JPH02153539A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPH02153539A
JPH02153539A JP30819188A JP30819188A JPH02153539A JP H02153539 A JPH02153539 A JP H02153539A JP 30819188 A JP30819188 A JP 30819188A JP 30819188 A JP30819188 A JP 30819188A JP H02153539 A JPH02153539 A JP H02153539A
Authority
JP
Japan
Prior art keywords
layer
electrode
voltage
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30819188A
Other languages
Japanese (ja)
Inventor
Masao Amano
天野 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30819188A priority Critical patent/JPH02153539A/en
Publication of JPH02153539A publication Critical patent/JPH02153539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a small-sized compound semiconductor device having a protective circuit of uniform withstand voltage characteristics by a method wherein a p-n junction diode, to which an inverse bias is applied, is formed under the lower part of an electrode which is wanted to protect. CONSTITUTION:A p-type GaxAl(1-x)As layer 4 and an n-type GaAs layer 5 are formed on a semi-insulative GaAs substrate 1. Moreover, a MOSFET Q1 is formed on an upper layer of the layer 5. There is a via hole part 3 in the substrate 1 under a drain electrode 6 and the layer 4 is earthed through a metal layer 2 for rear grounding use. If a positive voltage VDS is applied to this electrode 6, an inverse bias is applied to a p-n junction diode DD being formed of the layers 4 and 5. Now, if an excessive voltage V is applied to the electrode 6, a voltage of a reverse withstand voltage VV or larger due to the avalanche breakdown of the p-n junction diode DD results in not being applied to the FET Q1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体装置に関し、特に入力保護回路を
有する化合物半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compound semiconductor device, and particularly to a compound semiconductor device having an input protection circuit.

〔従来の技術〕[Conventional technology]

従来から化合物半導体装置に入力保護回路内蔵するモノ
リシックICが使用されているが、最近はその微細化要
望がますます強くなってきた。
Monolithic ICs with built-in input protection circuits have traditionally been used in compound semiconductor devices, but recently there has been a growing demand for miniaturization.

第3図(a)及び(b)は従来の化合物半導体装置の一
例の断面模式図及び等価回路図である。
FIGS. 3(a) and 3(b) are a schematic cross-sectional view and an equivalent circuit diagram of an example of a conventional compound semiconductor device.

第3図(a)に示すように、化合物半導体装置は、半絶
縁性GaAs基板1bの上層のP型半導体領域21の上
層にnpnトランジスタT、とそれにフィールド絶縁膜
22を介して隣接するMESトランジスタMESを有し
ている。
As shown in FIG. 3(a), the compound semiconductor device includes an npn transistor T in the upper layer of the P-type semiconductor region 21 on the upper layer of the semi-insulating GaAs substrate 1b, and an MES transistor adjacent thereto via the field insulating film 22. It has MES.

第3図(b)に示すように、この作用効果については特
公昭63−0012395に記載されているが、入力端
子Tlに入力したサージ電圧は抵抗R1とnpn)ラン
ジスタT、の接続する節点N、の電圧が数V〜数+Vに
なると、MESトランジスタMESがオンしてICの回
路に接続する節点N2の電圧を接地点電位Vg5に抑え
ている。
As shown in FIG. 3(b), this effect is described in Japanese Patent Publication No. 63-0012395, but the surge voltage input to the input terminal Tl is applied to the node N where the resistor R1 and the npn transistor T are connected. , when the voltage reaches several volts to several + volts, the MES transistor MES turns on and suppresses the voltage at the node N2 connected to the IC circuit to the ground potential Vg5.

その他に、電子通信学会技術研究報告(第86号、論文
番号5SD−85−138,1986年、第77頁)に
は、内蔵するショットキーダイオードを逆方向にバイア
スさせてGaAsのICの内部回路にダイオードの逆耐
圧電圧以上が印加されないようにしている。
In addition, the Institute of Electronics and Communication Engineers Technical Research Report (No. 86, Paper No. 5SD-85-138, 1986, page 77) describes how to reverse bias the built-in Schottky diode to improve the internal circuit of a GaAs IC. This prevents a voltage higher than the reverse breakdown voltage of the diode from being applied to the diode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の化合物半導体装置は、まずバイポーラト
ランジスタとMESトランジスタを用いる方法では、入
力保護回路の素子面積が大きい上2種類の素子を構成し
なければならないので、素子の特性の製造ばらつきによ
って入力保護回路の動作がばらつくという欠点があった
In the conventional compound semiconductor device described above, first, in the method using bipolar transistors and MES transistors, the element area of the input protection circuit is large, and two types of elements must be configured, so the input protection may be affected by manufacturing variations in the characteristics of the elements. The disadvantage was that the circuit operation varied.

また、ショットキーダイオードの逆方向耐圧を利用する
方法では、ICの内部回路の前段にショットキーダイオ
ードを構成しないといけない為、平面に余分な面積が必
要となり、チップ小型化が困難な上に、ダイオードの逆
方向耐圧を任意に設定しにくいという欠点もあった。
In addition, in the method that utilizes the reverse breakdown voltage of a Schottky diode, the Schottky diode must be configured in the front stage of the internal circuit of the IC, which requires an extra surface area, making it difficult to miniaturize the chip. Another drawback was that it was difficult to arbitrarily set the reverse breakdown voltage of the diode.

本発明の目的は、耐圧特性が均一な入力保護回路を有す
る小形の化合物半導体装置を提供することにある。
An object of the present invention is to provide a compact compound semiconductor device having an input protection circuit with uniform breakdown voltage characteristics.

〔課題を解決するための手段〕 本発明の半導体装置は、裏面にバイアホール部を有する
半絶縁性基板と、該半絶縁性基板の表面に該半絶縁性基
板の材料よりも広いバンドギャップを有する半導体材料
で形成されかつ前記バイアホール部を介して前記半絶縁
性基板の裏面に接続する一導電型半導体領域と、該一導
電型半導体領域の表面に形成された逆導電型半導体領域
とを含んで構成されている。
[Means for Solving the Problems] A semiconductor device of the present invention includes a semi-insulating substrate having a via hole portion on the back surface and a bandgap wider than the material of the semi-insulating substrate on the surface of the semi-insulating substrate. a semiconductor region of one conductivity type formed of a semiconductor material and connected to the back surface of the semi-insulating substrate via the via hole portion, and a semiconductor region of opposite conductivity type formed on the surface of the semiconductor region of one conductivity type. It is composed of:

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は本発明の第1の実施例のパター
ン図、対応するチップのA−A’ 線断面図及び等価回
路図である。
FIGS. 1(a) to 1(c) are a pattern diagram of a first embodiment of the present invention, a sectional view taken along line AA' of a corresponding chip, and an equivalent circuit diagram.

第1図<a)及び(b)に示すように、まず、半絶縁性
GaAs基板1の上にp型GaxAt’ +t−x+A
S層4及びn型GaAs層5をエピタキシャル成長によ
り形成する。
As shown in FIGS. 1A and 1B, first, a p-type GaxAt' +t-x+A
An S layer 4 and an n-type GaAs layer 5 are formed by epitaxial growth.

さらにその上層にMOSトランジスタQlを形成する。Furthermore, a MOS transistor Ql is formed in the upper layer.

ドレイン電極6とソース電極9の下には、MOCVD法
にて選択成長させたn+型GaAs層7が設けである。
An n+ type GaAs layer 7 selectively grown by MOCVD is provided below the drain electrode 6 and source electrode 9.

またドレイン電極6下の半絶縁性GaAs基板1にはバ
イアホール部3゜があり、裏面接地用金属層2を通して
p型GaxAJ’ +1−XlkS層4を接地している
Further, the semi-insulating GaAs substrate 1 under the drain electrode 6 has a via hole portion 3°, and the p-type GaxAJ' +1-XlkS layer 4 is grounded through the back surface grounding metal layer 2.

第1図(c)に示すようにトレイン電極6に正電圧VD
Sを印加すると、p型GaxAN Tl−XlAS層4
とn型GaAs層5で構成されているpn接合のダイオ
ードDDには逆方向バイアスが加わる。
As shown in FIG. 1(c), a positive voltage VD is applied to the train electrode 6.
When S is applied, the p-type GaxAN Tl-XlAS layer 4
A reverse bias is applied to the pn junction diode DD composed of the n-type GaAs layer 5 and the n-type GaAs layer 5.

このダイオードDDの逆方向耐圧をVr及びMOSトラ
ンジスタQ1のドレイン耐圧をBVdsとするとき、V
rがBVdsより小さい範囲内でしかもMOS)ランジ
スタQ1の動作を制限しない値となるように、p型Ga
xAf (1−X)^S層4の厚みとドーパント濃度を
選ぶ。
When the reverse breakdown voltage of this diode DD is Vr and the drain breakdown voltage of the MOS transistor Q1 is BVds, V
The p-type Ga
Select the thickness and dopant concentration of xAf (1-X)^S layer 4.

今、ドレイン電極6に過大電圧Vが加わると、トランジ
スタQlにはpn接合のダイオードD。
Now, when an excessive voltage V is applied to the drain electrode 6, a pn junction diode D is applied to the transistor Ql.

のアバランシェ降伏による逆耐圧Vr以上の電圧は加わ
らないことになり、そのなめにダイオードDDの平面チ
ップ面積を必要としない分だけ微細化できる効果がある
A voltage higher than the reverse withstand voltage Vr due to avalanche breakdown is not applied, which has the effect of miniaturizing the planar chip area of the diode DD by an amount that is not required.

一方、動作領域10の下部にp型のバッファ層を埋込ん
だ構造なのでGaAs基板1への漏れ電流が減りバック
ゲート効果の発生を防ぐ効果もある。
On the other hand, since the structure has a p-type buffer layer buried below the operating region 10, leakage current to the GaAs substrate 1 is reduced, which also has the effect of preventing the back gate effect.

ここで、ダイオードDDの逆耐圧Vrは、結晶のドーパ
ント濃度や厚みにより変化させて最適値を設定すること
ができる。
Here, the reverse breakdown voltage Vr of the diode DD can be set to an optimum value by changing it depending on the dopant concentration and thickness of the crystal.

第2図(a)〜(c)は本発明の第2の実施例のパター
ン図、対応するチップのA−A’線断面図及び等価回路
図である。
FIGS. 2(a) to 2(c) are a pattern diagram of a second embodiment of the present invention, a sectional view taken along the line AA' of the corresponding chip, and an equivalent circuit diagram.

第2図(a)及び(b)に示すように、半絶縁性GaA
s基板1.の上にn型GaxAl (1−X)A41層
14とp型GaAs15を各々エピタキシャル成長によ
り形成する。ゲート電極ポンディングパッド8Bの下方
にバイアホール部3Bを形成し、裏面接地用金属層2.
を通してn型Gax/L? +1−XlAS層14を接
地している。
As shown in FIGS. 2(a) and (b), semi-insulating GaA
s substrate 1. An n-type GaxAl (1-X)A41 layer 14 and a p-type GaAs layer 15 are each formed on the layer by epitaxial growth. A via hole portion 3B is formed below the gate electrode bonding pad 8B, and a back ground metal layer 2.
Through n-type Gax/L? +1-XlAS layer 14 is grounded.

今、ゲート電極に負電圧VGsが印加されると、ρ型G
aAs層15とn型Gaxke (1−XIAS層14
がら形成されるpn接合のダイオードD、には逆方向バ
イアスが加わる。
Now, when a negative voltage VGs is applied to the gate electrode, the ρ type G
aAs layer 15 and n-type Gaxke (1-XIAS layer 14
A reverse bias is applied to the pn junction diode D that is formed.

第1の実施例と同じようにMOS)ランジスタQ2のシ
ョットキー逆方向耐圧をBV、dとするとき、ダイオー
ドDGの耐圧VrをBV、d以下でしかもトランジスタ
Q2の動作を制限しないように選べば、トランジスタQ
2のゲートGには71以上の電圧は加わらないことにな
る。
As in the first embodiment, when the Schottky reverse breakdown voltage of transistor Q2 (MOS) is set to BV, d, if the breakdown voltage Vr of diode DG is selected to be less than BV, d and not to limit the operation of transistor Q2. , transistor Q
A voltage of 71 or more will not be applied to the gate G of No. 2.

また動作層10.はp型GaAs層15にSt+等をイ
オン注入することでn型GaAs層を形成している上述
の第1及び第2の実施例において、pn接合のダイオー
ドの2層とn層をエピタキシャル成長により形成したが
、イオン注入法によっても同様の効果が得られる。
Also, the operating layer 10. In the first and second embodiments described above, in which the n-type GaAs layer is formed by ion-implanting St + etc. into the p-type GaAs layer 15, the two layers of the p-n junction diode and the n-layer are formed by epitaxial growth. However, similar effects can also be obtained by ion implantation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、化合物半導体装置の保護
したい電極下部に、逆方向バイアスが印加されるpn接
合のダイオードを形成するので、耐圧特性が均一な入力
保護回路を有する小形の化合物半導体装置が得られる効
果がある。
As explained above, the present invention forms a pn junction diode to which a reverse bias is applied under the electrode to be protected in a compound semiconductor device, so that a small compound semiconductor device having an input protection circuit with uniform breakdown voltage characteristics can be achieved. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明の第1の実施例のパター
ン図、対応するチップのA−A’線断面図及び等価回路
図、第2図(a)〜(C)は本発明の第2の実施例のパ
ターン図、対応するチップのA−A’線断面図及び等価
回路図、第3図(a)及び(b)は従来の化合物半導体
装置の一例の断面模式図及び等価回路図である。 1.11・・・半絶縁性GaAs基板、2,2.・・・
裏面接続用金属層、3B、30・・・バイアホール部、
4・p型GaxAf (1−X)^S層、5 ・−n型
GaAs層、14・・・n型GaxAf (1−X)^
S層、15−p型GaAs層、DD 、DG・・・ダイ
オード。
FIGS. 1(a) to (C) are pattern diagrams of the first embodiment of the present invention, a sectional view taken along line A-A' of the corresponding chip, and an equivalent circuit diagram, and FIGS. 2(a) to (C) are pattern diagrams of the first embodiment of the present invention. A pattern diagram of the second embodiment of the present invention, a cross-sectional view along the line A-A' of the corresponding chip, and an equivalent circuit diagram, and FIGS. 3(a) and (b) are schematic cross-sectional views of an example of a conventional compound semiconductor device. and an equivalent circuit diagram. 1.11... Semi-insulating GaAs substrate, 2,2. ...
Back side connection metal layer, 3B, 30... via hole part,
4.p-type GaxAf (1-X)^S layer, 5.-n-type GaAs layer, 14...n-type GaxAf (1-X)^
S layer, 15-p type GaAs layer, DD, DG...diode.

Claims (1)

【特許請求の範囲】[Claims] 裏面にバイアホール部を有する半絶縁性基板と、該半絶
縁性基板の表面に該半絶縁性基板の材料よりも広いバン
ドギャップを有する半導体材料で形成されかつ前記バイ
アホール部を介して前記半絶縁性基板の裏面に接続する
一導電型半導体領域と、該一導電型半導体領域の表面に
形成された逆導電型半導体領域とを含むことを特徴とす
る化合物半導体装置。
A semi-insulating substrate having a via hole portion on the back surface, and a semi-insulating substrate formed of a semiconductor material having a wider bandgap than the material of the semi-insulating substrate on the surface thereof, and the semi-insulating substrate having a via hole portion formed on the surface thereof. A compound semiconductor device comprising: a semiconductor region of one conductivity type connected to the back surface of an insulating substrate; and a semiconductor region of opposite conductivity type formed on the surface of the semiconductor region of one conductivity type.
JP30819188A 1988-12-05 1988-12-05 Compound semiconductor device Pending JPH02153539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30819188A JPH02153539A (en) 1988-12-05 1988-12-05 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30819188A JPH02153539A (en) 1988-12-05 1988-12-05 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH02153539A true JPH02153539A (en) 1990-06-13

Family

ID=17978011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30819188A Pending JPH02153539A (en) 1988-12-05 1988-12-05 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH02153539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250984A (en) * 1995-01-13 1996-09-27 Nec Corp Logic circuit
JP2007266475A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Semiconductor device and power conversion apparatus
WO2010021099A1 (en) * 2008-08-22 2010-02-25 パナソニック株式会社 Field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250984A (en) * 1995-01-13 1996-09-27 Nec Corp Logic circuit
JP2007266475A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Semiconductor device and power conversion apparatus
WO2010021099A1 (en) * 2008-08-22 2010-02-25 パナソニック株式会社 Field effect transistor

Similar Documents

Publication Publication Date Title
US4492974A (en) DMOS With gate protection diode formed over base region
EP0576001A1 (en) Power semiconductor integrated circuit device with uniform electric field distribution
JP2689703B2 (en) MOS type semiconductor device
ES2181671T3 (en) METAL FIELD TRANSISTOR METAL FIELD SEMICONDUCTOR HIGH FREQUENCY AND HIGH POWER FORMED SILICON CARBIDE.
US4066917A (en) Circuit combining bipolar transistor and JFET's to produce a constant voltage characteristic
EP0110331A2 (en) A MOS transistor
US4562454A (en) Electronic fuse for semiconductor devices
US4543593A (en) Semiconductor protective device
JPS61296770A (en) Insulated gate field effect type semiconductor device
US4380021A (en) Semiconductor integrated circuit
CN100505260C (en) Protecting element and semiconductor device using the same
US5077586A (en) Vdmos/logic integrated circuit comprising a diode
JPH02153539A (en) Compound semiconductor device
US5182469A (en) Integrated circuit having bipolar transistors and field effect transistors respectively using potentials of opposite polarities relative to substrate
US5298770A (en) Power switching MOS transistor
US3882529A (en) Punch-through semiconductor diodes
US6144066A (en) Protection of the logic well of a component including an integrated MOS power transistor
JPH0797553B2 (en) NPN equivalent structure having a breakdown voltage greater than the intrinsic breakdown voltage of the NPN transistor
GB1219660A (en) Integrated semiconductor circuits
US6057577A (en) Component of protection of an integrated MOS power transistor against voltage gradients
US7112828B2 (en) Semiconductor device
US7060511B2 (en) Evaluation method of a field effect transistor
US6781804B1 (en) Protection of the logic well of a component including an integrated MOS power transistor
JPH03195064A (en) Mos field effect transistor
US6538290B1 (en) Static protection device