JPH02153896A - Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof - Google Patents

Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof

Info

Publication number
JPH02153896A
JPH02153896A JP63277269A JP27726988A JPH02153896A JP H02153896 A JPH02153896 A JP H02153896A JP 63277269 A JP63277269 A JP 63277269A JP 27726988 A JP27726988 A JP 27726988A JP H02153896 A JPH02153896 A JP H02153896A
Authority
JP
Japan
Prior art keywords
single crystal
film
thin film
aluminum nitride
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277269A
Other languages
Japanese (ja)
Inventor
Tatsuyoshi Kaya
嘉屋 樹佳
Yasuto Sugano
康人 菅野
Hiroyasu Akashi
明石 景泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63277269A priority Critical patent/JPH02153896A/en
Publication of JPH02153896A publication Critical patent/JPH02153896A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an AlN single crystal thin film having improved crystallinity by forming an amorphous AlN film on a single crystal substrate and forming a prescribed AlN single crystal thin film on the amorphous film. CONSTITUTION:An amorphous AlN film having a thickness of 1-180nm is formed on a single crystal substrate such as sapphire R surface by vapor process such as sputtering. AlBr3 used as Al source is made to react with NH3 used as N source on the formed film in H2 gas under about 100Torr at a substrate temperature of about 1,150 deg.C by a vapor process such as CVD process. The obtained synthetic film is evaluated to obtain a laminated single crystal substrate having AlN single crystal films having the half-value width of the X-ray locking curve of <0.50.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は窒化アルミニウム(以下、AINと略する)単
結晶薄膜を有する積層単結晶基板及びその製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laminated single crystal substrate having an aluminum nitride (hereinafter abbreviated as AIN) single crystal thin film and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

気相法によるAIN単結晶薄膜の合成方法としては、従
来反応原料として金属AIとN2ガスを用いたMo1e
cular Beam Epitaxy法(以下、M 
B E法)、同じく金属A1とN2ガスを用いたスバ・
7ター法、塩化アルミニウムとアンモニアガスを用いた
Chemical Vapor Deposition
法(以下、CVD法)、トリメチルアルミニウムとアン
モニアガスを用いた有機金属CVD法(以下、MOCV
D法)が報告されている。
Conventional methods for synthesizing AIN single-crystal thin films using the vapor phase method include Mo1e, which uses metal AI and N2 gas as reaction raw materials.
cular beam epitaxy method (hereinafter referred to as M
B E method), also using metal A1 and N2 gas
Chemical Vapor Deposition using 7ter method, aluminum chloride and ammonia gas
(hereinafter referred to as CVD method), organometallic CVD method (hereinafter referred to as MOCV) using trimethylaluminum and ammonia gas
D method) has been reported.

AIN単結晶薄膜は高い絶縁性(バンドギャップは6.
2eV)を有する圧電性膜である。その高い絶縁性を利
用してm−v属化合物半導体のパッシベイション膜とし
ての応用が考えられている。また、弾性表面波(Sur
face Acoustic Wave 、以下、SA
Wと略する)の伝搬速度(以下、Vs)が圧電体の中で
最も大きいことから高周波領域のSAWフィルターに代
表されるSAWデバイスとしての応用が期待されている
AIN single crystal thin film has high insulating properties (band gap is 6.
2 eV). Utilizing its high insulating properties, application as a passivation film for m-v group compound semiconductors is being considered. In addition, surface acoustic waves (Sur
face acoustic wave, hereinafter referred to as SA
Since the propagation velocity (hereinafter referred to as "Vs") is the highest among piezoelectric materials, it is expected to be applied to SAW devices such as SAW filters in the high frequency range.

AIN単結晶薄膜を高周波領域のSAWフィルターとし
て応用する際の問題点としてはAIN単結晶薄膜の結晶
性の不均一性ということが挙げらレル。SAWフィルタ
ーにおける中心周波数その他フィルター特性はSAWの
伝搬特性と圧電体上に構成される櫛型電極パターン(I
nter DigitalTransduser、以下
IDT)によって決定される。
One of the problems when applying an AIN single crystal thin film as a SAW filter in the high frequency range is the non-uniformity of the crystallinity of the AIN single crystal thin film. The center frequency and other filter characteristics of the SAW filter are determined by the propagation characteristics of the SAW and the comb-shaped electrode pattern (I
ter Digital Transducer (hereinafter referred to as IDT).

結晶性の不均一性は直接5AWO伝搬特性に影響し、即
ちフィルター特性に影響する。従って、AIN単結晶薄
膜をSAWフィルターとして応用する場合において、A
IN単結晶薄膜の結晶性の改善は避けがたい問題である
The crystallinity non-uniformity directly affects the 5AWO propagation characteristics, ie, the filter characteristics. Therefore, when applying the AIN single crystal thin film as a SAW filter,
Improving the crystallinity of IN single crystal thin films is an unavoidable problem.

AIN単結晶薄膜の結晶性が不均一になる原因は二通り
考えられ、ひとつは酸素などの不純物がAIN膜中に固
?容することであり、もうひとつは基板単結晶との物性
不整合すなわち格子定数のずれ及び熱膨張係数の差によ
って生じた格子歪み、応力歪みである。特に、後者の原
因については、ヘテロエピタキシー一般の問題点であり
これを解決することが本目的に対して肝要である。
There are two possible reasons why the crystallinity of the AIN single crystal thin film becomes non-uniform. One is that impurities such as oxygen are solidified in the AIN film. The other is lattice distortion and stress distortion caused by physical property mismatch with the substrate single crystal, that is, a shift in lattice constant and a difference in thermal expansion coefficient. In particular, the latter cause is a general problem in heteroepitaxy, and it is essential for the present purpose to solve this problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術の上記問題を解決した高品位のAIN単結晶薄
膜を有する積層単結晶基板とそれを製造する方法を開示
するものである。
This invention discloses a laminated single-crystal substrate having a high-quality AIN single-crystal thin film that solves the above-mentioned problems of the prior art, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、XvAロッキン
グカーブの半値幅が、0.50未満である窒化アルミニ
ウム単結晶薄膜を有する積層単結晶基板を提供するもの
であり、具体的には、単結晶基板上にlnm〜180n
m未満のアモルファス窒化アルミニウム膜があり、その
上に窒化アルミニウム単結晶薄膜がある積層単結晶基板
を提供するものである。そして、その製造法として、金
属アルミニウムあるいはアルミニウム化合物と窒素化合
物とを反応させ、異種単結晶基板上に窒化アルミニウム
単結晶薄膜を気相法により合成する際、あらかしめ単結
晶基板上にアモルファス窒化アルミニウム膜を成膜し、
そのアモルファス窒化アルミニウム膜の上に窒化アルミ
ニウム単結晶薄膜を成膜する積層単結晶基板の製造法を
提供するものである。
In order to achieve the above object, the present invention provides a laminated single crystal substrate having an aluminum nitride single crystal thin film whose half width of the XvA rocking curve is less than 0.50. lnm~180n on crystal substrate
The present invention provides a laminated single-crystal substrate having an amorphous aluminum nitride film having a thickness of less than m and an aluminum nitride single-crystal thin film thereon. The manufacturing method involves reacting metal aluminum or an aluminum compound with a nitrogen compound to synthesize an aluminum nitride single crystal thin film on a different type of single crystal substrate using a vapor phase method. Deposit a film,
The present invention provides a method for manufacturing a laminated single crystal substrate in which an aluminum nitride single crystal thin film is formed on the amorphous aluminum nitride film.

ヘテロエピタキシーにおける界面の物性不整合による成
長結晶層の結晶性劣化を改善する技術には大別して二通
り試みられてきている。ひとつは歪み超格子をヘテロ界
面に施し、ミスフィ7)転位の伝搬を防ぎ高品位の単結
晶薄膜を得るものである。もうひとつは、ヘテロ界面に
極薄いアモルファス層を低温において成長させ次に通常
の成長温度でエピタキシャル成長を行うもので、−a的
には二段階成長法と呼ばれている。二段階成長法の報告
例を第1表にまとめた。本発明はこの二段階成長法の考
え方に分類されるものである。
Broadly speaking, two types of techniques have been attempted to improve the crystallinity deterioration of the grown crystal layer due to physical property mismatch at the interface in heteroepitaxy. One is to apply a strained superlattice to the hetero interface to prevent misfi 7) dislocation propagation and obtain a high-quality single-crystal thin film. The other method is to grow an extremely thin amorphous layer on the hetero interface at a low temperature and then perform epitaxial growth at a normal growth temperature, which is called a two-step growth method. Table 1 summarizes reported examples of the two-step growth method. The present invention falls under the concept of this two-stage growth method.

AINのへテロエピタキシーに関する限り、二段階成長
法を試みた報告例は無く、たとえば、サファイアを基板
として用いMOCVDによってエピタキシャル成長を行
う場合において、エピタキシーにさきがけでアンモニア
ガスによりサファイア表面を窒化することによって成長
単結晶層の結晶性を改善する報告があるのみである。(
Jpn、J。
As far as heteroepitaxy of AIN is concerned, there are no reports that have attempted a two-step growth method. For example, when epitaxial growth is performed by MOCVD using sapphire as a substrate, growth is performed by nitriding the sapphire surface with ammonia gas prior to epitaxy. There is only a report on improving the crystallinity of a single crystal layer. (
Jpn, J.

Appl、Phys、27. L161 (1988)
 )本発明の実施にあたってAINの原料となる物質は
特に限定されない。また、アモルファスAIN膜の合成
時とAIN単結晶薄膜の合成時で原料が変わっていても
差支えない。要は、アモルファスAIN膜及びAIN単
結晶薄膜を合成する際に単結晶基板上において気相化さ
れていることが肝要である。本発明において使用される
単結晶基板は特に限定はされないが、SAWデバイスと
して用いられる場合にはサラ14フ8面及び0面、Si
単結晶(111)面などを使用することが好ましい。ア
モルファスAIN膜の合成方法は特に限定されるもので
はなく、スパッター法、CVD法、プラズマCVD法、
光CVD法、蒸着法など気相法による成膜方法であれば
なんでも良い。AIN単結晶薄膜の合成方法は特に限定
されるものではなく、MBE法、スパッター法、MOC
VD法、CVD法、蒸着法など気相法によってAIN単
結晶薄膜が合成できる方法であればなんでも良い。
Appl, Phys, 27. L161 (1988)
) In carrying out the present invention, there are no particular limitations on the substance that becomes the raw material for AIN. Furthermore, there is no problem even if the raw materials are different when synthesizing an amorphous AIN film and when synthesizing an AIN single crystal thin film. The key point is that when synthesizing an amorphous AIN film and an AIN single crystal thin film, it is vaporized on a single crystal substrate. The single crystal substrate used in the present invention is not particularly limited, but when used as a SAW device, it is
It is preferable to use a single crystal (111) plane or the like. The method of synthesizing the amorphous AIN film is not particularly limited, and includes sputtering, CVD, plasma CVD,
Any film forming method using a vapor phase method such as a photo-CVD method or a vapor deposition method may be used. The method for synthesizing the AIN single crystal thin film is not particularly limited, and may include MBE, sputtering, and MOC.
Any method that can synthesize an AIN single crystal thin film by a vapor phase method such as a VD method, a CVD method, or an evaporation method may be used.

また、二段階の成膜方法は必ずしも同一である必要はな
く、また同一の反応室で成膜される必要もない。AIN
単結晶薄膜の結晶性向上に対して効果のあるアモルファ
スAIN膜の膜厚は二段階の成膜方法によって若干異な
り、厳密には定められないが、lnm未満であればその
効果が薄く、また180nII!以上の場合にはアモル
ファスAIN上にはAIN多結晶膜が成長してしまう。
Furthermore, the two-step film formation method does not necessarily have to be the same, nor does it need to be performed in the same reaction chamber. A.I.N.
The thickness of the amorphous AIN film, which is effective in improving the crystallinity of single-crystal thin films, varies slightly depending on the two-step film formation method and cannot be strictly determined, but if it is less than 1 nm, the effect is weak, and if it is less than 180 nII. ! In the above case, an AIN polycrystalline film will grow on the amorphous AIN.

従って、該膜厚はlnm以上180nm未満が好ましく
、特に5nm以上1100n以下である場合にはその効
果が高い。界面にアモルファス層を介在させながらへテ
ロエピタキシャル成長が可能である理由は定かではない
が、エピタキシーを行うまでの昇温過程においてアモル
ファスAIN膜がアニールされ局部的に単結晶化された
ものと考えられる。また、二段階成長法によってAIN
単結晶薄膜の結晶性が向上する理由も明らかではないが
、格子不整合を除去すると同時に、低温でAIN膜を単
結晶基板上に成膜することによって高温におけるエピタ
キシー・時に単結晶基板と原料ガスとの反応を防ぎ基板
損傷を押え、三次元核成長を防止していることが影響し
ているものと考えられる。なお、AIN単結晶薄膜の結
晶性の評価にはX線ロッキングカーブの半値幅をもって
行った。測定に用いたのは(株)リガク製RAI)−A
シリーズであり、発散スリット及び散乱スリットは1/
6°のものを用い、受光スリットは0.3mmのものを
用いた。
Therefore, the film thickness is preferably 1 nm or more and less than 180 nm, and the effect is particularly high when it is 5 nm or more and 1100 nm or less. The reason why heteroepitaxial growth is possible with an amorphous layer interposed at the interface is not clear, but it is thought that the amorphous AIN film is annealed and locally turned into single crystals during the temperature raising process before epitaxy. In addition, by the two-step growth method, AIN
Although it is not clear why the crystallinity of single-crystal thin films improves, it is possible to eliminate lattice mismatch and at the same time form an AIN film on a single-crystal substrate at a low temperature. This is thought to be due to the fact that it prevents reactions with the substrate, suppresses damage to the substrate, and prevents three-dimensional nuclear growth. The crystallinity of the AIN single crystal thin film was evaluated using the half width of the X-ray rocking curve. The product used for the measurement was RAI)-A manufactured by Rigaku Co., Ltd.
series, and the divergent slit and scattering slit are 1/
A light receiving slit of 0.3 mm was used.

〔実施例〕〔Example〕

以下、本発明につき実施例を挙げて説明する。 Hereinafter, the present invention will be explained by giving examples.

(1)単結晶基板      サファイアR面(2)ア
モルファス AINの合成方法    スパッター法スパッターター
ゲット     AI 雰囲気ガス      Ar;70% N2;30% 0、06 Torr 300℃ 反応圧力 基板温度 (31AIN単結晶 薄膜の合成方法     CVD法 A I fl         A I B r ++
N源        NHI 雰囲気ガス      H2 反応圧力       100TorrM 手l 1品
度             1150 °にのような
条件下でアモルファスAIN膜の膜厚を変化させて合成
を行い、X線ロッキングカーブによってAIN単結晶薄
膜の結晶性の評価を行った。なお、単結晶薄膜の膜yゾ
は3.0/1mに揃えた。以上の実施例の結果を第2表
にまとめた。比較例としてアモルファスAIN膜を界面
に介在させない場合の結果も合せて記載した。第2表か
ら明らかなようにアモルファスAIN膜を介在させない
場合のロッキングカーブの半値幅に比べて、lnm以上
180nm未満のアモルファスAIN膜を介在させた場
合のロッキングカーブの半値幅は小さな値となり、即ら
AIN単結晶薄膜の結晶性が向上したことが確認される
(1) Single crystal substrate Sapphire R surface (2) Synthesis method of amorphous AIN Sputtering method Sputter target AI Atmosphere gas Ar; 70% N2; 30% 0.06 Torr 300°C Reaction pressure Substrate temperature (31 Method for synthesizing AIN single crystal thin film CVD method A I fl A I B r ++
N source: NHI Atmospheric gas: H2 Reaction pressure: 100 TorrM Hand: 1 quality: Synthesis is performed by changing the film thickness of the amorphous AIN film under conditions such as 1150°, and the crystallinity of the AIN single crystal thin film is determined by the X-ray rocking curve. We conducted an evaluation. Note that the film y-zo of the single crystal thin film was set to 3.0/1 m. The results of the above examples are summarized in Table 2. As a comparative example, results obtained when no amorphous AIN film was interposed at the interface were also described. As is clear from Table 2, compared to the half-width of the rocking curve when no amorphous AIN film is interposed, the half-width of the rocking curve when an amorphous AIN film of 1 nm or more and less than 180 nm is interposed becomes a smaller value, and immediately It is confirmed that the crystallinity of the AIN single crystal thin film was improved.

第2表 ス1」01果 0.48 0.39 0.30 0.28 0.31 0.35 0.38 0.39 0.45 0.50 〔発明の効果〕 本発明によれば、結晶性の良好なAIN単結晶薄膜を有
する積層単結晶基板を得ることができる。
Table 2 S1'01 fruit 0.48 0.39 0.30 0.28 0.31 0.35 0.38 0.39 0.45 0.50 [Effect of the invention] According to the present invention, crystal A laminated single crystal substrate having an AIN single crystal thin film with good properties can be obtained.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)X線ロッキングカーブの半値幅が、0.50未満
である窒化アルミニウム単結晶薄膜を有する積層単結晶
基板
(1) A laminated single crystal substrate having an aluminum nitride single crystal thin film whose half width of the X-ray rocking curve is less than 0.50
(2)単結晶基板上に1nm〜180nm未満のアモル
ファス窒化アルミニウム膜があり、その上に窒化アルミ
ニウム単結晶薄膜がある積層単結晶基板
(2) A laminated single-crystal substrate with an amorphous aluminum nitride film of 1 nm to less than 180 nm on a single-crystal substrate, and an aluminum nitride single-crystal thin film on top of the amorphous aluminum nitride film
(3)金属アルミニウムあるいはアルミニウム化合物と
窒素化合物とを反応させ、異種単結晶基板上に窒化アル
ミニウム単結晶薄膜を気相法により合成する際、あらか
じめ単結晶基板上にアモルファス窒化アルミニウム膜を
成膜し、そのアモルファス窒化アルミニウム膜の上に窒
化アルミニウム単結晶薄膜を成膜する積層単結晶基板の
製造法
(3) When reacting metal aluminum or an aluminum compound with a nitrogen compound to synthesize an aluminum nitride single crystal thin film on a heterogeneous single crystal substrate by a vapor phase method, an amorphous aluminum nitride film is formed on the single crystal substrate in advance. , a method for manufacturing a laminated single-crystal substrate in which an aluminum nitride single-crystal thin film is deposited on the amorphous aluminum nitride film.
JP63277269A 1988-11-04 1988-11-04 Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof Pending JPH02153896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277269A JPH02153896A (en) 1988-11-04 1988-11-04 Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277269A JPH02153896A (en) 1988-11-04 1988-11-04 Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof

Publications (1)

Publication Number Publication Date
JPH02153896A true JPH02153896A (en) 1990-06-13

Family

ID=17581170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277269A Pending JPH02153896A (en) 1988-11-04 1988-11-04 Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof

Country Status (1)

Country Link
JP (1) JPH02153896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142953A (en) * 2001-09-28 2004-05-20 Ngk Insulators Ltd Group iii nitride epitaxial substrate, epitaxial substrate for group iii nitride element, and group iii nitride element
JP2005060216A (en) * 2003-07-29 2005-03-10 Ngk Insulators Ltd Method and apparatus for manufacturing group iii nitride single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142953A (en) * 2001-09-28 2004-05-20 Ngk Insulators Ltd Group iii nitride epitaxial substrate, epitaxial substrate for group iii nitride element, and group iii nitride element
JP2005060216A (en) * 2003-07-29 2005-03-10 Ngk Insulators Ltd Method and apparatus for manufacturing group iii nitride single crystal
JP4493427B2 (en) * 2003-07-29 2010-06-30 日本碍子株式会社 Method for producing group III nitride single crystal

Similar Documents

Publication Publication Date Title
US5571603A (en) Aluminum nitride film substrate and process for producing same
JP3396356B2 (en) Semiconductor device and method of manufacturing the same
JPH02141495A (en) Laminated single crystal substrate having thin aluminum nitride single crystal film and production thereof
KR102551587B1 (en) Underlayer substrate for diamond film-forming and method for preparing diamond substrate using the same
EP1298709B1 (en) Method for producing a iii nitride element comprising a iii nitride epitaxial substrate
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
JP2003243302A5 (en)
JP2009543946A (en) Wide band gap semiconductor materials
JP4301592B2 (en) Manufacturing method of substrate with nitride semiconductor layer
JPH08310900A (en) Thin-film single crystal of nitride and its production
JPH0748198A (en) Method for synthesizing diamond
JPH09249499A (en) Epitaxial growth for group iii nitride semiconductor
Lundin et al. Study of initial stages of the GaN growth on sapphire substrates
JPH02153896A (en) Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof
JP3946805B2 (en) Crystal growth method of gallium nitride compound semiconductor
JPH02153897A (en) Laminated single crystal substrate having aluminum nitride single crystal thin film and production thereof
JP2001135575A (en) Iii-v compound semiconductor
JPH0840799A (en) Base of growing single crystal
JP3466314B2 (en) Substrates for growing single crystals
JP3465345B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
Piner et al. New Buffer Layers for GaN on Sapphire by Atomic Layer and Molecular Stream Epitaxy
KR101094409B1 (en) Preparation of single crystalline gallium nitride thick film
JP2002237737A (en) Substrate for surface acoustic wave device and method for manufacturing the substrate and surface acoustic wave device using the substrate
JP3985288B2 (en) Semiconductor crystal growth method
JP3471186B2 (en) Compound semiconductor crystal growth method