US4368644A (en) Tool for inspecting defects in irregular weld bodies
JP6908195B2 (en) Self-propelled inspection device and inspection method for metal plates, and manufacturing method of metal plates
Kim et al. LAROB: Laser-guided underwater mobile robot for reactor vessel inspection
JPS608746A (en) Method and device for detecting defect of material
JP3485984B2 (en) Furnace inspection system and furnace inspection method
JP3871464B2 (en) Remote handling equipment for reactor internals
JP6817776B2 (en) Buoyancy adjustment system and buoyancy adjustment method
JP3567583B2 (en) Underwater mobile robot positioning method
JPH10238699A (en) Tank inside inspection device
RU2497074C1 (en) Device for diagnostics of wall of manifold pipelines with moire method
JP2557944Y2 (en) Underwater mobile inspection system
JPS6367137B2 (en)
JPH11109082A (en) Device for inspecting inside of reactor
JP2000249783A (en) Position detection method of in-core pipe welding part and device thereof
JP6814591B2 (en) Detector plate replacement system and probe plate replacement method
JP2005300266A (en) Positioning device of nuclear reactor inspection/repair robot
JPS60138458A (en) Diving equipment
JPS61130867A (en) Remote-controlled automatic ultrasonic flaw detector
US5203645A (en) Underwater manipulator
JPH1039084A (en) Ultrasonic flaw detector
JPH03104787A (en) Running control apparatus
JP2002340868A (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12