JPH02153752A - Thin-film type thermal head and its manufacture - Google Patents
Thin-film type thermal head and its manufactureInfo
- Publication number
- JPH02153752A JPH02153752A JP30802288A JP30802288A JPH02153752A JP H02153752 A JPH02153752 A JP H02153752A JP 30802288 A JP30802288 A JP 30802288A JP 30802288 A JP30802288 A JP 30802288A JP H02153752 A JPH02153752 A JP H02153752A
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- wear
- heating element
- sicz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910004020 SiCz Inorganic materials 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000005299 abrasion Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract 8
- 239000010408 film Substances 0.000 claims description 58
- 238000010438 heat treatment Methods 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229910020286 SiOxNy Inorganic materials 0.000 abstract description 13
- 239000007789 gas Substances 0.000 abstract description 13
- 239000001257 hydrogen Substances 0.000 abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 5
- -1 nitrogen ions Chemical class 0.000 abstract description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 150000002431 hydrogen Chemical class 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- 230000035882 stress Effects 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 description 3
- 229910004304 SiNy Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 101100005986 Caenorhabditis elegans cth-2 gene Proteins 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 244000287680 Garcinia dulcis Species 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002831 nitrogen free-radicals Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、薄膜型サーマルヘッドおよびこれの製造方法
にかかるものであって、特に、発熱体を保護する耐摩耗
性の被膜の構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin-film thermal head and a method for manufacturing the same, and more particularly to the structure of a wear-resistant coating that protects a heating element. .
従来の技術
従来、薄膜型サーマルヘッドは金属電極及び発熱体上に
酸化タンタル(Ta2es) p窒化珪素(SiNy)
、炭化珪素(SiCz)、SiCzNyなどの耐摩耗膜
をスパッタ法あるいはプラズマCVD法により形成して
いた。Conventional technology Conventionally, thin-film thermal heads use tantalum oxide (Ta2es) p silicon nitride (SiNy) on metal electrodes and heating elements.
, silicon carbide (SiCz), SiCzNy, or the like is formed by sputtering or plasma CVD.
発明が解決しようとする課題
薄膜型サーマルヘッドの耐摩耗膜に要求される特性とし
て次のような要件がある。(1)硬度が高く紙との摩擦
による膜の摩耗量が少ないこと。(2)連続印字パルス
を発熱体に加えても熱応力により耐摩耗膜が破壊しない
こと。(3)電極層9発熱体層との界面で耐摩耗膜の密
着性が良好なこと。(4)高温に発熱体を加熱しても保
護膜の構造が変わらず熱的に良好なこと。(5)生産性
が良好なこと。Problems to be Solved by the Invention The following requirements are required for the wear-resistant film of a thin film type thermal head. (1) High hardness and little wear of the film due to friction with paper. (2) Even if continuous printing pulses are applied to the heating element, the wear-resistant film will not be destroyed by thermal stress. (3) The wear-resistant film has good adhesion at the interface with the electrode layer 9 and the heating element layer. (4) Even if the heating element is heated to a high temperature, the structure of the protective film does not change and is thermally stable. (5) Good productivity.
しかしながら、酸化タンタル、(Ta2O6)からなる
膜では硬度が小さ(摩耗量が大きいため、膜厚を少な(
とも6μm以上にしなければならない問題があった。窒
化珪素(SiNy)からなる膜では硬度が太き(化学的
に安定であるが、熱伝導度が良好でなく膜の内部応力が
大きくなった。それにより窒化珪素の耐摩耗膜では印字
パルスの熱応力で破壊しやすい問題があった。また、窒
化珪素、炭化珪素をスパッタ法で形成した場合、入射電
力を太き(するとターゲツト材の表面で異常放電が発生
しやすく、高速堆積された膜では欠陥が生じやすい問題
があった。プラズマCVD法によりS iH4t N
Hs eあるいはCH4,C2H4などの水素基を有す
る混合ガス中で形成された膜には水素結合(Si−H結
合等)が含まれやすく、この水素が高温で膜から離脱す
るので膜の構造が変化しクラック等が発生した。それゆ
え耐摩耗膜として耐熱性に問題があった。炭化珪素、窒
化珪素等の耐摩耗膜とその下層の電極Cuとの界面での
密着性が良好でな(、テープを付着し引張り試験を行う
と界面で剥離を生じやすい問題があった。However, the hardness of the film made of tantalum oxide (Ta2O6) is small (the amount of wear is large), so the film thickness must be reduced (
Both had the problem of having to be 6 μm or more. A film made of silicon nitride (SiNy) has a high hardness (it is chemically stable, but its thermal conductivity is not good and the internal stress of the film becomes large. As a result, the wear-resistant film of silicon nitride has a hardness of the printing pulse. There was a problem that it was easy to break due to thermal stress.Also, when silicon nitride and silicon carbide were formed by sputtering, the incident power was increased (which caused abnormal discharge to occur easily on the surface of the target material, and the film deposited at high speed However, there was a problem that defects were easily generated.SiH4tN
Films formed in a mixed gas containing hydrogen groups such as Hse or CH4, C2H4 tend to contain hydrogen bonds (Si-H bonds, etc.), and as this hydrogen leaves the film at high temperatures, the structure of the film changes. Changes occurred, causing cracks, etc. Therefore, there was a problem in heat resistance as an abrasion resistant film. The adhesion at the interface between the wear-resistant film made of silicon carbide, silicon nitride, etc. and the underlying electrode Cu was poor (there was a problem that peeling easily occurred at the interface when a tensile test was performed with tape attached).
本発明はこのような問題点を解決することを目的として
いる。The present invention aims to solve these problems.
課題を解決するための手段
上記問題点を解決するために、下層に5iOxNY、上
層にSiCz(ただし、X、Y、Zは成分比を示し、X
≠O,Y≠0、Y≠0、Z≠0である)の二層構造から
なる耐摩耗膜を形成し、下層にCr。Means for Solving the Problems In order to solve the above problems, we used 5iOxNY in the lower layer and SiCz in the upper layer (X, Y, Z indicate the component ratio,
≠O, Y≠0, Y≠0, Z≠0), and the lower layer is Cr.
上層にCu(あるいはCuとCrの化合物)の二層から
なる電極を形成しアニール処理によりCrをCu層に拡
散させることによって上記の問題を解決することを見い
だした。It has been found that the above problem can be solved by forming an electrode consisting of two layers of Cu (or a compound of Cu and Cr) as the upper layer and diffusing Cr into the Cu layer by annealing.
本発明では下層のSiOxNy膜は原料ガスとして、S
iH4(あるいはSiF4,5iCe4)。In the present invention, the lower SiOxNy film uses S as a raw material gas.
iH4 (or SiF4, 5iCe4).
N t (あるいはNH3とN2の混合ガス)* N
2O * 02を用いたプラズマCVD法で形成する。N t (or mixed gas of NH3 and N2) * N
It is formed by a plasma CVD method using 2O*02.
NH3を含むと膜中の水素の含有量が増えるので、耐熱
性の点ではN Hsが少ない原料ガスが好ましい。また
放電電力としてはN2を分解するために大電力を入射す
る必要がある。上層の窒化珪素(SiCz)はS i
H41CH41C2H4# CtH2を用いたプラズマ
CVD法で形成する。CH4,C2H41C2H2のう
ちCH基の少ないガス程耐熱性の点から好ましく、基板
温度は300℃以上にする必要がある。Since containing NH3 increases the hydrogen content in the film, a raw material gas containing less NHs is preferable from the viewpoint of heat resistance. Further, as discharge power, it is necessary to input a large power in order to decompose N2. The upper layer silicon nitride (SiCz) is Si
H41CH41C2H4# Formed by plasma CVD using CtH2. Among CH4 and C2H41C2H2, gases with fewer CH groups are more preferable from the viewpoint of heat resistance, and the substrate temperature needs to be 300° C. or higher.
作用
上記した手段を用いることによって生ずる本発明の作用
は次のようなものである。本発明の耐摩耗膜の下層のS
iOxNyはSiH4とN2ガスにN2O(あるいは0
2)を添加することによって内部応力を制御でき、しか
も形成した膜のSiH結合を少なくできる。これはプラ
ズマ中の酸素イオンやラジカルにより5i−Hnから水
素を奪う反応が生じるからである。N 2Oあるいは0
2を添加しない場合でもSiH4−N2ガス系の反応で
は、大電力を入射することによって、高励起の窒素イオ
ンおよびラジカルが生成され、これと5i−Hnとの水
素離脱反応により膜中の水素を低減できる。また、[S
i’H4]/[Nz1= 1 / 10に一定にして
N2O(あるいはCh)の流量をN2の流量の10%程
度添加することによりS 1oxNy膜の成膜速度は3
〜4倍に増大し、内部応力は圧縮で大きくなった。第3
図のようにSiOxNy膜は圧縮応力が大きい程、連続
印字パルスに対する寿金持性は向上する。以上より、S
1oxNy膜は5i−H結合を少なく耐熱性が良好で
、また、内部応力をN2O.02の流量により制御する
ことにより耐摩耗膜の連続印字パルスの寿命特性を最適
にできる。反面、S 1oxNy膜は02あるいはN2
Oの流量を増やすと、酸素リッチで硬度が低く耐摩耗性
が劣る。そこで、その上層に硬度が高(熱伝導の良好な
SiCzを形成し、耐摩耗性を向上できる。このSiC
z膜はSiOxNy膜に比べて膜厚が少なくとも1μm
以上と薄くてもよく、高速堆積する必要もないので膜に
水素基(S iH)の含まれるのを抑制できる。Effects The effects of the present invention produced by using the above-mentioned means are as follows. S in the lower layer of the wear-resistant film of the present invention
iOxNy is a combination of SiH4 and N2 gas with N2O (or 0
By adding 2), internal stress can be controlled and SiH bonds in the formed film can be reduced. This is because a reaction occurs in which hydrogen is taken away from 5i-Hn by oxygen ions and radicals in the plasma. N2O or 0
Even when 2 is not added, in the SiH4-N2 gas system reaction, highly excited nitrogen ions and radicals are generated by injecting high power, and the hydrogen in the film is removed by the hydrogen desorption reaction between these and 5i-Hn. Can be reduced. Also, [S
By keeping the flow rate of N2O (or Ch) constant at 1/10 and adding the flow rate of N2O (or Ch) to about 10% of the flow rate of N2, the deposition rate of the S1oxNy film is 3.
-4 times increase, and the internal stress became larger in compression. Third
As shown in the figure, the greater the compressive stress of the SiOxNy film, the better its longevity against continuous printing pulses. From the above, S
The 1oxNy film has few 5i-H bonds and has good heat resistance, and also reduces internal stress by N2O. By controlling the flow rate of 0.02, the lifetime characteristics of continuous printing pulses of the wear-resistant film can be optimized. On the other hand, the S 1oxNy film is 02 or N2
If the flow rate of O is increased, the hardness will be low due to oxygen richness, and the wear resistance will be inferior. Therefore, by forming SiCz with high hardness (good heat conduction) on the upper layer, wear resistance can be improved.
The thickness of the Z film is at least 1 μm compared to the SiOxNy film.
The film may be as thin as the above and does not need to be deposited at high speed, so it is possible to suppress the inclusion of hydrogen groups (SiH) in the film.
炭化珪素、窒化珪素、SiOxNy膜と電極Cuの界面
では密着性が悪くテープ引張り試験で剥離を生じたが、
Crを下層としCuを上層とする二層電極構造ではアニ
ール処理によりCrをCuの表面まで拡散させることに
より電極との界面で付着強度を増す作用があった。また
、この作用は、CrとCuの化合物を上層とした電極で
も達せられる。Adhesion was poor at the interface between the silicon carbide, silicon nitride, and SiOxNy films and the electrode Cu, and peeling occurred in the tape tensile test.
In the two-layer electrode structure with Cr as the lower layer and Cu as the upper layer, the annealing treatment had the effect of increasing adhesion strength at the interface with the electrode by diffusing Cr to the surface of the Cu. Further, this effect can also be achieved with an electrode having a compound of Cr and Cu as an upper layer.
実施例1 第1図は、薄膜型サーマルヘッドの断面図を示す。Example 1 FIG. 1 shows a sectional view of a thin film type thermal head.
第1図で、1はグレーズドアルミナ基板、2はTiCお
よびSiOxの混合物よりなる電極、3はCrからなる
下層の電極、4はCu(あるいはCuとCrの化合物)
からなる上層電極、5はSiOxNyからなる下層耐摩
耗膜、6はSiCzからなる上層耐摩耗膜である。In Figure 1, 1 is a glazed alumina substrate, 2 is an electrode made of a mixture of TiC and SiOx, 3 is a lower electrode made of Cr, and 4 is Cu (or a compound of Cu and Cr).
5 is a lower wear-resistant film made of SiOxNy, and 6 is an upper wear-resistant film made of SiCz.
実施例2
第2図は、S r H4、N 2O T N 2混合ガ
ス中で形成した膜の[N2O] / [N2]流量に対
する内部応力とビッカース硬度の依存性を示している。Example 2 FIG. 2 shows the dependence of internal stress and Vickers hardness on the [N2O]/[N2] flow rate of a film formed in a S r H4, N 2 O T N 2 mixed gas.
この場合、[S i N4] =40secm[N2]
=400.8.、、基板温度350℃、気圧1.0T
orr+入射電力=500Wで成膜した。第3図は[N
2O1/ [N 2]流量比に対する連続印字パルス
の破壊寿命と印字電力の関係を示している。パルスの寿
命回数は、印字時間1 、 O1lsec +周期2O
s+secで 1ドツト当りの印字電力を0.9から1
.2Wに変えたときのパルス寿命回数を示している。流
量比[N2O] / [N2]を0から1710に変え
たとき、膜の内部応力は引張りから圧縮に変わり、ビッ
カース硬度は1800から1400になった。また、パ
ルス寿命特性は同一の印字電力に対して[N2O] /
[N2]の比が大きいSiOxNyはど良好であった
。そのとき屈折率は2.1から1.7に変わった。すな
わち、SiOxNy膜の組織で5i−0の結合が増える
ほど連続パルスに対するクラック性は向上するが、硬度
が低くなり対摩耗性は劣った。それゆえ、硬度が高(熱
伝導度が良好なSiCzをSiOxNyの保護膜上に形
成して、二層膜構造により耐クラツク性の良好なSiO
xNyと耐摩耗性の良好なSiCz膜の特性を有した耐
摩耗膜が得られた。なお、このSiCz膜として、[C
2H4] = 50mccs* [S i N4] =
30 mccII e基板温度400℃、気圧1.0T
orr+入射電力30Wで成膜したものはビッカース硬
度が1900で赤外吸収スペクトルでもSiH吸収(2
100cm−’)がなく、500℃のアニール処理でも
耐熱性が良好であった。In this case, [S i N4] = 40 sec[N2]
=400.8. ,,substrate temperature 350℃, atmospheric pressure 1.0T
The film was formed at orr+incident power=500W. Figure 3 shows [N
It shows the relationship between the destructive life of continuous printing pulses and printing power with respect to the 2O1/[N2] flow rate ratio. The number of pulse lifetimes is printing time 1, O1lsec + period 2O
s+sec reduces printing power per dot from 0.9 to 1
.. It shows the number of pulse lifetimes when changing to 2W. When the flow rate ratio [N2O]/[N2] was changed from 0 to 1710, the internal stress of the membrane changed from tensile to compressive, and the Vickers hardness changed from 1800 to 1400. In addition, the pulse life characteristics are [N2O] /
SiOxNy with a large [N2] ratio was good. The refractive index then changed from 2.1 to 1.7. That is, as the number of 5i-0 bonds increases in the structure of the SiOxNy film, the cracking resistance against continuous pulses improves, but the hardness decreases and the wear resistance deteriorates. Therefore, by forming SiCz, which has high hardness (and good thermal conductivity), on the SiOxNy protective film, SiO2, which has good crack resistance due to its two-layer film structure,
A wear-resistant film having xNy and characteristics of a SiCz film with good wear resistance was obtained. In addition, as this SiCz film, [C
2H4] = 50mccs* [S i N4] =
30 mccII e Substrate temperature 400℃, atmospheric pressure 1.0T
The film formed with orr+incident power of 30W has a Vickers hardness of 1900 and SiH absorption (2
100 cm-'), and the heat resistance was good even after annealing at 500°C.
発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.
先ず第1の効果として耐摩耗膜の上層にSiCzを用い
ることによって耐摩耗性と熱伝導度が良好な保護膜とな
る。First, the first effect is that by using SiCz as the upper layer of the wear-resistant film, a protective film with good wear resistance and thermal conductivity can be obtained.
第2の効果として耐摩耗膜の下層のSiOxNyは原料
ガスにN2O.02を添加することによって水素の含有
量を低減し内部応力を最適化でき、耐熱性、連続印加パ
ルスに対する寿命特性を向上できる。また、生産性も著
しく増大する。The second effect is that the lower layer of the wear-resistant film, SiOxNy, contains N2O. By adding 02, the hydrogen content can be reduced, internal stress can be optimized, and heat resistance and life characteristics against continuous applied pulses can be improved. Also, productivity increases significantly.
第3の効果として電極をCrを下層としてCuあるいは
CuとCrの化合物を上層とする二層構造でアニール処
理により電極とSiOxNy膜の界面で密着性を向上さ
せた。The third effect is that the electrode has a two-layer structure with Cr as the lower layer and Cu or a compound of Cu and Cr as the upper layer, and the adhesion at the interface between the electrode and the SiOxNy film is improved by annealing.
第4の効果として、SiOxNy膜の原料ガスとしてN
2を含み、高励起状態の窒素ラジカルとイオンとSiH
nの反応により水素の少ない膜を生成し、良好な耐熱性
が得られた。The fourth effect is that N is used as the raw material gas for the SiOxNy film.
2, highly excited nitrogen radicals and ions, and SiH
The reaction of n produced a film with less hydrogen and good heat resistance.
第1図は本発明の一実施例における薄膜型サーマルヘッ
ドの断面図、第2図は本発明の一実施例における耐摩耗
膜の[N2O] / [Ntlの流量比に対する内部応
力とビッカース硬度の依存性を示した図、第3図は本発
明の一実施例における耐摩耗膜の[N2O] / [N
tlの流量比に対するパルス寿命特性を示した図である
。
1・・・・・・グレーズドアルミナ基板、2・・・・・
・発熱体層、3・・・・・・下層電極(Cr)、4・・
・・・・上層電極[Cu(あるいはCu/Cr)1.5
・・・・・・下層耐摩耗膜(S i 0xNy) 、6
・・・・・・上層耐摩耗膜(SjCz)
代理人の氏名 弁理士 粟野重孝 ほか1多節 1
図
1°−°ゲレース゛)″フルミナ基板
2・−究幾体層
3・−下層の電&(Cr)
4−上層9電称(CuLar Ca/Cr)s−−一下
層’ ”tJ! n FIN C3rOxNy)7−に
層q’ft丁N耗R(s;cz)第
図
第
図
ハ
(NzO)/ (”Z) = tO(%)CNzo’+
ICNz〕= q、sm〕ChhO”)/CNz〕=
0 (%)ラタへ、l 比
0.5
l−t) /、5
印 字 !+匁 [Wコ
OFIG. 1 is a cross-sectional view of a thin film thermal head according to an embodiment of the present invention, and FIG. 2 is a diagram showing internal stress and Vickers hardness of the wear-resistant film according to an embodiment of the present invention with respect to the flow rate ratio of [N2O]/[Ntl. FIG. 3 is a diagram showing the dependence of [N2O]/[N
FIG. 3 is a diagram showing pulse life characteristics with respect to the flow rate ratio of tl. 1... Glazed alumina substrate, 2...
・Heating element layer, 3...Lower electrode (Cr), 4...
... Upper layer electrode [Cu (or Cu/Cr) 1.5
...Lower wear-resistant film (S i 0xNy), 6
・・・・・・Upper layer wear-resistant film (SjCz) Name of agent Patent attorney Shigetaka Awano and 1 others 1 Fig. 1 (Cr) 4-Upper layer 9-electronic name (CuLar Ca/Cr)s--Lower layer'"tJ! n FIN C3rOxNy) 7- layer q'ft ding N wear R (s; cz) Figure Figure C (NzO)/ ("Z) = tO (%) CNzo'+
ICNz〕= q, sm〕ChhO”)/CNz〕=
0 (%) to Rata, l ratio 0.5 l-t) /, 5 Print! + momme [WcoO
Claims (4)
層及び、これらの発熱体層と電極層の上に形成された耐
摩耗膜とよりなり、前記耐摩耗膜が下層の材料をSiO
xNyとし、上層の材料をSiCz(ただし、X、Y、
Zは成分比を示しX≠0、Y≠0、Z≠0である)とす
る二層により構成されたことを特徴とする薄膜型サーマ
ルヘッド。(1) Consisting of a substrate, a heating element layer and an electrode layer formed on this substrate, and a wear-resistant film formed on these heating element layer and electrode layer, and the wear-resistant film is a material of the lower layer. SiO
xNy, and the upper layer material is SiCz (X, Y,
1. A thin film type thermal head comprising two layers, where Z indicates a component ratio, where X≠0, Y≠0, and Z≠0.
rの化合物、下層の材料をCrとする二層構造の発熱体
により形成され、その発熱体を300℃以上の雰囲気、
あるいは真空中でアニール処理を行ったことを特徴とす
る特許請求の範囲第1項記載の薄膜型サーマルヘッド。(2) The material of the upper layer of the heating element layer is Cu or Cu and C.
It is formed of a two-layer heating element with a compound of
Alternatively, the thin film type thermal head according to claim 1, wherein the annealing treatment is performed in a vacuum.
層及び、これらの発熱体層と電極層の上に形成された耐
摩耗膜層よりなり、前記耐摩耗膜が下層の材料をSiO
xNyとし、上層の材料をSiCz(ただしX、Y、Z
は成分比を示し、X=0、Y≠0、Z≠0である)とす
る二層で構成するとともに、前記耐摩耗膜をプラズマC
VD法で形成することを特徴とする薄膜型サーマルヘッ
ドの製造方法。(3) Consisting of a substrate, a heating element layer and an electrode layer formed on this substrate, and an abrasion-resistant film layer formed on these heating element layer and electrode layer, and the abrasion-resistant film is a material of the lower layer. SiO
xNy, and the upper layer material is SiCz (X, Y, Z
indicates the component ratio, X=0, Y≠0, Z≠0), and the wear-resistant film is coated with plasma C.
A method for manufacturing a thin film thermal head, characterized in that it is formed by a VD method.
H_4(あるいはSiF_4、SiCl_4)、N_2
(あるいはNH_3とN_2の混合ガス)、N_2O(
あるいはO_2)を用い、SiC_2膜を形成する原料
ガスとしてSiH_4(又はSiF_4、SiCl_4
)、CH_4(あるいはC_2H_4、C_2H_2)
を用いたことを特徴とする特許請求の範囲第3項記載の
薄膜型サーマルヘッドの製造方法。(4) As a raw material gas for forming the SiOxYn film, Si
H_4 (or SiF_4, SiCl_4), N_2
(or mixed gas of NH_3 and N_2), N_2O(
Alternatively, SiH_4 (or SiF_4, SiCl_4) is used as the raw material gas to form the SiC_2 film.
), CH_4 (or C_2H_4, C_2H_2)
A method for manufacturing a thin film thermal head according to claim 3, characterized in that the method uses:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30802288A JPH02153752A (en) | 1988-12-06 | 1988-12-06 | Thin-film type thermal head and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30802288A JPH02153752A (en) | 1988-12-06 | 1988-12-06 | Thin-film type thermal head and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02153752A true JPH02153752A (en) | 1990-06-13 |
Family
ID=17975946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30802288A Pending JPH02153752A (en) | 1988-12-06 | 1988-12-06 | Thin-film type thermal head and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02153752A (en) |
-
1988
- 1988-12-06 JP JP30802288A patent/JPH02153752A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH044395B2 (en) | ||
EP0001373B1 (en) | Method of forming smooth and pinhole-free silicon carbide films on a silicon substrate | |
US5897916A (en) | Process for production of coated ceramic member | |
JPH02153752A (en) | Thin-film type thermal head and its manufacture | |
JPS58118273A (en) | Heat-sensitive recording head | |
JPH0649645A (en) | Hard multilayered film formed body and its production | |
JP3205404B2 (en) | Wear-resistant protective film and thermal head having the same | |
US20080050522A1 (en) | Preparative method for protective layer of susceptor | |
JPH0319853A (en) | Thin film type thermal head | |
JP3195301B2 (en) | Substrate having carbon-based coating | |
JPH0393554A (en) | Thermal head and its manufacture | |
JP2528780B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
JPH0269256A (en) | Thermal head and its manufacture | |
KR102525082B1 (en) | Diamond Coated Cutting Tools | |
JPH0449057A (en) | Thin film type thermal head and manufacture thereof | |
JPS58118275A (en) | Thermal recording head | |
JPH0575591B2 (en) | ||
KR20100049996A (en) | Silicon carbide coating method and the structure that form interface layer | |
CN110699664A (en) | Wear protection layer assembly and component with wear protection layer | |
US8319394B2 (en) | Acoustic wave device and method for manufacturing the same | |
JP3221932B2 (en) | Wear-resistant protective film and thermal head having the same | |
JPH01180980A (en) | Coated tool material | |
JP3221931B2 (en) | Wear-resistant protective film for thermal head and thermal head having the same | |
JPS59190871A (en) | Protective film for heating resistor layer of thermal head | |
JPH07102640B2 (en) | Composite laminated coating |