JPH02153002A - Heat treating method for flaky metal fine powder - Google Patents

Heat treating method for flaky metal fine powder

Info

Publication number
JPH02153002A
JPH02153002A JP63308442A JP30844288A JPH02153002A JP H02153002 A JPH02153002 A JP H02153002A JP 63308442 A JP63308442 A JP 63308442A JP 30844288 A JP30844288 A JP 30844288A JP H02153002 A JPH02153002 A JP H02153002A
Authority
JP
Japan
Prior art keywords
fine powder
powder
metal fine
fluidized bed
flat metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63308442A
Other languages
Japanese (ja)
Inventor
Taku Meguro
卓 目黒
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63308442A priority Critical patent/JPH02153002A/en
Publication of JPH02153002A publication Critical patent/JPH02153002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To execute heat treatment at the prescribed temp. without developing aggregation and to enable the desired annealing by heating flaky metal fine powder while forming fluidized bed. CONSTITUTION:The flaky metal fine powder is supplied into a vessel 3 arranged a dispersion plate 1 composed of porous member at the lower part and piled on the dispersion plate 1. Further, non-oxidized gas is supplied from the lower part of the piled powder group through the dispersion plate 1 at the flow rate more than the min. flow rate to make the fluidized bed and the above powder group is made the fluidized bed. All or a part of the fluidized bed generated in this method made a soaking zone of the prescribed annealing temp. with heater 2. Then, it is desirable to uniformize the heating by vibrating the vessel 3 or stirring the inner part thereof. By this method, while preventing the aggregation of the fine powder, strain generated by flattening is sufficiently removed. In the case, the above flaky metal fine powder is flaky soft magnetic alloy fine powder having 0.1-20mum average particle diameter and <=1mum average thickness, the annealing thereof is executed with the above method and this can be made to <=400A/m coercive force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は扁平状金属微粉末の熱処理方法、特には、平均
粒径0.1〜20μm、平均厚さ1μm以下の扁平状で
、軟磁性に優れた合金微粉末に好適な焼鈍方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for heat treatment of flat metal fine powder, and in particular, to flat metal powder having an average particle size of 0.1 to 20 μm and an average thickness of 1 μm or less, and having a soft magnetic property. The present invention relates to an annealing method suitable for fine alloy powder with excellent properties.

〔従来の技術〕[Conventional technology]

近年銀行カード、クレジットカード等で代表される個人
の気密に関わる磁気カードの分野では、磁気シールドを
目的として、カート表層に高透磁率材料の微粉末からな
る塗布膜被覆を施すニーズが増大してきた。このような
塗布用粉末には、高透磁率で微粉であるとともに、粉末
形状が扁平状であることが求められる。これは、塗布の
し易さ、塗布膜の表面平滑性の上から必要なばかりでな
く、塗布の際の剪断力によって扁平状微粉末が最も反磁
場係数の低い扁平方向、すなわちカード基体方向に平行
に整列されることで、面内長手方向の高透磁率が得られ
る要因からも不可欠のことである。
In recent years, in the field of magnetic cards related to personal privacy, such as bank cards and credit cards, there has been an increasing need to coat the cart surface with a coating film made of fine powder of high magnetic permeability material for the purpose of magnetic shielding. . Such a coating powder is required to have high magnetic permeability, be a fine powder, and have a flat powder shape. This is not only necessary for ease of application and surface smoothness of the coating film, but also because the shearing force during application causes the flat fine powder to move in the flat direction where the demagnetizing field coefficient is lowest, that is, toward the card substrate. This is essential because high magnetic permeability in the in-plane longitudinal direction can be obtained by arranging them in parallel.

本用途に対して具体的に要求される粉末の緒特性は、平
均粒度が0.1〜20μm、平均厚さ1μm以下で反磁
場を無視したランダムな集合状態での粉末の保磁力が4
00八/m以下というものである。
The specific properties of the powder required for this application include an average particle size of 0.1 to 20 μm, an average thickness of 1 μm or less, and a coercive force of 4 in a random aggregation state ignoring the demagnetizing field.
0.008/m or less.

このような粉末としては、材質的に高透磁率であるとと
もに、塑性変形して扁平化し易いFe−Ni系合金や脆
くて粉砕し易いPe−5i−A l系合金の適用が考え
られている。
As such powders, Fe-Ni alloys, which have high magnetic permeability and are easily plastically deformed and flattened, and Pe-5i-Al alloys, which are brittle and easily crushed, are being considered. .

前記合金粉末の製方法としては、たとえば特開昭63−
35701号および同63−35706号において、厚
さ2μm以下、厚さと直径の比率が1/lo以下の偏平
粉末を湿式ボールミル法によって得ることが提案されて
いる。またFe−5i−A l系合金の場合に、特開昭
62−238305号で、結晶粒径100μm以下とな
るよう水アトマイズによって粉末とし、高エネルギー密
度を有する粉砕機により単結晶で長径/短径比が10以
上の片状化粉末に粉砕する方法が示されている。しかし
ながら、これら片状粉末、偏平状粉末は、粉砕によって
極めて大きな変形を受けているため、粉砕歪に起因する
高い保磁力を有するまま供せられており、本願の主眼と
する磁気カードの磁気シールド用等の粉末の製造方法と
しては不十分なものである。
As a method for producing the alloy powder, for example, JP-A-63-
No. 35701 and No. 63-35706 propose to obtain flat powder with a thickness of 2 μm or less and a thickness-to-diameter ratio of 1/lo or less by a wet ball mill method. In addition, in the case of Fe-5i-Al alloy, in Japanese Patent Application Laid-Open No. 62-238305, it is made into powder by water atomization so that the crystal grain size is 100 μm or less, and then made into a single crystal by a crusher with high energy density. A method of pulverizing into flake powder having a diameter ratio of 10 or more is shown. However, these flaky powders and flat powders are subjected to extremely large deformations due to pulverization, and therefore are provided with high coercive force due to pulverization distortion. This method is insufficient as a method for producing powder for use.

また、粉砕歪を除去する方法として、特開昭58−59
268号では、インゴットから多段階で粉砕すりつぶし
工程を繰り返し扁平状としたセンダスト粉を、必要によ
り水素雰囲気中で焼鈍を追加することが、その明細書の
中で言及されている。しかし、粉末の保磁力は規定され
ず、保磁力を向上させるための具体的な焼鈍方法につい
て知見を与えるものではなく、やはり本願の対象の磁気
カードの磁気シールド用等の粉末製造法としては不十分
である。
In addition, as a method for removing crushing distortion, Japanese Patent Application Laid-Open No. 58-59
In No. 268, it is mentioned in the specification that sendust powder, which is obtained from an ingot and made into a flattened form by repeated crushing and grinding processes in multiple stages, is additionally annealed in a hydrogen atmosphere if necessary. However, the coercive force of the powder is not specified, and it does not provide knowledge about a specific annealing method to improve the coercive force, so it is still inappropriate as a powder manufacturing method for magnetic shielding of magnetic cards, etc., which is the subject of this application. It is enough.

本願が対象としている平均粒径0.1〜20μm、平均
厚さ1μm以下の扁平状微粉末は、微粉であることに加
えて甚しい歪みを受けており、通常のバルク材と同条件
で焼鈍すると、粉末粒子の凝集すなわち焼鈍現象が生じ
て、粉砕して得た扁平形状が損われてしまう、従って、
実際の焼鈍は粉末の凝集が起こらない低温、すなわち通
常のバルク材の焼鈍温度の1100℃付近より大幅に下
げざるを得す、扁平粉の保磁力は400A/mを越える
大きな値となっていた。
The flat fine powder with an average particle size of 0.1 to 20 μm and an average thickness of 1 μm or less, which is the subject of this application, is not only a fine powder but also has undergone severe distortion, and is annealed under the same conditions as normal bulk materials. Then, agglomeration of the powder particles, that is, an annealing phenomenon occurs, and the flat shape obtained by crushing is damaged.
Actual annealing must be performed at a low temperature at which powder agglomeration does not occur, that is, significantly lower than the normal bulk material annealing temperature of around 1100°C, and the coercive force of flat powder is a large value exceeding 400 A/m. .

〔発明が解決しよう・とする問題点〕[Problem that the invention attempts to solve]

本発明は、前記従来技術の問題点に留意してなされたも
のであり、時に平均粒径が0.1〜20μ鴫、平均厚さ
1μm以下の多量の扁平状軟磁性合金微粉末を凝集させ
ることなく、保磁力を400八/m以下とすることがで
きる焼鈍方法を提供するものである。
The present invention has been made in consideration of the problems of the prior art, and involves agglomerating a large amount of flat soft magnetic alloy fine powder with an average particle size of 0.1 to 20 μm and an average thickness of 1 μm or less. The object of the present invention is to provide an annealing method that can reduce the coercive force to 4008/m or less without causing any damage.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、扁平状金属微粉末を熱処理するに際
し、該微粉末を流動層となしつつ該粉末を加熱すること
を特徴とする扁平状金属微粉末の熱処理方法、更に具体
的には扁平収金S微粉末を熱処理する方法であって、容
器内に堆積された該粉末の下部から非酸化性ガスを最小
流動層化速度以上の流速で供給し、微粉末からなる流動
層を生成せしめるとともに、該流動層間の全部ないし一
部を所定の焼鈍温度の均熱帯とすることによって、微粉
末の凝集を防止しつつ歪を除去することを特徴とする扁
平状金属微粉末の熱処理方法である。
That is, the present invention provides a method for heat treatment of flat metal fine powder, which is characterized by heating the flat metal fine powder while forming a fluidized bed when flat metal fine powder is heat-treated, and more specifically, a flat metal fine powder heat treatment method. A method of heat treating gold S fine powder, which includes supplying a non-oxidizing gas from the bottom of the powder deposited in a container at a flow rate higher than the minimum fluidized bed speed to generate a fluidized bed made of fine powder. , is a heat treatment method for flat metal fine powder, characterized in that strain is removed while preventing agglomeration of the fine powder by making all or part of the space between the fluidized beds a soaking zone at a predetermined annealing temperature.

以下本発明を図を用いて説明する。The present invention will be explained below using the drawings.

第1図は、上記熱処理法を具体化するための装置の概要
である。容器3内の下部に設置した多孔質材からなる分
散板l上に粉末が供給・堆積され、分散板1の下部から
非酸化性ガスを供給する。ガスの流体速度を増していく
とある流速で粉末粒子に作用する流動抵抗が粉末粒子の
重量と等しくなる。これ以上の流速では粉末粒子はガス
によって動的に支持(サスペンド)された状態となり粉
末粒子層は膨張し、粒子は定位置に留まることなく運動
する。粉末層全体としても流動し易く、一つの流体相の
様な挙動を示し、いわゆる流動層の状B(気系流動fi
)となる。流動状態を保つに必要な最小のガス速度が最
小流動化速度である。*小流動化速度は、Wenら(C
,’1. Wen et、 at: Chem。
FIG. 1 is an outline of an apparatus for implementing the above heat treatment method. Powder is supplied and deposited on a dispersion plate 1 made of a porous material placed at the lower part of the container 3, and non-oxidizing gas is supplied from the lower part of the dispersion plate 1. As the fluid velocity of the gas increases, the flow resistance acting on the powder particles becomes equal to the weight of the powder particles at a certain flow velocity. At a flow rate higher than this, the powder particles are dynamically supported (suspended) by the gas, the powder particle layer expands, and the particles move without remaining in a fixed position. The powder bed as a whole is easy to flow and behaves like a single fluid phase, so-called fluidized bed shape B (gas flow fi
). The minimum gas velocity required to maintain fluidization is the minimum fluidization velocity. *Small fluidization rate is based on Wen et al. (C
,'1. Wen et, at: Chem.

Bng、 Prog、 Symp、 Set、、 62
. loo (1966))が求めた式で近似的に求め
ることができる。すなわち最小流動化速度口mfは、一
定粒径cipの粉末に対して、 U、、=C(ρ5−ρv)  g  dp”/η  ・
・・(1)となる。ここで、C;定数、ρ、:粉末の真
密度、ρ、:ガスの密度、g:重力加速度、dp :粒
子直径、η:ガス粘度となる。
Bng, Prog, Symp, Set, 62
.. (1966)). In other words, the minimum fluidization velocity mf for powder with a constant particle size cip is: U,,=C(ρ5−ρv) g dp”/η ・
...(1). Here, C: constant, ρ: true density of powder, ρ: gas density, g: gravitational acceleration, dp: particle diameter, η: gas viscosity.

概略このように設定された最小流動化速度で;以上の流
速で雰囲気ガスを供給して得られる流動層は、その流動
状態によってさらに分類される。
The fluidized bed obtained by supplying the atmospheric gas at a flow rate above the minimum fluidization speed approximately set in this manner is further classified according to its fluidization state.

第2図に模式図を示す、すなわち、Uaf直上の流速で
出現する粒子が均一分散された均一流動化状態■、流速
を増し気泡発生速度Usbを超えて気泡が発生し、粉末
粒子の濃厚相の中を気泡が上昇する気泡流動化状態■、
さらに流速を増しスラッギング化速度弐πを超えた場合
のスラッギング状態■、さらに流速を増したより希薄な
濃厚相と小さな気泡からなる乱流流動化状態■、流動層
の表面が消失して全粉末粒子が気流輸送される高速流動
化状態■に大別される。本発明ではこの■〜■の状態を
総称して流動層と呼ぶ。
A schematic diagram is shown in Figure 2. In other words, a uniform fluidized state in which particles are uniformly dispersed appears at a flow rate directly above Uaf, and as the flow rate increases and exceeds the bubble generation rate Usb, bubbles are generated and a concentrated phase of powder particles occurs. Bubble fluidization state in which air bubbles rise inside ■,
A slagging state when the flow rate is further increased and the slagging rate exceeds 2π; a turbulent fluidization state consisting of a thinner dense phase and small bubbles when the flow rate is further increased; the surface of the fluidized bed disappears and all powder particles It is broadly classified into a high-speed fluidization state (■) in which water is transported by air current. In the present invention, these states (1) to (2) are collectively referred to as a fluidized bed.

第1図に示した流動化状態は、第2図の分類に従うと■
の気泡流動化状態に相当する。
According to the classification shown in Figure 2, the fluidization state shown in Figure 1 is
corresponds to the bubble fluidization state.

第1図の分散板1は多孔質材からなり、粉末を支える強
度とガスを通過させる機能をもつが、偏流を防ぎ−様な
流動化状態を得るためには、分散板1部分での圧力損失
を大きくとる必要がある。
The dispersion plate 1 shown in Fig. 1 is made of a porous material and has the strength to support powder and the function of allowing gas to pass through.However, in order to prevent uneven flow and obtain a fluidized state, it is necessary to apply pressure at the dispersion plate 1. It is necessary to take large losses.

必要な圧力損失ΔPdは流動層内の圧損ΔPf、塔への
ガス供給口から分散板1の孔へ均一にガスを分散するに
必要な圧力差ΔPr等を加算して設定される。さらにこ
の設定値から分散板1の開口比mと、mから、孔径d。
The necessary pressure loss ΔPd is set by adding the pressure drop ΔPf in the fluidized bed, the pressure difference ΔPr necessary to uniformly disperse gas from the gas supply port to the column to the holes in the distribution plate 1, and the like. Further, from this set value, the aperture ratio m of the dispersion plate 1 is determined, and from m, the hole diameter d is determined.

、、、孔数N、、、を、下記式(21,+3)によりそ
れぞれ設定し得る。すなわち、開口比mは、 ここで、■「ニガス流速、ρ、:ガス密度、Co :定
数(Re数により決まる)であり、mは孔径d61”、
孔数N orと容器断面積S?との間にπ mx     dor”  Nor/S?    ・・
・・・・(3)の関係がある。
, , the number of holes N, , , can be set by the following formula (21, +3), respectively. That is, the aperture ratio m is, where: ■ "Nigas flow rate, ρ: gas density, Co: constant (determined by the Re number), m is the hole diameter d61",
Number of holes N or and cross-sectional area of the container S? π mx dor” Nor/S?
...There is the relationship (3).

このような指針によって多孔板としての分散板1は設定
されるが、本発明はその詳細な仕様について限定するも
のではない。
Although the distribution plate 1 as a perforated plate is set according to such guidelines, the present invention is not limited to its detailed specifications.

第2図で示された■〜■の流動層のうち、■の気泡流動
化状態、■の乱流流動化状態の場合、層表面からは多数
の粒子が放出され、第1図に示す、フリーボード部と呼
ばれる希薄層を形成する。粒・径の大きい粉末は直ちに
流動層へ戻るが、小径粒子はより高力まで到達する。フ
リーボード中の粒子濃度は流動層表面からの高さ方向に
指数関数的に減少するが、T D H(Transpo
rt Disengaginglleight)以上で
は一定値となる。TDHより高位置にガス排出口を設け
ても、終末速度がガス流速より小さい小径粉末は系外へ
流出し、第1図右上方の粉末補集系4のタンクに集約さ
れる。粉末補集系からさらに系内へ粉末を循環すること
も可能である。
Among the fluidized beds shown in FIG. 2, in the bubble fluidized state and in the turbulent fluidized state shown in FIG. 2, a large number of particles are released from the bed surface, and as shown in FIG. A thin layer called a freeboard portion is formed. Powders with large particles and diameters immediately return to the fluidized bed, but small particles reach higher forces. The particle concentration in the freeboard decreases exponentially in the height direction from the fluidized bed surface.
rt Disengaginglleight) or more, it becomes a constant value. Even if the gas outlet is provided at a position higher than the TDH, small-diameter powder whose terminal velocity is smaller than the gas flow velocity flows out of the system and is collected in the tank of the powder collection system 4 at the upper right side of FIG. 1. It is also possible to circulate the powder further into the system from the powder collection system.

偏平状微粉末の加熱は、一定流助層高さを有する流動層
の場合、すなわち第2図による分類の■〜■、■の場合
、第1図に示したごとく、流動層と同一の1部をヒータ
ー2で外部加熱して塔内を所定焼鈍温度に保つことによ
って行うことができる。また、■のスラッギング状態や
、■の高速流動化状態でも、塔内の全部ないし1部を均
熱帯として、粉末を循環させれば熱処理を施すことがで
きる。より好ましい方法は、流動の激しくほぼ一定の流
動層高さとなる■の乱流流動化層を形成せしめ、この間
を均熱帯としつつ、系外へ飛び出す粒子層を循環させて
、一定時間処理した後、ガス流速を高めて■の高速流動
化状態に切替え、循環系を閉じて順次補集系から粉末を
回収する方法である。徐冷を行ないたい場合は、一定時
間ヒーターを加熱後、温度制御しつつ炉冷しながら、循
環させつつ流動化状態を維持すればよい。このように焼
鈍サイクル及び回収、循環に即した流動化状態の制御は
種々のパターンが可能である。
In the case of a fluidized bed with a constant height of the fluidized bed, that is, in the case of classifications ■ to ■, This can be done by externally heating the part with a heater 2 to maintain the inside of the tower at a predetermined annealing temperature. Further, even in the slagging state (2) or the high-speed fluidization state (2), heat treatment can be performed if all or part of the tower is used as a soaking zone and the powder is circulated. A more preferable method is to form a turbulent fluidized bed with strong flow and a nearly constant fluidized bed height, and use this time as a soaking zone to circulate the particle layer that flies out of the system, and after processing for a certain period of time. In this method, the gas flow rate is increased to switch to the high-speed fluidization state (2), the circulation system is closed, and the powder is sequentially collected from the collection system. If it is desired to perform slow cooling, it is sufficient to heat the material for a certain period of time using a heater, and then maintain a fluidized state while circulating the material while controlling the temperature and cooling the material in the furnace. In this way, various patterns are possible for controlling the fluidization state in accordance with the annealing cycle, recovery, and circulation.

また、粉末粒径がより小径になると、容易に■や■の流
動層が得られず、■の均一流動化状態にとどまったり、
なかには、■の状態すら得に(い場合も生じる。この場
合には、容器内を振動ないし攪拌することで、目的を果
すことができる。
In addition, when the powder particle size becomes smaller, it is not easy to obtain the fluidized bed of ■ or ■, and it remains in the uniform fluidized state of ■.
In some cases, even the state (2) is not desirable. In this case, the purpose can be achieved by vibrating or stirring the inside of the container.

すなわち、そのものを振動させる方法、本塔内に内筒を
さらに設けてこれを振動させる方法、分散板を振動させ
る方法、ファンを導入して内部攪拌する方法等により安
定した流動化状態が得られる。
In other words, a stable fluidized state can be obtained by vibrating the material itself, by vibrating an inner cylinder provided in the main tower, by vibrating the dispersion plate, by introducing a fan and stirring internally, etc. .

本発明が特に対象とする平均粒径0.1〜20μm、平
均厚さ1μm以下の扁平状軟磁性合金微粉末は、たとえ
ば、Fe−8ONi系のpcパーマロイ、Fe−5ON
i系のPBパーマロイ、Fe  9.5Si−5,5A
ji系のセンダスト合金等があり、これらは通常のバル
ク材では不純物を除く意味からも焼鈍は水素雰囲気で1
000℃付近でなされることが多い。前述のように、こ
れら形状の扁平状微粉末を、たとえば容器に入れて焼鈍
すると、凝集して焼結現象が生じ、粉砕して得た扁平形
状が損われてしまい、扁平形状を維持するには500℃
以下の温度で焼鈍せざるを得す、結果的に扁平粉の保磁
力は400A/mを越える値となっていた。
The flat soft magnetic alloy fine powder having an average particle size of 0.1 to 20 μm and an average thickness of 1 μm or less, which is particularly targeted by the present invention, is, for example, Fe-8ONi-based PC permalloy, Fe-5ON
i-based PB permalloy, Fe 9.5Si-5,5A
ji-based sendust alloys, etc., and these are ordinary bulk materials that are annealed in a hydrogen atmosphere to remove impurities.
It is often done at around 000°C. As mentioned above, when these flat-shaped fine powders are placed in a container and annealed, they aggregate and cause a sintering phenomenon, which damages the flat shape obtained by pulverization, making it difficult to maintain the flat shape. is 500℃
As a result, the coercive force of the flat powder exceeded 400 A/m.

本発明によれば、扁平状微粉末による流動層の生成と、
該流動層を所定焼鈍温度に保つことによって扁平状微粉
末を熱処理する方法によれば、平均粒径0.1〜20μ
m、平均厚さ1μm以下のFe−Ni系パーマロイ、e
e  Si  Aj!系センダスト合金等を、該当バル
ク材で通常なされている加熱温度1000℃およびこれ
に近い高温で、粉末を凝集させることなく偏平微粉の形
状を維持したまま、焼鈍することができ、保磁力の改善
効果が大きい。
According to the present invention, generation of a fluidized bed by flat fine powder;
According to the method of heat treating flat fine powder by maintaining the fluidized bed at a predetermined annealing temperature, the average particle size is 0.1 to 20μ.
m, Fe-Ni permalloy with an average thickness of 1 μm or less, e
e Si Aj! Sendust alloys, etc. can be annealed at the heating temperature of 1000°C, which is normally used for the bulk material, and at a high temperature close to this, while maintaining the shape of flat fine powder without agglomerating the powder, improving coercive force. Great effect.

なお本発明では焼鈍雰囲気による制約はなく、最も一船
的な水素ガスを始め、窒素ガス、Arガス、アンモニア
分解ガス、各種混合ガスなど非酸化性ガスを使用できる
。また、以上では熱処理を焼鈍に具体化して説明してき
たが、焼鈍以外の熱処理に本発明を適用できることは言
うまでもない。
In the present invention, there is no restriction by the annealing atmosphere, and non-oxidizing gases such as hydrogen gas, which is most common, nitrogen gas, Ar gas, ammonia decomposition gas, and various mixed gases can be used. Moreover, although the heat treatment has been explained above specifically as annealing, it goes without saying that the present invention can be applied to heat treatments other than annealing.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。なお、以下の実
施例は第1図に示した装置で実施した。
The present invention will be explained below based on examples. The following examples were carried out using the apparatus shown in FIG.

実施例1 Ni79.0%、Mo4.8%、残部実質Feの平均粒
径15μmの合金粉末を水アトマイズ法によって得、こ
れをアトライターで粉砕して、平均粒径14μm、平均
厚さ0.7μmの扁平状微粉末とした。粉砕ままの粉末
の保磁力(反磁場を無視したランダムな集合状態での保
磁力)は約300OA/n+であった。
Example 1 An alloy powder containing 79.0% Ni, 4.8% Mo, and the balance being essentially Fe and having an average particle size of 15 μm was obtained by water atomization, and was ground with an attritor to obtain an alloy powder with an average particle size of 14 μm and an average thickness of 0.5 μm. It was made into a flat fine powder of 7 μm. The coercive force of the as-pulverized powder (coercive force in a random aggregation state ignoring the demagnetizing field) was about 300 OA/n+.

この粉末を乾いた水素気流によって乱流流動層(第2図
■)とし各温度で焼鈍し、粉末の形状と保磁力を調べた
。結果を第1表に示す、1000℃まで昇温してもおよ
そ初期の扁平微粉形状を維持している一方、保磁力は温
度の上昇とともに大幅に低減し、1000℃では96^
/111に改善された。
This powder was annealed at various temperatures in a turbulent fluidized bed (Fig. 2 ■) using a dry hydrogen stream, and the shape and coercive force of the powder were investigated. The results are shown in Table 1. Even when the temperature was raised to 1000°C, the initial flat fine powder shape was maintained, while the coercive force decreased significantly as the temperature increased, reaching 96^ at 1000°C.
Improved to /111.

なお比較のため、ち密質A It zOxボックス中に
粉末を収め、流動させることなく焼鈍したが、600℃
で凝集傾が始まり、約25μIの団粒となり、800℃
では多孔状に仮焼結した。
For comparison, the powder was placed in a dense A It zOx box and annealed without fluidizing, but at 600°C.
The agglomeration tendency starts at 800℃, forming aggregates of about 25 μI.
Then, it was pre-sintered into a porous shape.

第   1   表 実施例2 実施例1と同様に、9.6%5t−5,7%Al−残部
実質Feの平均粒径9μmの合金粉末を水アトマイズ法
によって得、アトライターで粉砕し、平均粒径2μm、
平均厚さ0.2μmの扁平状微粉末とした。粉砕ままの
保磁力は約720OA/mであった。
Table 1 Example 2 In the same manner as in Example 1, an alloy powder of 9.6% 5t-5.7% Al-balance substantially Fe with an average particle size of 9 μm was obtained by water atomization, crushed with an attritor, and the average particle diameter was 9 μm. Particle size 2μm,
It was made into a flat fine powder with an average thickness of 0.2 μm. The as-ground coercive force was approximately 720 OA/m.

この粉末を乾いた水素気流と容器の振動(上下方向の振
幅1 ml、周波数60112)を加えて気泡流動層と
し、各温度で焼鈍し、粉末の形状と保磁力を調べた。結
果を第2表に示す。
This powder was made into a bubble fluidized bed by adding a dry hydrogen stream and vibration of the container (vertical amplitude 1 ml, frequency 60112), annealed at various temperatures, and the shape and coercive force of the powder were examined. The results are shown in Table 2.

700℃まで昇温してもおよそ初期の扁平状微粉形状を
維持しているが、800℃から凝集傾向が見られ、90
0℃以上では平均40μmなどの団粒の割合が高く、不
可能であった。しかしながら、700℃の加熱が可能で
、保磁力は380A/mに低減し、扁平状微粉末として
は従来にない高いレベルの軟磁性を示している。
Even when the temperature is raised to 700°C, the initial flat fine powder shape is maintained, but a tendency to agglomerate is observed from 800°C.
At temperatures above 0°C, the proportion of aggregates with an average diameter of 40 μm was high, making it impossible. However, it can be heated to 700° C., and the coercive force is reduced to 380 A/m, demonstrating a high level of soft magnetism never seen before for flat fine powder.

なお、比較のため、ち密度A I !03ボックス中に
粉末を収め、流動させることなく焼鈍したが、400℃
で凝集し、約20μIの団粒となり、500℃で多孔状
に仮焼結した。
For comparison, the density A I! The powder was placed in a 03 box and annealed without fluidizing, but at 400°C.
It aggregated into aggregates of about 20 μI, and was pre-sintered into a porous shape at 500°C.

第 表 このようにして焼鈍された軟磁性に優れる扁平状微粉末
は、磁気シールドを必要とする磁気カード上への塗布膜
被覆用の塗料用粉末として最適である。また磁気カード
以外にも部品やハウジングへの被覆塗料、ゴムやプラス
チックとの複合材料のフィラー等にも有用である。
Table 1 The flat fine powder with excellent soft magnetic properties annealed in this way is most suitable as a coating powder for coating a coating film on a magnetic card requiring magnetic shielding. In addition to magnetic cards, it is also useful for coating paints on parts and housings, fillers for composite materials with rubber and plastics, etc.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明によれば、平均粒径0.1〜
20.cu++、平均肉厚11Jm以下のFe−Ni系
合金、Fe−3i−An!系合金等の高透磁率合金粉末
を、凝集させることなく、初期の扁平形状を維持しつつ
、通常の相当合金のバルク材と同一ないしこれに近い焼
鈍温度で焼鈍をすることが可能で、食孔な軟磁性を有す
る扁平状軟磁性合金微粉末を得ることができ、その工業
的価値が大である。
As described above, according to the present invention, the average particle size is 0.1 to
20. cu++, Fe-Ni alloy with an average wall thickness of 11 Jm or less, Fe-3i-An! It is possible to annealing high magnetic permeability alloy powder such as alloys without agglomeration and at an annealing temperature that is the same as or close to that of bulk materials of ordinary equivalent alloys, while maintaining the initial flat shape. A flat soft magnetic alloy fine powder having porous soft magnetic properties can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置例を示す図、第2
図は本発明を実施するための流動層を分類した図である
。 第1図 h”ス フ’711人
FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention, and FIG.
The figure is a classification diagram of fluidized beds for carrying out the present invention. Figure 1 h”Sufu’ 711 people

Claims (5)

【特許請求の範囲】[Claims] 1.扁平状金属微粉末を熱処理するに際し、該微粉末を
流動層となしつつ加熱することを特徴とする扁平状金属
微粉末の熱処理方法。
1. 1. A method for heat treatment of flat metal fine powder, which comprises heating the flat metal fine powder while forming the fine powder into a fluidized bed.
2.扁平状金属微粉末を熱処理する方法であって、容器
内に堆積された該粉末群の下部から非酸化性ガスを最小
流動層化速度以上の流速で供給し、該粉末群からなる流
動層を生成せしめるとともに、該流動層間の全部ないし
一部を所定の焼鈍温度の均熱帯とすることによって、微
粉末の凝集を防止しつつ歪を除去することを特徴とする
扁平状金属微粉末の熱処理方法。
2. A method of heat treating flat metal fine powder, the method comprising: supplying a non-oxidizing gas from the bottom of the powder group deposited in a container at a flow rate higher than the minimum fluidized bed speed to form a fluidized bed consisting of the powder group. A method for heat treatment of flat metal fine powder, characterized by removing distortion while preventing agglomeration of the fine powder by forming all or part of the space between the fluidized beds into a soaking zone at a predetermined annealing temperature. .
3.粉末群が、容器内下部に設けられた多孔質部材上に
堆積されている第2請求項記載の扁平状金属微粉末の熱
処理方法。
3. 3. The method of heat treating flat metal fine powder according to claim 2, wherein the powder group is deposited on a porous member provided in a lower part of the container.
4.扁平状金属微粉末が平均粒径0.1〜20μm平均
厚さ1μm以下の扁平状軟磁性合金微粉末である第2請
求項又は第3請求項記載の扁平状金属微粉末の熱処理方
法。
4. The method for heat treatment of flat metal fine powder according to claim 2 or 3, wherein the flat metal fine powder is flat soft magnetic alloy fine powder having an average particle size of 0.1 to 20 μm and an average thickness of 1 μm or less.
5.容器を振動又は容器内を攪拌する第2ないし第4項
いずれかに記載の扁平状金属微粉末の焼鈍方法。
5. 5. The method for annealing flat metal fine powder according to any one of items 2 to 4, wherein the container is vibrated or the inside of the container is stirred.
JP63308442A 1988-12-06 1988-12-06 Heat treating method for flaky metal fine powder Pending JPH02153002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63308442A JPH02153002A (en) 1988-12-06 1988-12-06 Heat treating method for flaky metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308442A JPH02153002A (en) 1988-12-06 1988-12-06 Heat treating method for flaky metal fine powder

Publications (1)

Publication Number Publication Date
JPH02153002A true JPH02153002A (en) 1990-06-12

Family

ID=17981087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308442A Pending JPH02153002A (en) 1988-12-06 1988-12-06 Heat treating method for flaky metal fine powder

Country Status (1)

Country Link
JP (1) JPH02153002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158401A (en) * 1989-11-15 1991-07-08 Kubota Corp Method for heating rapidly cooled and solidified powder
JPH10229292A (en) * 1997-02-17 1998-08-25 Kitagawa Ind Co Ltd Electromagnetic wave interference suppressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158401A (en) * 1989-11-15 1991-07-08 Kubota Corp Method for heating rapidly cooled and solidified powder
JPH10229292A (en) * 1997-02-17 1998-08-25 Kitagawa Ind Co Ltd Electromagnetic wave interference suppressor

Similar Documents

Publication Publication Date Title
Hyeon Chemical synthesis of magnetic nanoparticles
Lan et al. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization
Gervald et al. Synthesis of magnetic polymeric microspheres
Lozhkomoev et al. Synthesis of Fe/Fe 3 O 4 core-shell nanoparticles by electrical explosion of the iron wire in an oxygen-containing atmosphere
Bhattarai et al. Structure and composition of Au/Co magneto-plasmonic nanoparticles
Etemadifar et al. Green synthesis of superparamagnetic magnetite nanoparticles: effect of natural surfactant and heat treatment on the magnetic properties
Ualkhanova et al. The influence of magnetic field on synthesis of iron nanoparticles
Molaei et al. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite
Ushakov et al. The effect of microstructural features on the ferromagnetism of nickel oxide nanoparticles synthesized in a low-pressure arc plasma
Seto et al. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles
JP3482420B2 (en) Graphite-coated metal particles and method for producing the same
JPH02153002A (en) Heat treating method for flaky metal fine powder
JP2019183199A (en) Metal powder material, and production method of metal powder material
Niu The study on order behavior and electronic structure of flaky FeSiAl powder
Wang et al. Flower‐Like SiO2‐Coated Polymer/Fe3O4 Composite Microspheres of Super‐Paramagnetic Properties: Preparation via A Polymeric Microgel Template Method
Li et al. Capping groups induced size and shape evolution of magnetite particles under hydrothermal condition and their magnetic properties
JPH0211701A (en) Production of fe-si alloy powder
Wang et al. Characterization and magnetic properties of P (St‐co‐4VP) metal microspheres
WO2016199937A1 (en) Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium
JP4528959B2 (en) Magnetic material and method for producing the same
Choi et al. Anionic surface modification of titanium carbide nanoparticles and enhancements in their dispersibility and rheological behavior in aqueous solution
US5352268A (en) Fe-Ni alloy fine powder of flat shape
JPH03223401A (en) Flaky fe-ni series alloy fine powder and manufacture thereof
Boskovic et al. A novel approach for complex oxide nanoparticle production: A glowing multi-wire generator synthesis
Kopp Alves et al. High-energy milling