JPH02153936A - Production of polymer - Google Patents

Production of polymer

Info

Publication number
JPH02153936A
JPH02153936A JP30831188A JP30831188A JPH02153936A JP H02153936 A JPH02153936 A JP H02153936A JP 30831188 A JP30831188 A JP 30831188A JP 30831188 A JP30831188 A JP 30831188A JP H02153936 A JPH02153936 A JP H02153936A
Authority
JP
Japan
Prior art keywords
heat transfer
molecular weight
transfer characteristic
reaction
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30831188A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Unno
光宏 海野
Tetsuo Matsumoto
哲夫 松本
Keizo Tsujimoto
啓三 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP30831188A priority Critical patent/JPH02153936A/en
Publication of JPH02153936A publication Critical patent/JPH02153936A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a polymer having a desired molecular weight by carrying out polymerization reaction while measuring heat transfer characteristic values of a reaction solution in melt polymerization and completing the polymerization reaction when the value attains a prescribed value. CONSTITUTION:A polymer, such as polyester or polyamide, is produced by a melt polymerization method. In the process, the polymerization reaction is carried out while measuring heat transfer characteristic values of a reaction solution. When the heat transfer characteristic values attain a prescribed value, the polymerization reaction is completed to afford a polyester having, e.g. 500-8,000 molecular weight. Furthermore, the heat transfer characteristic values are measured by a method for, e.g. inserting two sensing elements (A) and (B) into the reaction solution, measuring the temperature (TA) of the reactants with an ordinary temperature sensor, on the other hand, measuring the temperature (TB) of the sensing element (B) capable of flowing a current of an optional value therethrough when Joule's heat generated by electric conduction thereof is included and taking the difference (DELTAT) between (TA) and (TB) as the heat transfer characteristic values.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は9反応物の熱伝達特性値を指標として反応の終
点を判定する重合体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a polymer in which the end point of a reaction is determined using heat transfer characteristic values of nine reactants as an index.

(従来の技術) 重合体を製造する場合、所定の分子量に到達した時点で
反応を終了させる必要があり、従来1重合反応の終点を
判定する手段としてはワットメーター法、経時サンプル
採取法等が採用されてきた。
(Prior art) When producing a polymer, it is necessary to terminate the reaction when a predetermined molecular weight is reached. Conventionally, methods for determining the end point of a single polymerization reaction include the wattmeter method and the time-lapse sampling method. It has been adopted.

ワットメーター法は反応物の粘度の増加につれて攪拌機
の回転トルクが高くなることを利用したものであり、ま
た、経時サンプル採取法は重合反応中、適宜反応物より
試料を採取し、試料の分子量等をオフラインで測定する
ことにより1反応の終点の判定を行う方法である。
The wattmeter method takes advantage of the fact that the rotational torque of the stirrer increases as the viscosity of the reactant increases, and the time-lapse sampling method collects samples from the reactant at appropriate times during the polymerization reaction to determine the molecular weight, etc. of the sample. This method determines the end point of one reaction by measuring off-line.

その低2反応器中又は反応器に付属した配管中に圧力損
失を利用したプロセス粘度計1回転結度計あるいは薄筒
式粘度計等を設置して、その粘度計の指示で反応の終点
の判定を行う方法も知られている。
A process viscometer that utilizes pressure loss, a one-turn condensation meter, a thin tube viscometer, etc. is installed in the low 2 reactor or in the piping attached to the reactor, and the end point of the reaction is determined based on the instructions from the viscometer. Methods for making the determination are also known.

(発明が解決しようとする課題) しかしながら、ワットメーター法では高分子量の重合体
を製造する場合に一応有効な方法であるが、精度が不十
分である。とりわけ、低分子量の重合体を製造する場合
には8反応開始と終了時とで攪拌機の回転トルクの変化
が小さいので1反応の終点の判定が困難であり1分子量
が一定の重合体を安定して製造することができなかった
(Problems to be Solved by the Invention) However, although the wattmeter method is somewhat effective in producing high molecular weight polymers, its accuracy is insufficient. In particular, when producing low molecular weight polymers, the change in the rotational torque of the stirrer between the start and end of 8 reactions is small, making it difficult to determine the end point of 1 reaction, and it is difficult to stabilize a polymer with a constant molecular weight. could not be manufactured.

一方、経時サンプル採取法では、採取したサンプルの分
子量を測定するのに相応の時間を要するので9判定結果
が得られるまでの間1反応器中の反応物の分子量を一定
に保つことが困難であるし。
On the other hand, in the time-lapse sample collection method, it takes a considerable amount of time to measure the molecular weight of the collected sample, so it is difficult to keep the molecular weight of the reactant in one reactor constant until a 9 judgment result is obtained. There is.

また、たとえ保ち得たとしても操業性が悪く、いずれに
せよ実用上問題が多い。特に、比較的低分子量の重合体
を製造する場合には、試料の測定に要する時間で反応物
の分子量が大幅に変化してしまうことが多いため、実用
的でない。
Furthermore, even if it could be maintained, the operability would be poor and there would be many practical problems in any case. In particular, when producing relatively low molecular weight polymers, this method is not practical because the molecular weight of the reactant often changes significantly during the time required to measure the sample.

また9回転粘度計や薄筒式粘度針を用いる方法では前記
の三方法に比べて低分子量重合体の製造に適しているが
、正確度的及び/又は精度的に不十分である。
Further, the method using a 9-rotation viscometer or a thin cylindrical viscosity needle is more suitable for producing low molecular weight polymers than the above three methods, but is insufficient in terms of accuracy and/or precision.

本発明はかかる問題点を改善し9重合体を製造する際に
、任意の分子量の重合体、特に、低分子量の重合体を製
造する場合にも所望の分子量の重合体を繰返し安定して
製造できる方法を提供しようとするものである。
The present invention improves these problems and enables stable production of a polymer of a desired molecular weight repeatedly when producing a 9-polymer, even when producing a polymer of any molecular weight, especially a low molecular weight polymer. This is an attempt to provide a possible method.

(課題を解決するための手段) 本発明者らは0反応物の熱伝達特性値が反応物の溶融粘
度の変化に対応して変化することを見い出し、それを重
合反応の終点の判定に利用することにより、上記の課題
を解決することに成功し。
(Means for Solving the Problem) The present inventors have discovered that the heat transfer characteristic value of the zero reactant changes in response to changes in the melt viscosity of the reactant, and uses this to determine the end point of the polymerization reaction. By doing so, we succeeded in solving the above issues.

本発明に到達した。We have arrived at the present invention.

すなわち1本発明は、溶融重合法により重合体を製造す
るに際し9反応液の熱伝達特性値を測定しながら重合反
応を行い、熱伝達特性値が所定の値に到達した時点で重
合反応を終了することを特徴とする重合体の製造方法を
要旨とするものである。
That is, 1. When producing a polymer by a melt polymerization method, the polymerization reaction is carried out while measuring the heat transfer characteristic value of the reaction liquid, and the polymerization reaction is terminated when the heat transfer characteristic value reaches a predetermined value. The gist of the present invention is a method for producing a polymer characterized by the following.

本発明の方法が適用される重合体は、溶融重合により得
られるものであれば、基本的にはどのような種類のもの
でもよく、具体的にはポリエステル、ポリアミドをはじ
めとして、ポリアクリル系重合体、ポリビニル系重合体
、エポキシ系重合体。
The polymer to which the method of the present invention is applied can basically be of any type as long as it can be obtained by melt polymerization, and specifically includes polyester, polyamide, and polyacrylic polymers. Coalescence, polyvinyl polymer, epoxy polymer.

ウレタン系重合体等が挙げられる。Examples include urethane polymers.

以下、低分子量であっても高分子量であっても広範な用
途をもつポリエステルを例にとって本発明を説明する。
Hereinafter, the present invention will be explained by taking as an example polyester, which has a wide range of uses regardless of whether it has a low molecular weight or a high molecular weight.

ポリエステルは、テレフタル酸、イソフタル酸。Polyesters are terephthalic acid and isophthalic acid.

2.6−ナフタレンジカルボン酸、アジピン酸、トリメ
リット酸及びこれらのエステル形成性誘導体等の多価カ
ルボン酸成分とエチレングリコール。
2. A polyhydric carboxylic acid component such as 6-naphthalene dicarboxylic acid, adipic acid, trimellitic acid, and ester-forming derivatives thereof, and ethylene glycol.

ブタンジオール、ネオペンチルグリコール、1.4−シ
クロヘキサンジメタツール、トリメチロールプロパン、
グリセリン、ペンタエリスリトール及びこれらのエステ
ル形成性誘導体等の多価アルコール成分及び/又はp−
ヒドロキシ安息香酸及びこのエステル形成性誘導体等の
ヒドロキシカルボン酸成分とから製造される。
Butanediol, neopentyl glycol, 1,4-cyclohexane dimetatool, trimethylolpropane,
Polyhydric alcohol components such as glycerin, pentaerythritol and their ester-forming derivatives and/or p-
It is produced from hydroxycarboxylic acid components such as hydroxybenzoic acid and its ester-forming derivatives.

ポリエステルは1通常、エステル化又はエステル交換反
応によってオリゴマーを製造し9次いでこれを重縮合す
る方法によって製造されるが9本発明は1重縮合反応を
反応液の熱伝達特性値を測定しながら行い、熱伝達特性
値が所望の分子量に相当する値に到達した時点で反応を
終了させるものである。
Polyester is usually produced by a method in which oligomers are produced by esterification or transesterification and then polycondensed, but in the present invention, the polycondensation reaction is carried out while measuring the heat transfer property values of the reaction liquid. The reaction is terminated when the heat transfer characteristic value reaches a value corresponding to the desired molecular weight.

熱伝達特性値の代表的な測定方法は1次のとおりである
A typical method for measuring heat transfer characteristic values is as follows.

反応液中に2本の検出端;検出端A及びBを挿入する。Insert two detection ends; detection ends A and B into the reaction solution.

検出端Aは通常の温度検出端で反応物の温度TAを測定
する。一方、検出端Bはそれ自体に任意の値の電流が流
せるようになっており、その通電によって発生したジュ
ール熱を加味したときの検出端Bの温度T、を測定する
The detection end A is a normal temperature detection end and measures the temperature TA of the reactant. On the other hand, the detection end B is designed to allow a current of an arbitrary value to flow therethrough, and measures the temperature T of the detection end B when taking into account the Joule heat generated by the current flow.

本発明においてはl TlとTAとの差(ΔT)をを熱
伝達特性値とし、これを反応物の粘度の指標として用い
る。すなわち、ΔT値は反応物の溶融粘度が増加するに
つれて高くなるので、溶融粘度の相対変化を精度よくモ
ニタリングすることができる。
In the present invention, the difference (ΔT) between l Tl and TA is taken as a heat transfer characteristic value, and is used as an index of the viscosity of the reactant. That is, since the ΔT value increases as the melt viscosity of the reactant increases, relative changes in melt viscosity can be monitored with high accuracy.

また1本発明は、ある一定のΔT値を維持するのに必要
な検出端Bの電流値を制御する方法で実施してもよい。
Furthermore, the present invention may be implemented by a method of controlling the current value of the detection end B necessary to maintain a certain constant ΔT value.

この場合1反応物の粘度が増加するにしたがい、電流値
が低下して行く。
In this case, as the viscosity of one reactant increases, the current value decreases.

本発明の方法で製造される重合体の分子量は特に制限さ
れないが、一般に1反応終了後3反応器からの重合体の
払い出し易さの点で3分子量は通常500〜so、 o
oo程度である。特に分子量が500〜8.000程度
の低分子量のポリエステルは従来技術では安定して製造
することが困難であ・ったため。
The molecular weight of the polymer produced by the method of the present invention is not particularly limited, but in general, from the viewpoint of ease of discharging the polymer from the three reactors after the completion of one reaction, the molecular weight of the polymer is usually 500 to so, o.
It is about oo. In particular, it has been difficult to stably produce polyester with a low molecular weight of about 500 to 8,000 using conventional techniques.

本発明の方法を適用すると有利である。It is advantageous to apply the method of the invention.

重合体の分子量と熱伝達特性値(ΔT)との関係は重合
体の種類9反応温度1反応液の流動状態や検出端Bに通
電するときの電流値等によって変わるが、−度これらの
条件を一定にして上記関係を求めておけば、以後はΔτ
値を測定することにより、目的とする分子量の重合体を
安定して製造できるようになる。
The relationship between the molecular weight of the polymer and the heat transfer characteristic value (ΔT) varies depending on the type of polymer, the reaction temperature, the flow state of the reaction liquid, the current value when energizing the detection end B, etc. If we obtain the above relationship while keeping constant, then Δτ
By measuring the value, it becomes possible to stably produce a polymer with the desired molecular weight.

(作 用) 本発明は以下の原理に基づくものと考えられる。(for production) The present invention is believed to be based on the following principles.

−船釣に重合反応は反応物を攪拌しながら行うので9反
応物は常に流動している。一定電流を検出端Bに流して
発熱させた場合9反応物が低粘度(低分子量)であれば
、対流熱伝達が大きいため。
- Since the polymerization reaction is carried out while stirring the reactants when fishing on a boat, the reactants are always in flux. When a constant current is passed through detection end B to generate heat 9 If the reactant has a low viscosity (low molecular weight), convective heat transfer is large.

検出端Bの表面から放熱により奪われて行く熱量が多く
なり、前記ΔTは小さくなる。
The amount of heat removed from the surface of the detection end B by heat radiation increases, and the ΔT becomes smaller.

一方9反対に1反応物が高粘度(高分子量)であれば、
検出端Bから奪われる熱量は反応物が低粘度のときより
相対的に少なくなる。したがって。
On the other hand, if 1 reactant has a high viscosity (high molecular weight),
The amount of heat taken away from the detection end B becomes relatively smaller than when the reactant has a low viscosity. therefore.

他の条件が一定であれば前記ΔTは大きくなる。If other conditions are constant, the ΔT becomes large.

他の条件9例えば反応器内の攪拌条件や反応温度T^を
一定にコントロールすることは可能なので、ΔT−TI
−’raを測定することにより1反応物の粘度を求める
ことができる。換言すれば。
Other conditions 9 For example, it is possible to control the stirring conditions in the reactor and the reaction temperature T^ to a constant value, so ΔT-TI
The viscosity of one reactant can be determined by measuring -'ra. In other words.

八Tは反応物の粘度が増加する(分子量が増加する)に
つれて高くなる。
8T increases as the viscosity of the reactants increases (molecular weight increases).

(実施例) 以下、実施例により本発明をさらに詳しく説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、実施例中にある相対粘度ηrはポリエステルの場
合、フェノールと四塩化エタンとの等重量混合溶媒中2
0℃で、ポリアミドの場合、96%濃硫酸中25℃で測
定した値である。また9分子量は末端基定量法により求
めた数平均分子量である。
In addition, in the case of polyester, the relative viscosity ηr in the examples is 2
In the case of polyamide, it is a value measured at 25°C in 96% concentrated sulfuric acid. Moreover, 9 molecular weight is the number average molecular weight determined by the terminal group determination method.

なお、各末Ifi基量は次の方法で求めた。Incidentally, the amount of Ifi groups in each powder was determined by the following method.

ポリエステル カルボキシル末端基量は、ジオキサンに溶解し。polyester The amount of carboxyl end groups is dissolved in dioxane.

水酸化カリウム−メタノール溶液で滴定して求めた。It was determined by titration with a potassium hydroxide-methanol solution.

ヒドロキシル末端基量は、ピリジンに溶解し。The amount of hydroxyl end groups is dissolved in pyridine.

アセチル化を行ったのち、水酸化カリウム−メタノール
溶液で滴定して求めた。
After acetylation, it was determined by titration with a potassium hydroxide-methanol solution.

ポリアミド カルボキシル末端基量は、ベンジルアルコールに溶解し
、水酸化カリウム−ベンジルアルコール溶液で滴定して
求めた。
The amount of polyamide carboxyl terminal groups was determined by dissolving the polyamide in benzyl alcohol and titrating with a potassium hydroxide-benzyl alcohol solution.

アミノ末端基量は1m−クレゾールに溶解し。The amount of amino terminal groups was dissolved in 1 m-cresol.

p−)ルエンスルホン酸水溶液で滴定して求めた。p-) It was determined by titration with an aqueous solution of luenesulfonic acid.

また、熱伝達特性値ΔTを測定するための検出端を含め
たデータ処理装置については1日本電子■製の動粘度モ
ニタリングシステムV?!−4000を使用した。
In addition, regarding the data processing device including the detection end for measuring the heat transfer characteristic value ΔT, the kinematic viscosity monitoring system V? made by JEOL ■ is available. ! -4000 was used.

実施例1 テレフタル酸70モル、イソフタル酸30モル、エチレ
ングリコール50モル及びネオペンチルグリコール11
0モルを反応器に仕込み、 3.0kg/antの制圧
下、260℃でエステル化反応を行った。エステル化反
応終了後、熱伝達特性値ΔTを測定するための検出端A
及びBを反応液中に挿入し、検出端Bの電流値を0.3
アンペアとしてΔTを測定しながら。
Example 1 70 moles of terephthalic acid, 30 moles of isophthalic acid, 50 moles of ethylene glycol and 11 moles of neopentyl glycol
0 mol was charged into a reactor, and an esterification reaction was carried out at 260° C. under a controlled pressure of 3.0 kg/ant. Detection end A for measuring heat transfer characteristic value ΔT after completion of esterification reaction
and B into the reaction solution, and the current value at the detection end B was set to 0.3.
While measuring ΔT as amperes.

0.5トルの減圧下、第1表に示す時間(単位:分)重
縮合反応を行った。
The polycondensation reaction was carried out under reduced pressure of 0.5 Torr for the time (unit: minutes) shown in Table 1.

各重縮合反応時間でのΔTとポリエステルの分子量及び
ηrを第1表に示す。
Table 1 shows the ΔT, the molecular weight of the polyester, and ηr at each polycondensation reaction time.

第1表 この結果に基づいて2重縮合反応時間とΔT及びηrと
の関係をグラフ化して示すと第1図のようになる。
Table 1 Based on these results, the relationship between the double condensation reaction time and ΔT and ηr is shown in a graph as shown in FIG.

実施例2 実施例1の条件(重縮合反応時間約90分)で。Example 2 Under the conditions of Example 1 (polycondensation reaction time approximately 90 minutes).

ポリエステルの製造を5回行った。ただし1反応時間に
関係なく、ΔTが29.29℃となった時点で反応を終
了した。
Polyester production was carried out five times. However, regardless of the reaction time, the reaction was terminated when ΔT reached 29.29°C.

得られたポリエステルの分子量及びηrを測定した結果
を第2表に示す。
Table 2 shows the results of measuring the molecular weight and ηr of the obtained polyester.

第2表 ポリアミドの分子量は6840.  ηrは1.299
であうた。
The molecular weight of the polyamide in Table 2 is 6840. ηr is 1.299
I sang.

実施例4 実施例3の条件でポリアミドの製造を7回行った。ただ
し9反応時間に関係なくΔTが18.32℃を示した時
点で反応を終了した。得られたポリアミドの分子量及び
ηrの測定結果を第3表に示す。
Example 4 Polyamide was produced seven times under the conditions of Example 3. However, regardless of the reaction time, the reaction was terminated when ΔT reached 18.32°C. Table 3 shows the results of measuring the molecular weight and ηr of the obtained polyamide.

第3表 実施例3 ε−カプロラクタム100モル及びε−アミノカプロン
酸5モルを反応器に仕込み、常圧下、150℃で30分
間反応させた後、260℃に昇温した。昇温後ΔTを測
定するための検出端A及びBを反応液中に挿入し、検出
端Bの電流値を0.25アンペアとして、0.5)ルの
減圧下、45分間重合反応を行った。
Table 3 Example 3 100 moles of ε-caprolactam and 5 moles of ε-aminocaproic acid were charged into a reactor, and after reacting at 150°C for 30 minutes under normal pressure, the temperature was raised to 260°C. After increasing the temperature, detecting ends A and B for measuring ΔT were inserted into the reaction solution, and the current value of the detecting end B was set to 0.25 ampere, and the polymerization reaction was carried out for 45 minutes under a reduced pressure of 0.5 ml. Ta.

このときのΔτ値は18.32℃であり、得られた(発
明の効果) 本発明によれば1重合反応の終点の判定を精度よく行う
ことができ、所望の分子量の重合体を安定して製造する
ことが可能となる。
The Δτ value at this time was 18.32°C. (Effects of the Invention) According to the present invention, it is possible to accurately determine the end point of a single polymerization reaction, and to stabilize a polymer with a desired molecular weight. This makes it possible to manufacture

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた重縮合反応時間とΔT及び
ηrとの関係をグラフ化した図である。
FIG. 1 is a graph showing the relationship between the polycondensation reaction time and ΔT and ηr obtained in Example 1.

Claims (3)

【特許請求の範囲】[Claims] (1)溶融重合法により重合体を製造するに際し、反応
液の熱伝達特性値を測定しながら重合反応を行い、熱伝
達特性値が所定の値に到達した時点で重合反応を終了す
ることを特徴とする重合体の製造方法。
(1) When producing a polymer by the melt polymerization method, the polymerization reaction is carried out while measuring the heat transfer characteristic value of the reaction solution, and the polymerization reaction is terminated when the heat transfer characteristic value reaches a predetermined value. A method for producing characteristic polymers.
(2)重合体がポリエステル又はポリアミドである請求
項1記載の方法。
(2) The method according to claim 1, wherein the polymer is polyester or polyamide.
(3)分子量500〜8,000のポリエステルを製造
する請求項1記載の方法。
(3) The method according to claim 1, wherein a polyester having a molecular weight of 500 to 8,000 is produced.
JP30831188A 1988-12-06 1988-12-06 Production of polymer Pending JPH02153936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30831188A JPH02153936A (en) 1988-12-06 1988-12-06 Production of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30831188A JPH02153936A (en) 1988-12-06 1988-12-06 Production of polymer

Publications (1)

Publication Number Publication Date
JPH02153936A true JPH02153936A (en) 1990-06-13

Family

ID=17979526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30831188A Pending JPH02153936A (en) 1988-12-06 1988-12-06 Production of polymer

Country Status (1)

Country Link
JP (1) JPH02153936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510595A2 (en) * 1991-04-22 1992-10-28 Kanegafuchi Chemical Industry Co., Ltd. Method measurement of polymer molecular weight

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141650A (en) * 1988-11-22 1990-05-31 Snow Brand Milk Prod Co Ltd Kinetic viscosity measuring apparatus
JPH02141649A (en) * 1988-11-22 1990-05-31 Snow Brand Milk Prod Co Ltd Viscometer sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141650A (en) * 1988-11-22 1990-05-31 Snow Brand Milk Prod Co Ltd Kinetic viscosity measuring apparatus
JPH02141649A (en) * 1988-11-22 1990-05-31 Snow Brand Milk Prod Co Ltd Viscometer sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510595A2 (en) * 1991-04-22 1992-10-28 Kanegafuchi Chemical Industry Co., Ltd. Method measurement of polymer molecular weight
US5341672A (en) * 1991-04-22 1994-08-30 Kanegafuchi Chemical Industry Co., Ltd. Method for measurement of polymer molecular weight based upon a temperature difference

Similar Documents

Publication Publication Date Title
Blumstein et al. Influence of Molecular Weight on Phase Transition Entropies of a Thermotropic Nematic Polyester
JPH0216120A (en) Polyester resin exhibiting optical anisotropy when melted and resin composition
JP2664406B2 (en) Polyester resin and resin composition showing optical anisotropy when melted
EP0311287B1 (en) Resin having excellent heat resistance and exhibiting anisotropy in molten state
JPH02153936A (en) Production of polymer
CA2280614A1 (en) A heater cable in combination with a lead cable
JPH01261416A (en) Polyester resin exhibiting optical anisotropy on melting and composition thereof
Yager et al. The relation of dielectric properties to structure of crystalline polymers. I. Polyesters
JP2664404B2 (en) Polyester resin and resin composition showing optical anisotropy when melted
US4237261A (en) Process for continuously producing polyester and spun fiber
JPS6038425A (en) Fully aromatic polyester and manufacture
CN211978606U (en) Online monitoring system for melt polymerization production process
CN103201310A (en) Process for production of liquid crystalline polyester resin, and apparatus for production of liquid crystalline polyester resin
JPS59204749A (en) Detection of polymerization rate of polyester oligomer
JP2002012656A (en) Crystalline polyester polyol
JP2664400B2 (en) Polyester resin and resin composition showing anisotropy when melted
JPS61145441A (en) Apparatus for measuring electric conductivity
JP3024839B2 (en) Aromatic polyester and polyester resin composition
CA1120639A (en) Process for continuously producing polyester and spun fiber
Di Fiore et al. Influence of the antimony catalyst remnants on the melt crystallization of PET
SU427968A1 (en) METHOD OF OBTAINING POLYARILENE-1,3,4- OXADIAZOLES
JPS6147852B2 (en)
JPH06116373A (en) Copolymer polyester and polyester resin composition
Fyfe et al. Demonstration of the liquid-crystalline behavior of a rigid-backbone polyester in a magnetic field
RU2064678C1 (en) Process of determination of degree of crystallinity of materials