JPH02141650A - Kinetic viscosity measuring apparatus - Google Patents

Kinetic viscosity measuring apparatus

Info

Publication number
JPH02141650A
JPH02141650A JP63295508A JP29550888A JPH02141650A JP H02141650 A JPH02141650 A JP H02141650A JP 63295508 A JP63295508 A JP 63295508A JP 29550888 A JP29550888 A JP 29550888A JP H02141650 A JPH02141650 A JP H02141650A
Authority
JP
Japan
Prior art keywords
temperature sensor
liquid
viscosity
sensor
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63295508A
Other languages
Japanese (ja)
Other versions
JPH0629837B2 (en
Inventor
Makoto Takeuchi
誠 竹内
Shinobu Ozawa
小沢 忍
Satoru Kudo
悟 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Snow Brand Milk Products Co Ltd
Original Assignee
Jeol Ltd
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Snow Brand Milk Products Co Ltd filed Critical Jeol Ltd
Priority to JP29550888A priority Critical patent/JPH0629837B2/en
Publication of JPH02141650A publication Critical patent/JPH02141650A/en
Publication of JPH0629837B2 publication Critical patent/JPH0629837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make it possible to measure kinetic viscosity stably by turning or vibrating a heater temperature sensor with a liquid temperature sensor as the center, and measuring the kinetic viscosity of liquid based on the temperature difference between the heater temperature sensor and the liquid temperature sensor. CONSTITUTION:A rotary cylinder part 6 is rotated with a liquid temperature sensor 1 as the center. The cylinder part 6 is mounted on a sensor holder for the sensor 1 through a bearing 9. A heater-temperature-sensor supporting part 7 is fixed to the appropriate part of the cylinder part 6. A heater temperature sensor 2 is fixed to the supporting part 7 in parallel with the sensor 1. To operate this apparatus in the case of fluid in a static system wherein viscosity is not changed with time, the relationship between the time and the temperature difference between the sensors 1 and 2 is optimized with an operation control device. The temperature difference between the sensors 1 and 2 is measured at the rotating speed at this time, and the kinetic viscosity of the fluid is computed. In the case of fluid wherein the viscosity is changed with time, the data of the viscosity change of the fluid and the rotating speed are stored in the operation control device beforehand. The temperature difference between the sensors 1 and 2 is measured, and the kinetic viscosity of the fluid can be computed in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体のインライン粘度計、ゲル化過程の非破壊
連続計測を可能とする熱的粘度測定に使用する粘度計セ
ンサーに関し、例えば化学工業における熱重合、触媒重
合反応等に伴う粘性変化の測定、フェス、接着剤、製紙
工業におけるスラリーの粘性変化の測定、加熱冷却に伴
うトナーの状態変化の測定、食品工業における乳製品製
造の際の粘度変化測定等に利用しうるちのである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an in-line liquid viscometer and a viscometer sensor used for thermal viscosity measurement that enables non-destructive continuous measurement of the gelation process. Measurement of viscosity changes associated with thermal polymerization and catalytic polymerization reactions, etc.; Measurement of viscosity changes of slurries in the festival, adhesive, and paper industries; Measurement of toner state changes associated with heating and cooling; It is used for measuring changes in viscosity, etc.

〔従来の技術〕[Conventional technology]

現在液体の粘度測定は液体の流速と流動により生じる圧
力、トルク等の応力を計測することにより行われており
、0字管、オストワルド粘度計等の細管式のもの、また
液体中に回転体を入れ、その回転体の受けるトルクから
粘度を測定する回転式のもの、液体中における落下体の
落下速度、落下時間から測定する落体式のもの、振動波
の伝達速度の減衰率から測定する振動式のもの等力学的
方法を中心として種々の方法がある。
Currently, the viscosity of liquids is measured by measuring the flow velocity of the liquid and stresses such as pressure and torque generated by the flow. A rotating type measures the viscosity based on the torque applied to the rotating body, a falling body type measures the falling speed and falling time of a falling object in the liquid, and a vibration type measures the attenuation rate of the vibration wave transmission speed. There are various methods, mainly the isodynamic method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来の力学的方法では、被検物質に力を加
えるために、例えばゲル等の構造粘性体、チキソトロピ
ー液体等においては構造破壊を伴い粘性変化のある物質
の粘度は測定できない、また被検物質を特殊容器にサン
プリングする必要があるために反応物の抜き取りによる
測定となり、反応タンク等の容器内において直接、連続
的に計測することができないので、例えば化学重合反応
における粘性の増加の経時的測定による重合度制御には
不向きである。また各粘度範囲毎に回転子、及び測定方
法等を変化させる必要があり、低粘度から高粘度までの
連続測定ができないという問題、また測定環境が制限さ
れ高温、高圧下での測定が困難であるという問題、力学
的計測のため可動部が多く、高粘度物質の測定での詰ま
り、汚れ等に対する保守管理が困難であるという問題が
ある。
However, with conventional mechanical methods, it is impossible to measure the viscosity of substances whose viscosity changes due to structural destruction, such as structural viscous substances such as gels and thixotropic liquids, because force is applied to the test substance. Since it is necessary to sample the reactant into a special container, the measurement is performed by sampling the reactant, and it cannot be directly and continuously measured in a container such as a reaction tank, so it can be used, for example, to measure the increase in viscosity over time in a chemical polymerization reaction. It is not suitable for controlling the degree of polymerization. In addition, it is necessary to change the rotor and measurement method for each viscosity range, which makes continuous measurement from low to high viscosity impossible, and the measurement environment is restricted, making it difficult to measure at high temperatures and high pressures. There is a problem that there are many moving parts because it is a mechanical measurement, and maintenance management to prevent clogging, dirt, etc. when measuring high viscosity substances is difficult.

このような力学的方法による問題を解決するために液体
温度を測定する温度センサーと、発熱体温度センサーと
からなる熱的粘度計が開発されている(例えば特開昭6
0−152943号公報)。
In order to solve the problems caused by such mechanical methods, a thermal viscometer has been developed that consists of a temperature sensor that measures the liquid temperature and a heating element temperature sensor (for example, in JP-A No. 6
0-152943).

一般に液体内に発熱体を挿入すると、発熱体は熱伝導、
対流により発熱体温度は平衡状態に達するが、液体粘度
が低いと液体は盛んに対流して発熱体から多くの温度を
奪うので平衡温度は低くなり、逆に液体粘度が高ければ
対流は少なくて奪われる熱も少なく、発熱体平衡温度は
高くなる。熱的粘度センサーはこの原理をもとに粘度測
定を発熱体の平衡温度を測定することにより達成するも
のである。
Generally, when a heating element is inserted into a liquid, it conducts heat,
The temperature of the heating element reaches an equilibrium state due to convection, but if the liquid viscosity is low, the liquid will actively convect and take a lot of temperature from the heating element, so the equilibrium temperature will be low, and conversely, if the liquid viscosity is high, there will be less convection. Less heat is taken away, and the equilibrium temperature of the heating element becomes higher. A thermal viscosity sensor is based on this principle and achieves viscosity measurement by measuring the equilibrium temperature of a heating element.

第5図に従来の熱的温度センサーを断面図により示す。FIG. 5 shows a conventional thermal temperature sensor in cross section.

図中1は液体温度センサー、2は発熱体温度センサー、
3は液体容器である。
In the figure, 1 is a liquid temperature sensor, 2 is a heating element temperature sensor,
3 is a liquid container.

第5図(a)に示すように従来の熱的温度センサーは一
対の温度センサーからなり、液体容器3中に挿入されて
、一方の液体温度センサーlは液体の温度(θ :液体
表面温度に影響されない液体内部の温度)を測定し、他
方の発熱体温度センサー2は白金線が捲回された発熱抵
抗体からなり、定電圧で通電されて発熱体として使用さ
れ、発熱体の温度(θ、)はその電気抵抗の変化を測定
することにより計算され、粘度は液体の温度(θ)と発
熱体の温度(θS)との差により計算されるものである
As shown in FIG. 5(a), a conventional thermal temperature sensor consists of a pair of temperature sensors, which are inserted into a liquid container 3, and one liquid temperature sensor l is connected to the liquid temperature (θ: liquid surface temperature). The other heating element temperature sensor 2 is made of a heating resistor wound with a platinum wire, is energized at a constant voltage and used as a heating element, and measures the temperature of the heating element (θ , ) is calculated by measuring the change in its electrical resistance, and the viscosity is calculated from the difference between the temperature of the liquid (θ) and the temperature of the heating element (θS).

しかしながらこの熱的方法においては、液体が静止状態
の場合と、撹拌機等により流動している場合では、発熱
体温度センサーの検知する温度が相違してくる。このた
めこの種粘度センサーを動粘度計測のためのセンサーと
して使用する場合には、流動流体中に設定されるセンサ
ーの位置や、発熱体温度センサーに流す電流量を変化さ
せ、最適値を得るための試行錯誤を行う必要があった。
However, in this thermal method, the temperature detected by the heating element temperature sensor differs depending on whether the liquid is in a stationary state or when it is flowing by a stirrer or the like. Therefore, when using this type of viscosity sensor as a sensor for measuring kinematic viscosity, it is necessary to change the position of the sensor in the flowing fluid and the amount of current flowing through the heating element temperature sensor to obtain the optimum value. It was necessary to perform trial and error.

また高感度とするために発熱体温度センサー液温センサ
ーは一定の長さの範囲で棒状に捲回されて形成されてい
るが、流体中ではセンサーの部分々々において流速が相
違したりすることがあり、液温か相違したり測定結果に
ノイズを生じる原因ともなっている。
In addition, in order to achieve high sensitivity, the heating element temperature sensor and liquid temperature sensor are formed by winding them into a rod shape within a certain length range, but in a fluid, the flow velocity may differ in different parts of the sensor. This can cause differences in liquid temperature and noise in measurement results.

更にセンサーを静止液体中に縦に挿入すると、発熱体セ
ンサーの中央部で温められた液体が上昇し、発熱体セン
サーの元部が更に加熱されるという問題が起こりやすい
、そのため発熱体センサーを傾けて挿入するとか、第5
図(b)に示すように発熱体センサーの抵抗体部を水平
になるように配置する等の試みがなされているが、配置
の状態が少しでもずれると測定結果がぶれ、ノイズが生
じ、測定結果が安定しないという問題が実験系でも生じ
る。
Furthermore, if the sensor is inserted vertically into a stationary liquid, the heated liquid in the center of the heating element sensor will rise, further heating the base of the heating element sensor, which tends to cause a problem. Therefore, it is necessary to tilt the heating element sensor. or insert the fifth
As shown in Figure (b), attempts have been made to arrange the resistor part of the heating element sensor horizontally, but if the arrangement is even slightly off, the measurement results will be blurred, noise will occur, and the measurement The problem of unstable results also occurs in experimental systems.

本発明は静止系であっても、流体中であっても動粘度を
計測するための最適条件をシステマテイックに求めるこ
とができ、動粘度モニタリングシステムを可能とする動
粘度測定装置の提供を課題とする。
The present invention provides a kinematic viscosity measuring device that can systematically determine the optimal conditions for measuring kinematic viscosity whether in a static system or in a fluid, and which enables a kinematic viscosity monitoring system. Take it as a challenge.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の動粘度測定装置は液体温度センサー及び発熱体
温度センサーとからなり、並列状態で被検液体中に挿入
される熱的粘度計において、該発熱体温度センサーを液
体温度センサーを中心として回転、または振動させて測
温し、液体温度センサーとの温度差より液体の動粘度を
測定することを特徴とする。
The kinematic viscosity measuring device of the present invention consists of a liquid temperature sensor and a heating element temperature sensor, and in a thermal viscometer inserted into a liquid to be tested in parallel, the heating element temperature sensor is rotated around the liquid temperature sensor. , or vibrate to measure the temperature, and measure the kinematic viscosity of the liquid from the temperature difference with the liquid temperature sensor.

発熱体温度センサーは、パルスモータ−により液体温度
センサーを中心として往復させて回動させるとよく、ま
たバイブレータ−により振動させて測温してもよい、ま
たパルスモータ−、パイブレーク−における回転速度、
振動速度を可変とし、回転速度、振動速度を、発熱体温
度センサーへの電流量(熱勾配)、液体の伝熱速度(粘
度、熱容量等)のデータをもとに演算制御装置により制
御することができ、また発熱体温度センサーを回転させ
る場合には、一方向の回転のみではリード線が捻じれる
ので回転方向は一回転以内で変化させ円弧を描(ように
往復させて回転させるのが好ましい。
The heating element temperature sensor is preferably rotated by a pulse motor in a reciprocating manner around the liquid temperature sensor, or may be vibrated by a vibrator to measure the temperature. ,
The vibration speed is variable, and the rotation speed and vibration speed are controlled by a computer control device based on data on the amount of current to the heating element temperature sensor (thermal gradient) and the heat transfer rate of the liquid (viscosity, heat capacity, etc.). In addition, when rotating the heating element temperature sensor, it is preferable to change the direction of rotation within one rotation and rotate it back and forth in a circular arc, as rotating in only one direction will twist the lead wire. .

〔作用〕[Effect]

一般にこの種熱的粘度センサーにおける動粘性検出感度
は、発熱体温度センサーの表面からの熱移動速度が重要
な影響を与えるので、静止系においては良い結果が得ら
れず、かえって流体系において良い結果が得られる確率
が高い、また発熱体温度センサーの表面流速と動粘性検
出感度との関係は、発熱体温度センサーへの電流量(熱
勾配)、液体の伝熱速度(粘度、熱容量等)、液体の相
対流速等により変化するので、最適条件はそれぞれの測
定条件により相違する。
In general, the kinematic viscosity detection sensitivity of this type of thermal viscosity sensor is significantly influenced by the rate of heat transfer from the surface of the heating element temperature sensor, so good results cannot be obtained in a static system, and on the contrary, good results can be obtained in a fluid system. The relationship between the surface flow velocity of the heating element temperature sensor and the kinematic viscosity detection sensitivity is determined by the amount of current to the heating element temperature sensor (thermal gradient), the heat transfer rate of the liquid (viscosity, heat capacity, etc.), Since it changes depending on the relative flow velocity of the liquid, etc., the optimum conditions differ depending on each measurement condition.

第4図は被検液体の粘度が時間と共に変化しない系であ
る静止系液体において、発熱体温度センサーへの電流量
(熱勾配)、及び液体の伝熱速度(粘度、熱容量等)を
一定とし、発熱体温度センサーの回転速度(被検液体が
流体の場合には相対流速、以下同じ)を相違させた場合
の両センサーの検知温度差(Δt)と時間との関係を例
示する図である。第4図におけるように、両センサーの
検知温度差(Δt)と時間との関係は、(a)線が例え
ばlrpmの回転速度の場合の両センサーの検知温度差
(Δt)と時間との関係を示すとすると、(b)線は1
/2 r p mの回転速度の場合、(C)線は1/3
rpmの回転速度の場合、(d)線は1/4 r p 
mの回転速度の場合、(e)線は115rpmの回転速
度の場合を示すように推移する。
Figure 4 shows a stationary liquid in which the viscosity of the liquid to be tested does not change over time, with the amount of current (thermal gradient) to the heating element temperature sensor and the rate of heat transfer (viscosity, heat capacity, etc.) of the liquid being constant. , is a diagram illustrating the relationship between the detected temperature difference (Δt) of both sensors and time when the rotational speed (relative flow velocity when the test liquid is a fluid, the same applies hereinafter) of the heating element temperature sensor is different. . As shown in FIG. 4, the relationship between the detected temperature difference (Δt) of both sensors and time is the relationship between the detected temperature difference (Δt) of both sensors and time when the (a) line is a rotation speed of, for example, lrpm. , line (b) is 1
For a rotation speed of /2 r p m, line (C) is 1/3
For a rotational speed of rpm, line (d) is 1/4 r p
For a rotational speed of m, the curve (e) changes as shown for a rotational speed of 115 rpm.

115rpm以下の回転速度の場合には略115rpm
と同様の傾向を示すと共に線速度が遅すぎノイズが生じ
る。動粘度測定にあたっては両センサーの検知温度差(
Δt)が時間との関係で変化が大きく、かつ回転数の変
動に対してはあまり変動しない状態を最適条件として設
定することが望ましい。
Approximately 115 rpm when the rotation speed is 115 rpm or less
The linear velocity is too slow and noise occurs. When measuring kinematic viscosity, the difference in temperature detected by both sensors (
It is desirable to set as the optimum condition a state in which Δt) changes greatly with respect to time and does not change much with respect to changes in the rotational speed.

従って静止系液体の場合、上記の場合(d)線の回転数
を選択することによりノイズの少ない状態で動粘度を測
定することができる。
Therefore, in the case of a stationary liquid, by selecting the rotation speed of line (d) in the above case, the kinematic viscosity can be measured with less noise.

また本発明の動粘度測定装置においては、発熱体温度セ
ンサーを一定周期で円弧を描くように往復運動をさせる
が、この場合回転方向を転する時二時的に静止状態を生
じるため、回転速度を一定としてΔLを全時間、連続的
にモニターすると第3図のような回転周期を反映したデ
ータが得られる。第3図において一時的に静止状態を1
..1z、Lsstsa  ・・で示す、ここに得られ
る偏差δは発熱体温度センサー表面の液体流速の変化が
もたらす動粘性検知感度を反映している。
In addition, in the kinematic viscosity measuring device of the present invention, the heating element temperature sensor is reciprocated in a circular arc at a constant cycle, but in this case, when the rotation direction is changed, it temporarily comes to a standstill state, so the rotation speed If ΔL is continuously monitored over the entire time with constant ΔL, data reflecting the rotation period as shown in FIG. 3 can be obtained. In Figure 3, the stationary state is temporarily changed to 1.
.. .. The deviation δ obtained here, denoted by 1z, Lsstsa .

従って静止時間と回転時間、並びにその速度を変えるこ
とにより比較的短時間に最適条件を選択することが可能
であり、またデ二り取り込みにあたっては回転周期と同
期させてゲートすればよいこととなる。
Therefore, by changing the rest time, rotation time, and speed, it is possible to select the optimal conditions in a relatively short time, and when taking in the digital signal, it is only necessary to gate it in synchronization with the rotation period. .

被検液体の粘度が時間と共に変化するような、例えば化
学重合反応等のような場合には、本発明の動粘度測定装
置はリアルタイムモニタリングシステムとすることがで
きる。即ち予めCPUのような演算制御装置に被検液体
の粘度と回転速度との関係を記憶させておくと、発熱体
温度センサーの移動速度を回転と共に増加、または減少
させ、発熱体温度センサー表面の液体流速(相対速度)
の一定値についてデータの取り込みをゲートするように
すると、時間と共に粘性が変化する場合についても最適
化をプログラムすることが可能である。
In cases where the viscosity of a liquid to be tested changes over time, such as in a chemical polymerization reaction, the kinematic viscosity measuring device of the present invention can be used as a real-time monitoring system. That is, by storing the relationship between the viscosity of the liquid to be tested and the rotational speed in advance in an arithmetic and control unit such as a CPU, the moving speed of the heating element temperature sensor can be increased or decreased with rotation, and the surface of the heating element temperature sensor can be adjusted. Liquid flow rate (relative velocity)
By gating the data acquisition for a constant value of , it is possible to program optimization even when the viscosity changes over time.

このように最適条件を動粘度測定装置自体で得られるよ
うにするためには、相対流速を制御できるようにするこ
とが望ましい。
In order to be able to obtain such optimal conditions using the kinematic viscosity measuring device itself, it is desirable to be able to control the relative flow velocity.

そのため本発明の動粘度測定装置は発熱体温度センサー
を液体温度センサーを中心として回動、または振動させ
ることにより、液体の相対流速を簡単に制御することが
でき、感度のよい動粘度測定装置とすることができるも
のである。
Therefore, the kinematic viscosity measuring device of the present invention can easily control the relative flow velocity of the liquid by rotating or vibrating the heating element temperature sensor around the liquid temperature sensor, making it a highly sensitive kinematic viscosity measuring device. It is something that can be done.

〔実施例〕〔Example〕

第1図は本発明の動粘度測定装置の作動状態を示す断面
図、第2図は本発明の動粘度測定装置における他の実施
例を示す図である。
FIG. 1 is a sectional view showing the operating state of the kinematic viscosity measuring device of the present invention, and FIG. 2 is a diagram showing another embodiment of the kinematic viscosity measuring device of the present invention.

図中、第5図と同一番号は同一内容を示し、その他4は
パルスモータ−15はベルト、6は回転円筒部、7は発
熱体温度センサー支持部、8はマフラー、9はベアリン
グ部、10は演算制御装置、11はパイプレーク−11
2は液体容器を示す。
In the figure, the same numbers as in FIG. 5 indicate the same contents, and 4 is a pulse motor, 15 is a belt, 6 is a rotating cylinder part, 7 is a heating element temperature sensor support part, 8 is a muffler, 9 is a bearing part, 10 is an arithmetic control unit, 11 is a pipe lake-11
2 indicates a liquid container.

第1図に示すように本発明の動粘度測定装置は、流体の
温度を測定する液体温度センサー1を中心として回転す
る回転円筒部6がベアリング9を介して液体温度センサ
ー1のセンサーホルダーに装着され、またその回転円筒
部6の適宜箇所に発熱体温度センサー支持部7が固着さ
れ、その支持部7の端部適宜箇所に、液体温度センサー
1と並列状態となるように発熱体温度センサー2が固着
されている。回転円筒部6における発熱体温度センサー
支持部7取りつけ位置下部の適宜箇所にはパルスモータ
−4により回転円筒部6を回転させるためのベルト5が
巻き付けられている。
As shown in FIG. 1, in the kinematic viscosity measuring device of the present invention, a rotating cylindrical part 6 that rotates around a liquid temperature sensor 1 that measures the temperature of a fluid is attached to a sensor holder of the liquid temperature sensor 1 via a bearing 9. In addition, a heating element temperature sensor support part 7 is fixed to an appropriate location on the rotating cylindrical part 6, and a heating element temperature sensor 2 is attached to an appropriate location on the end of the support part 7 so as to be in parallel with the liquid temperature sensor 1. is fixed. A belt 5 for rotating the rotary cylindrical portion 6 by a pulse motor 4 is wound around an appropriate portion of the rotary cylindrical portion 6 below the mounting position of the heating element temperature sensor support portion 7 .

また被検流体が液体の場合には回転部に過剰の負荷を与
えないようにマフラー8を回転円筒体6のベアリング部
9に取りつけ、発熱温度センサー2を把持させるように
固定するとよい。
Further, when the fluid to be tested is a liquid, it is preferable to attach the muffler 8 to the bearing part 9 of the rotating cylindrical body 6 and fix it so as to grip the exothermic temperature sensor 2 so as not to apply an excessive load to the rotating part.

このようにして配置された本発明の動粘度測定装置を作
動させるには、まず時間と共に粘度変化のない静止系流
体の場合には第3図に示すような両センサーとの温度差
を時間との関係を演算制御装置により最適化し、その回
転速度で両センサーの温度差を測定し、その温度差より
流体の動粘度を演算制御装置により算出させることがで
きる。
In order to operate the kinematic viscosity measuring device of the present invention arranged in this manner, first, in the case of a stationary fluid whose viscosity does not change over time, the temperature difference between the two sensors as shown in Fig. 3 must be measured over time. The arithmetic and control device can optimize the relationship between the two sensors, measure the temperature difference between both sensors at that rotation speed, and calculate the kinematic viscosity of the fluid from the temperature difference.

また時間と共に粘度変化する流体の場合には、予めその
流体の粘度変化と回転速度との関係データを演算制御装
置に記憶させておき、回転速度を一定に制御しつつ、両
センサーの温度差を測定すれば、その温度差より流体の
動粘度を演算制御装置に算出させることができる。
In addition, in the case of a fluid whose viscosity changes over time, the data on the relationship between the fluid's viscosity change and rotational speed is stored in advance in the arithmetic and control unit, and the temperature difference between both sensors is controlled while the rotational speed is kept constant. Once measured, the arithmetic and control device can calculate the kinematic viscosity of the fluid from the temperature difference.

以上、発熱体温度センサーが液体温度センサーの周囲を
回転する場合について述べたが、第2図に示すにように
、一定周期で振動するパイプレーク−11に発熱体温度
センサー2を取りつけ、その振動数、振幅幅を可変にし
ておくことにより、同様に発熱体温度センサーと測定流
体との相対流速を最適化させることができる。
The case where the heating element temperature sensor rotates around the liquid temperature sensor has been described above, but as shown in Fig. 2, the heating element temperature sensor 2 is attached to a pipe rake 11 that vibrates at a constant period, and the vibration By making the number and amplitude width variable, it is possible to similarly optimize the relative flow velocity between the heating element temperature sensor and the measurement fluid.

(発明の効果〕 本発明の動粘度測定装置は、液体温度センサーの周囲を
発熱体温度センサーを回転、または振動等の運動をさせ
てその運動周期を可変とすることにより、動粘度測定に
際しての最適条件を選択することができ、安定して動粘
度を計測することができる。また運動方向を変える時の
静止時間を変化させることにより、相対流速変化の効果
を短時間で分かるようにすることもできる。更に時間と
共に粘度が増大、または減少する系においては、発熱体
温度センサーの運動速度を運動と共に増加、または減少
させ、運動速度を一定とすることにより、両センサーの
温度差から動粘度をリアルタイムで算出することができ
、例えば化学重合反応等における反応終点を容易にモニ
タリングすることができるものである。
(Effects of the Invention) The kinematic viscosity measuring device of the present invention allows the heating element temperature sensor to rotate or vibrate around the liquid temperature sensor to make the movement period variable, thereby making it possible to measure kinematic viscosity. Optimal conditions can be selected and kinematic viscosity can be measured stably.Also, by changing the resting time when changing the direction of motion, the effect of changes in relative flow velocity can be seen in a short time. Furthermore, in systems where the viscosity increases or decreases over time, the kinematic viscosity can be determined from the temperature difference between the two sensors by increasing or decreasing the movement speed of the heating element temperature sensor with the movement and keeping the movement speed constant. can be calculated in real time, and the end point of a reaction in, for example, a chemical polymerization reaction can be easily monitored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の動粘度測定装置の作動状態を示す断面
図、第2図は本発明の動粘度測定装置における他の実施
例を示す図、第3図は発熱体温度センサーの回転速度毎
の、発熱体温度センサーと液体温度センサーとの温度差
の経時変化を説明するための図、第4図は発熱体温度セ
ンサーの回転周期毎の動粘度検知感度の経時変化を説明
するための図、第5図は従来例を示す図で、同図(a)
は発熱体温度センサーと液体温度センサーをそのホルダ
ーに共に固定したもの、同図(b)は発熱体温度センサ
ーにおけるセンサ一部を被検流体に水平に配置するよう
にしたものの断面図である。 図中1は液体温度センサー、2は発熱体温度センナ−1
3は液体容器、4はパルスモータ−15はベルト、6は
回転円筒部、7は発熱体温度センサー支持部、8はマフ
ラー、9はヘアリング部、10は演算制御装置、11は
パイプレーク−112は液体容器を示す。 出  願  人 雪印乳業株式会社(外1名)代理人 
弁理士 内1)亘彦 (外5名)第 図 第 図
FIG. 1 is a sectional view showing the operating state of the kinematic viscosity measuring device of the present invention, FIG. 2 is a diagram showing another embodiment of the kinematic viscosity measuring device of the present invention, and FIG. 3 is the rotation speed of the heating element temperature sensor. Figure 4 is a diagram to explain the change over time in the temperature difference between the heating element temperature sensor and the liquid temperature sensor at each rotation period. Figure 5 shows a conventional example, and Figure (a)
1 is a cross-sectional view of a heating element temperature sensor and a liquid temperature sensor fixed together on a holder, and FIG. In the figure, 1 is a liquid temperature sensor, 2 is a heating element temperature sensor 1
3 is a liquid container, 4 is a pulse motor, 15 is a belt, 6 is a rotating cylinder part, 7 is a heating element temperature sensor support part, 8 is a muffler, 9 is a hair ring part, 10 is an arithmetic and control unit, 11 is a pipe rake. 112 indicates a liquid container. Applicant Snow Brand Milk Products Co., Ltd. (one other person) agent
Patent attorney (1) Nobuhiko (5 others) Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)液体温度センサー、及び発熱体温度センサーとか
らなり、並列状態で被検液体中に挿入される熱的粘度計
において、該発熱体温度センサーを液体温度センサーを
中心として回転、または振動させて測温し、液体温度セ
ンサーとの温度差より液体の動粘度を測定することを特
徴とする動粘度測定装置。
(1) In a thermal viscometer that consists of a liquid temperature sensor and a heating element temperature sensor and is inserted into the liquid to be tested in parallel, the heating element temperature sensor is rotated or vibrated around the liquid temperature sensor. A kinematic viscosity measuring device that measures the kinematic viscosity of a liquid based on the temperature difference between the temperature sensor and the liquid temperature sensor.
JP29550888A 1988-11-22 1988-11-22 Kinematic viscosity measuring device Expired - Lifetime JPH0629837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29550888A JPH0629837B2 (en) 1988-11-22 1988-11-22 Kinematic viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29550888A JPH0629837B2 (en) 1988-11-22 1988-11-22 Kinematic viscosity measuring device

Publications (2)

Publication Number Publication Date
JPH02141650A true JPH02141650A (en) 1990-05-31
JPH0629837B2 JPH0629837B2 (en) 1994-04-20

Family

ID=17821523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29550888A Expired - Lifetime JPH0629837B2 (en) 1988-11-22 1988-11-22 Kinematic viscosity measuring device

Country Status (1)

Country Link
JP (1) JPH0629837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153936A (en) * 1988-12-06 1990-06-13 Nippon Ester Co Ltd Production of polymer
JPH04282433A (en) * 1991-03-11 1992-10-07 Snow Brand Milk Prod Co Ltd Method and apparatus for measuring concentration of liquid
JPH0787995A (en) * 1993-09-28 1995-04-04 Snow Brand Milk Prod Co Ltd Determination of potency of lactobacillus
JP2008128976A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Method and instrument for continuously measuring characteristic of liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153936A (en) * 1988-12-06 1990-06-13 Nippon Ester Co Ltd Production of polymer
JPH04282433A (en) * 1991-03-11 1992-10-07 Snow Brand Milk Prod Co Ltd Method and apparatus for measuring concentration of liquid
JPH0787995A (en) * 1993-09-28 1995-04-04 Snow Brand Milk Prod Co Ltd Determination of potency of lactobacillus
JP2008128976A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Method and instrument for continuously measuring characteristic of liquid

Also Published As

Publication number Publication date
JPH0629837B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JPH0355778B2 (en)
US8453496B2 (en) Rheometer and rheometric method for testing samples
EP3293506B1 (en) Sensor device and method for obtaining rheological property value
US3382706A (en) Oscillatory element for measuring viscosity
EP0734515B1 (en) Viscometer
WO2001075417A1 (en) Method and apparatus for viscosity measurement
US6691560B2 (en) Free rotor viscometer
JPH02141650A (en) Kinetic viscosity measuring apparatus
Krägel et al. Measurement of interfacial shear rheological properties: An apparatus
US5203209A (en) Motion measurement of acoustically levitated object
JPH09159596A (en) Viscosity measuring method and device
Kozlov et al. Methods of experimental study of thermal convection in cavity subject to rotation and vibration
JP2002536654A (en) Torque measuring device for devices for measuring mass flow
JPH1114471A (en) Minute torque measuring instrument
JP2559174B2 (en) Fluid viscosity measuring device and fluid force detecting device
JPH02141649A (en) Viscometer sensor
JPH01311250A (en) Method and device for measuring fluid viscosity
EP0267656A2 (en) Device for recording the cylinder capacity of hydraulic motors having radial variable cylinder-piston unit
EP1445599A1 (en) U-tube rheometer for measuring dynamic viscosity
Ashwin et al. Viscometers having damped torsional oscillation
JPS61153544A (en) Rotational viscometer
JP2522733B2 (en) Kinetic viscosity measuring method and computing device
JPH0560674A (en) Determination of effective length of sensor and measurement of dynamic viscosity
JPH0617065Y2 (en) Measuring device for fluid state change
Xu et al. A dynamic U-tube rheometer of novel design for the study of weak gels and foams