JPH02152819A - Clogging detecting method in mixing and carrying of powder - Google Patents

Clogging detecting method in mixing and carrying of powder

Info

Publication number
JPH02152819A
JPH02152819A JP18407088A JP18407088A JPH02152819A JP H02152819 A JPH02152819 A JP H02152819A JP 18407088 A JP18407088 A JP 18407088A JP 18407088 A JP18407088 A JP 18407088A JP H02152819 A JPH02152819 A JP H02152819A
Authority
JP
Japan
Prior art keywords
powder
pressure
mixing
blockage
ddc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18407088A
Other languages
Japanese (ja)
Other versions
JPH0662216B2 (en
Inventor
Yoshitaka Oiwa
大岩 美貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63184070A priority Critical patent/JPH0662216B2/en
Publication of JPH02152819A publication Critical patent/JPH02152819A/en
Publication of JPH0662216B2 publication Critical patent/JPH0662216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To conduct the detection rapidly and certainly by determining the pressure deviation or pressure changing rate of each part in mixing and carrying of powder in a hot metal preliminary treatment to check the pressure balance fluctuation and detecting a clogging by the pressure balance fluctuation and the cutting amount fluctuation. CONSTITUTION:The pressures in a reservoir tank 11, a carrying line 16A, a combined pipe 31, and a lance part 4 are detected by pressure sensors 11a, 14a, 32, 43, respectively, and inputted to a direct digital control unit (DDC) 6. The DDC 6 calculates the pressure changing rate or pressure deviation from them. On the other hand, the weight or cutting amount of a powder is inputted from a road cell 18 to the DDC 6. The DDC 6 detects a clogging of the carrying system based on the pressure changing rate or pressure deviation and the fluctuation of the powder cutting amount. According to such constitution, the clogging start can be rapidly and certainly detected.

Description

【発明の詳細な説明】 [産業上の利用性ツFコ 本発明は、溶銑予備処理や二次精練設備等におyるトビ
ードインジエクシコンや鍋インノエクション等の溶銑、
溶鋼などの熔融金属の精練を行うフラソクスイノエクノ
ヨンに、反応剤として用いられる1友敗の粉体材料を、
ポストミックス方式により混合割合を自由に調整できる
粉体の混合・搬送装置において凸部の粉体づまりを検出
する方法に関するものであ、る。
[Detailed Description of the Invention] [Industrial Applicability] The present invention is applicable to hot metal pretreatment, secondary smelting equipment, etc.
A unique powder material used as a reactant is used for scouring molten metals such as molten steel.
The present invention relates to a method for detecting powder clogging on a protrusion in a powder mixing/transporting device in which the mixing ratio can be freely adjusted using a post-mix method.

[従来の技術] 従来より、溶銑予備処理や二次精練設備において、熔融
金属に反応剤である混合粉体の吹き込みが行われている
が、実公昭57−21032号公報や特開昭57−67
4・22号公報で示される従来の吹き込みの技術は、予
め所定の混合比で複数粉体材料が混合された混合粉体を
吹き込みタンクにTめ収容して、そのタンク内圧力を所
定圧力に制御し、所定の粉体吹き込み速度でランス部先
端から吹き込みを行う乙のであった。
[Prior Art] Conventionally, mixed powder as a reactant has been injected into molten metal in hot metal pretreatment and secondary smelting equipment, but this method has been disclosed in Japanese Utility Model Publication No. 57-21032 and Japanese Patent Application Laid-Open No. 1983-1989. 67
The conventional blowing technology disclosed in Publication No. 4.22 is to store mixed powder, which is a mixture of multiple powder materials at a predetermined mixing ratio, in a blowing tank, and to adjust the pressure inside the tank to a predetermined pressure. The powder was controlled and blown from the tip of the lance at a predetermined powder blowing speed.

しかし、周知のように精練作業においては、熔融金属を
所望の純度に精製する場合に、複数の不純物の除去作業
が必要とされている。例えば、溶銑予備処理においては
、通常、溶銑中の珪素成分、燐成分及び硫黄成分を除去
する必要があり、しかも製造する鋼の性質に応じて珪素
成分、燐成分、硫黄成分の許容含有量が異なるものとな
っているので、除去する成分に応じて吹き込む混合粉体
の成分を変え、しかも目標含有量に応じてフラックスの
混合割合、吹き込み量等を変化される必要があった。こ
のため、上記従来の技術では、その都度、吹き込みタン
クの粉体を成分比(混合割合)の異なったものと交換す
る作業が必要となっていた。
However, as is well known, in the scouring operation, when refining molten metal to a desired purity, it is necessary to remove a plurality of impurities. For example, in hot metal pretreatment, it is usually necessary to remove silicon, phosphorus, and sulfur components from the hot metal, and the allowable contents of silicon, phosphorus, and sulfur components vary depending on the properties of the steel to be manufactured. Since they are different, it was necessary to change the components of the mixed powder to be blown in according to the components to be removed, and also to change the mixing ratio of flux, the amount of blown in, etc. according to the target content. For this reason, in the above-mentioned conventional technology, it is necessary to replace the powder in the blowing tank each time with one having a different component ratio (mixing ratio).

これに対して、本出願人は先に特願昭62−10075
5号において、反応剤の複数粉体材料の成分比をポスト
ミックス方式で各粉体材料の搬送過程において混合を行
い、その混合割合を必要に応じ自由に調整できるように
して、粉体の交換作業を不要にし、作業性を改善し得る
粉体の混合・搬送方法および装置を提案した。
On the other hand, the present applicant had previously applied for patent application No. 62-10075.
In No. 5, the component ratio of multiple powder materials of the reactant is mixed during the transportation process of each powder material using a post-mix method, and the mixing ratio can be freely adjusted as necessary, making it possible to exchange powders. We proposed a powder mixing/transporting method and device that eliminates the need for work and improves workability.

第8図はその従来の粉体の混合・搬送方法および装置の
説明図である。11は1つの粉体材料を収容するリザー
バタンク、12はその粉体材料をモータ12aの駆動に
よって所定量切り出すロータリーフィーダ、21.はア
クチュエータ22によって加圧ライン13を通してタン
ク11内圧力を制御する圧力制御弁、23はアクチュエ
ータ24によって搬送ガス供給ライン■4の供給ガス圧
を制御する搬送ガス圧制御弁、15はロータリーフィー
ダ12で切り出された粉体材料を搬送ガス供給ライン1
4からの供給ガスを搬送ガスとして流動状態とする粉体
/ガス混合器、16はその粉体/ガスの搬送ライン、3
1は搬送ラインI6や他の搬送ライン16′、・を結合
し複数の粉体材料を混合する合流管、41はその混合さ
れた粉体をランス部へ供給する供給ライン、42はラン
ス部を構成する噴射ノズルである。リザーバタンク11
内圧力は粉体をロータリーフィーダ12に圧送し切り出
しが確実に行われるようにしている。このときの切り出
し量は、重量検出等により常に所定の設定量になるよう
にモータ12aが制御されてロータリーフィーダI2の
回転数が増減され、フィードバック制御がなされている
FIG. 8 is an explanatory diagram of the conventional powder mixing/transporting method and device. 11 is a reservoir tank that accommodates one powder material; 12 is a rotary feeder that feeds a predetermined amount of the powder material by driving a motor 12a; 21. 23 is a pressure control valve that controls the pressure inside the tank 11 through the pressure line 13 by an actuator 22; 23 is a carrier gas pressure control valve that controls the supply gas pressure of carrier gas supply line 4 by an actuator 24; 15 is a rotary feeder 12; The cut out powder material is transported to the gas supply line 1.
A powder/gas mixer that uses the gas supplied from 4 as a carrier gas in a fluidized state; 16 is a conveyance line for the powder/gas; 3;
1 is a confluence pipe that connects the transport line I6 and other transport lines 16' and mixes a plurality of powder materials, 41 is a supply line that supplies the mixed powder to the lance section, and 42 is the lance section. These are the injection nozzles that make up the structure. Reservoir tank 11
The internal pressure forces the powder into the rotary feeder 12 to ensure cutting. The amount of cutout at this time is feedback controlled by controlling the motor 12a to increase or decrease the number of revolutions of the rotary feeder I2 so that the amount is always a predetermined set amount by weight detection or the like.

[発明か解決しようとする課題] しかしながら、上記従来の技術におけるポストミックス
方式による粉体の混合・搬送方法および装置では、粉体
が配管閉塞することなく搬送されているときは良いが、
何らかの要因、例えばリザーバタンク11.合流管31
.ランス部の混合粉体供給ライン41のそれぞれの圧力
バランスが狂ったときや、一定の固気比で粉体が搬送さ
れているときに急激に搬送ガス流量が減少したり、又は
粉体切り出し量が急増したときなどが起こると、粉体が
搬送配管(搬送ライン1G、混合粉体供給ライン41)
内に堆積して配管閉塞が発生する。
[Problems to be Solved by the Invention] However, the above-mentioned conventional powder mixing/transporting method and apparatus using the post-mix method is good when the powder is transported without clogging the piping, but
Some factors, such as reservoir tank 11. Merging pipe 31
.. When the pressure balance of the mixed powder supply line 41 of the lance part goes out of order, when the powder is being transported at a constant solid-air ratio, the flow rate of the carrier gas suddenly decreases, or when the amount of powder cut out If there is a sudden increase in powder, the powder will be transferred to the transport pipes (transport line 1G, mixed powder supply line 41).
It accumulates inside the pipes and causes pipe blockages.

このような要因はまだまだ他にも多くあり、状況に応じ
て継続時間の短い場合もあれば長い場合らあり、一定し
ていないのが実情である。しかし、第8図で例えば搬送
ライン16が閉塞し始めると、粉体は切り出し量の設定
値通り切り出されず(設定値より少なく切り出されろ)
、フィードバック制御により自動的に切り出し量を増加
する方向、即ちロータリフィーダ12の回転を増加させ
て粉体をより多く供給する方向に動くことになり、ます
まず配管閉塞を助長することになってしまう。
There are many other factors like this, and depending on the situation, the duration may be short or long, and the reality is that the duration is not constant. However, in FIG. 8, for example, if the conveyance line 16 starts to be blocked, the powder will not be cut out according to the set value of the cutout amount (less than the set value will be cut out).
, the feedback control automatically moves in the direction of increasing the amount of cut-out, that is, increases the rotation of the rotary feeder 12 to supply more powder, which leads to more and more piping clogging. .

そこで、これを防止するために、配管閉塞を早めに確実
に検知することが従来からの課題となっていた。 本発
明は、上記課題を解決するために創案されたもので、ポ
ストミックス方式の粉体の搬送・混合方法および装置に
おいて、配管閉塞によるトラブルを回避するために、配
管閉塞の開始を早く確実に検知する閉塞検知方法を提供
することを目的とする。
Therefore, in order to prevent this, it has been a conventional problem to detect piping blockage early and reliably. The present invention was devised to solve the above-mentioned problems, and in order to avoid troubles caused by pipe blockage in a post-mix method and apparatus for transporting and mixing powder, the present invention promptly and reliably starts the pipe blockage. The purpose of the present invention is to provide a method for detecting occlusion.

[課題を解決するための手段] 上記目的を達成するための本発明の粉体の搬送・混合に
おける閉塞検知方法の構成は、 異なる粉体が収納された複数の圧力容器を加圧しながら
各圧力容器に接続された各輸送管内に各収納粉体を切出
して搬送気体で気送し、該各輸送管の合流点で気送粉体
を混合し、混合粉体を該合流点下流側のランス部先端か
ら溶融金属中に吹込む粉体の混合・搬送に際し、 まず前記粉体搬送系の圧力容器、輸送管1合流点、ラン
ス部の圧力を検出しつつこれらの間の圧力偏差または圧
力変化率を求め、 次に前記圧力容器からランス部先端の吹き込み点に至る
圧力バランス変動を前記圧力偏差または圧力変化率から
チェックし、この圧力バランス変動と圧力容器からの粉
体切り出し亀の変動とをらとに前記粉体搬送系の閉塞を
検知6−ることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for detecting occlusion in transporting and mixing powder according to the present invention has the following structure: Each stored powder is cut out into each transport pipe connected to the container and pneumatically transported with a carrier gas, the pneumatic powder is mixed at the confluence of the transport pipes, and the mixed powder is transferred to a lance downstream of the confluence. When mixing and transporting the powder that is blown into the molten metal from the tip of the part, first, the pressure of the pressure vessel, the confluence of the transport pipe 1, and the lance part of the powder transport system is detected, and the pressure deviation or pressure change between these parts is detected. Next, check the pressure balance fluctuation from the pressure vessel to the injection point at the tip of the lance from the pressure deviation or pressure change rate, and compare this pressure balance fluctuation with the fluctuation in the amount of powder cut out from the pressure vessel. The present invention is characterized in that blockage of the powder conveying system is also detected.

[作用コ ポストミックス方式の粉体の混合・搬送装置において、
正常に粉体の混合・搬送が行われている場合には、圧力
容器−合流管−ランス部の順に圧力が低くなってバラン
スしているが、各輸送管等で閉塞が発生すると、上流側
の圧力か加圧ガスの供給圧力値に近づいてゆくとともに
、粉体の搬送ができなくなり、圧力容器に収納された粉
体の切り出し爪が零にまで減少してゆく。本発明は、所
定の各部で圧力を検出し、その圧力から各部間の圧力偏
差または圧力変化率を求めて圧力バランス変動のチェッ
クを行い、これと上記粉体の切り出し爪の変動をチェッ
クして閉塞のし始めを検知する。
[In the action copost mix type powder mixing and conveying device,
When powder is being mixed and transported normally, the pressure decreases and balances in the order of pressure vessel, confluence pipe, and lance, but if a blockage occurs in each transport pipe, the pressure on the upstream side As the pressure approaches the supply pressure value of the pressurized gas, it becomes impossible to convey the powder, and the number of cutting claws for the powder stored in the pressure vessel decreases to zero. The present invention detects the pressure at each predetermined part, determines the pressure deviation or pressure change rate between each part from the detected pressure, checks the pressure balance fluctuation, and checks this and the fluctuation of the powder cutting claw. Detects the beginning of blockage.

[実施例コ 以下、本発明の実施例を図面に基づいて詳細に説明する
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例の閉塞検知方法を適用するポ
ストミックス方式の粉体の搬送・混合装置の一例を示す
構成図である。第8図で示した従来と同一の部材には同
一の番号を付して説明を簡略にする。本構成例は2種の
粉体A、Bを搬送・混合する場合を例としており、粉体
Aの搬送部lΔと、粉体Bの搬送部II3と、搬送部I
Aに加圧ガスを供給するバルブユニット2Aと、搬送部
I!3に加圧ガスを供給するバルブユニット2I3と、
各搬送部IA、lr3から搬送された粉体を混合する混
合部3と、その混合粉体を容器5の溶銑へ噴射するラン
ス部4と、各部を統括的に制御して上記粉体の混合と搬
送を自動制御するとともに、本実施例の粉体の閉塞検知
を行いその回避の動作を制御するD D C(Dire
ct Digital Control)ユニット6な
どから成る。
FIG. 1 is a configuration diagram showing an example of a post-mix type powder conveying/mixing apparatus to which a blockage detection method according to an embodiment of the present invention is applied. The same members as those in the prior art shown in FIG. 8 are given the same numbers to simplify the explanation. This configuration example is based on a case where two types of powders A and B are transported and mixed, and a transport section lΔ for powder A, a transport section II3 for powder B, and a transport section I
A valve unit 2A that supplies pressurized gas to A, and a transport section I! a valve unit 2I3 that supplies pressurized gas to 3;
A mixing unit 3 that mixes the powder transported from each transport unit IA, lr3, a lance unit 4 that injects the mixed powder into the hot metal in the container 5, and a lance unit 4 that collectively controls each part to mix the powder. DDC (Dire
ct Digital Control) unit 6, etc.

搬送部IAとIBとは、収容する粉体材料か質なるだけ
でほぼ同様に構成されるので、その一方の搬送部IAに
ついて構成を建べる。11は圧力容器であるリザーバタ
ンク、12は粉体を切り出すロータリーフィーダ、+2
aはロータリー駆動用のモータ、IBは加圧ライン、1
4は搬送カス供給ライン、15は粉体/ガス混合器、1
6Δは粉体/ガスの搬送ラインである。17はアクチュ
エータ17aで開閉される粉体の供給遮断弁であり、停
止時等に閉じられる。llaはタンクll内圧力の圧カ
センザ、14aは搬送ライン+6Aへの供給ガス圧の圧
力センサ、18はロードセル等で構成されタンクll内
の粉体の重量や切り出し虫を測定するための重量センサ
、18aはその検出信号をDDCユニット6に伝送する
ための信号発生器であり、これらのセンサ等の検出信号
は後記するDDCユニット6に入力される。19は1’
l) D Cユニット6が重量センサ18によって粉体
材料の残m監視を行い、所定量以下のときに新たに粉体
材料をタンク11に供給する粉体材1′−1−供給制御
弁である。
Since the transport sections IA and IB are constructed in substantially the same manner, the only difference being the quality of the powder material to be accommodated, the structure can be set for one of the transport sections IA. 11 is a reservoir tank which is a pressure vessel, 12 is a rotary feeder for cutting out powder, +2
a is the rotary drive motor, IB is the pressure line, 1
4 is a transport waste supply line, 15 is a powder/gas mixer, 1
6Δ is a powder/gas conveyance line. Reference numeral 17 denotes a powder supply cutoff valve that is opened and closed by an actuator 17a, and is closed when the system is stopped or the like. lla is a pressure sensor for the internal pressure of tank 1, 14a is a pressure sensor for the pressure of the gas supplied to the conveyance line +6A, 18 is a weight sensor composed of a load cell, etc., for measuring the weight of powder and cut-out insects in tank 1, 18a is a signal generator for transmitting the detection signal to the DDC unit 6, and the detection signals from these sensors are input to the DDC unit 6, which will be described later. 19 is 1'
l) The DC unit 6 monitors the remaining m of powder material using the weight sensor 18, and when the amount is less than a predetermined amount, the powder material 1'-1-supply control valve supplies new powder material to the tank 11. be.

バルブユニッ1−2Aおよび2Bら同一に構成されるの
で、その一方について構成を述へる。バルブユニット2
Aにはガス流量制御弁25と、圧力制御弁21及び搬送
ガス制御弁23を有している。
Since the valve units 1-2A and 2B have the same configuration, the configuration of one of them will be described. Valve unit 2
A has a gas flow control valve 25, a pressure control valve 21, and a carrier gas control valve 23.

ガス流量制御弁25は、回路の圧力ガス供給源よりバル
ブユニット2Aに導入する圧力ガスの流債を制御ケる。
The gas flow control valve 25 controls the flow of pressure gas introduced into the valve unit 2A from the pressure gas supply source of the circuit.

このときのガス流量制御弁25の制御は、D I) C
ユニット6がガス流量センサ26の検出信号を人力して
行う。圧力制御弁21は、加圧ライン13内に配設され
ており、粉体材料のりザーバタンクI+に供給する圧力
ガスを調整してタンクll内の圧力を調整する。一方、
搬送ガス制御弁23は搬送ガスの供給ライン14内に配
設され、搬送ラインt6Aに導入する搬送ガスの成虫を
制御することに上って、搬送ライン16Aに流通するガ
ス流量及びガス圧力を制御している。
The control of the gas flow rate control valve 25 at this time is DI) C
The unit 6 manually detects the detection signal of the gas flow rate sensor 26. The pressure control valve 21 is disposed within the pressure line 13, and adjusts the pressure gas supplied to the powder material paste reservoir tank I+ to adjust the pressure within the tank 11. on the other hand,
The carrier gas control valve 23 is disposed in the carrier gas supply line 14, and controls the adult of the carrier gas introduced into the carrier line t6A, as well as the gas flow rate and gas pressure flowing through the carrier line 16A. are doing.

混合部3は合流管31を備え、搬送部IAの搬送ライン
+6Aと搬送部IBの搬送ライン16Bを合流させて混
合し、混合粉体を混合粉体供給ライン41へ送り出ず。
The mixing section 3 is equipped with a merging pipe 31, and the conveyance line +6A of the conveyance section IA and the conveyance line 16B of the conveyance section IB are merged and mixed, and the mixed powder is not sent to the mixed powder supply line 41.

32はこの合流管31内の合流点の圧力を検出する合流
点圧力センサであり、その検出信号はDDCユニット6
に入力される。
32 is a confluence point pressure sensor that detects the pressure at the confluence point in this confluence pipe 31, and its detection signal is sent to the DDC unit 6.
is input.

ランス部4は噴射ノズル42を備え、前述の混合粉体供
給ライン41に接続される。43はランス部背圧を検出
するために混合粉体供給ライン41の圧力を検出する圧
力センサであり、その検出信号はDDCユニット6へ人
力される。
The lance section 4 includes an injection nozzle 42 and is connected to the above-mentioned mixed powder supply line 41. 43 is a pressure sensor that detects the pressure of the mixed powder supply line 41 in order to detect the back pressure of the lance section, and its detection signal is manually input to the DDC unit 6.

第2図はDDCユニットの回路構成を示すブロック図で
ある。DDCユニット6はコンピュータで構成されてい
る。61はプロセッサ(CPU)、62はr(AM  
63は制御手順や制御データなどから成るプログラムを
格納するROM、64はパターンテーブルメモリ、65
はCPU61が必要とするクロックを供給するタロツク
発振器、66はA/D変換器を備え、前述の各種センサ
や信号発生器からのアナログ入力をデジタル信号に変換
してCPU61に人力するインプットユニット、67は
フィーダ駆動モータや各種制御弁などのアクチュエータ
等に制御信号を出力するアウトプットユニットである。
FIG. 2 is a block diagram showing the circuit configuration of the DDC unit. The DDC unit 6 is composed of a computer. 61 is a processor (CPU), 62 is r (AM
63 is a ROM that stores programs including control procedures and control data; 64 is a pattern table memory; 65
66 is a tarok oscillator that supplies the clock required by the CPU 61; 66 is an input unit that is equipped with an A/D converter and converts the analog inputs from the various sensors and signal generators mentioned above into digital signals, and inputs the digital signals to the CPU 61; 67; is an output unit that outputs control signals to actuators such as feeder drive motors and various control valves.

ノーターンテーブルメモリ64には種々の粉体供給パタ
ーンおよびガス圧変化パターンがプリセットされている
。パターンテーブルメモリ64としてはflOM63や
lLAM62内に設定することし可能であるか、フロッ
ピーディスクやハードディスク等の外部メモリとするこ
とらできる。
Various powder supply patterns and gas pressure change patterns are preset in the no-turntable memory 64. The pattern table memory 64 can be set in the flOM 63 or lAM 62, or can be an external memory such as a floppy disk or hard disk.

以−ヒのような構成によって本実施例の粉体の混合・搬
送装置は、本実施例に必要な以下の機能を備える。
With the configuration described below, the powder mixing and conveying device of this embodiment has the following functions necessary for this embodiment.

(+)リザーバタンクの圧力が計れる。(+) The pressure of the reservoir tank can be measured.

(2)タンク内粉体重量が計測できる。これにより、粉
体切り出し量や粉体流mを求めることができる。
(2) The weight of powder inside the tank can be measured. Thereby, the amount of powder cut out and the powder flow m can be determined.

(3)ロータリーフィーダの回転数により、粉体切り出
し量が変えられる。
(3) The amount of powder cut out can be changed depending on the rotation speed of the rotary feeder.

(4)搬送ガスで切り出した粉体を搬送ラインで運搬す
る構成であり、搬送ガス供給圧力が計測できる。
(4) The powder cut out using a carrier gas is transported by a carrier line, and the carrier gas supply pressure can be measured.

(5)搬送された複数の粉体を混合する合流管を有し、
合流管圧力が計測できる。
(5) It has a confluence pipe that mixes the plurality of powders transported,
Confluence pipe pressure can be measured.

(6)混合粉体供給ラインでランス部と結合されており
、溶銑へ混合粉体のイノンエクシジンができる。
(6) It is connected to the lance part by the mixed powder supply line, and the mixed powder inone excidine is produced into the hot metal.

(7)ランス部背圧が計41すできる。(7) Back pressure on the lance part can be increased to 41 mm in total.

(8)コンピュータを内蔵し、判定や演算、自動制御等
ができる。
(8) Built-in computer, capable of judgment, calculation, automatic control, etc.

以下に、上記機能を有するポストミックス式の粉体の混
合・搬送装置に適用した粉体づまり(閉塞)の検出方法
の実施例を述へる。第3図はその一実施例を示すフロー
チャートである。本実施例は、第1図のDDCユニット
6の内部の制御手順(制御アルゴリズム)によって実現
する。粉体の搬送や供給での配管閉塞のし始めは、各部
の圧力計測を行い、各部のバランス変化のチェックを行
うことにより可能である。即ち、通常は第4図で示すと
おり、リザーバタンク−合流管−ノズルの順に圧力か低
くなっているが、第1図の搬送ライン+6Aで閉塞し始
めると、その」二点にあるリザーバタンク11の圧力が
異常に高く(搬送ガス供給圧力値に近づく)なり、他の
りザーバタンクより高くなって圧力バランスが狂ってく
る。また混合粉体供給ライン41で配管閉塞し始めると
、合流管31の圧力が上昇し始め、リザーバタンク11
の圧力値に近づいて、最終的には全てのりザーバタンク
11.・・と合流管31は同一圧力値となってしまう(
はぼ搬送ガス供給圧力値に等しくなる)。これらの現象
に加えて、配管閉塞時には当然の事となから搬送する粉
体が供給できなくなるため、リザーバタンク11からの
粉体の切り出し量が、ロータリーフィーダ12が回転す
るらのの減少してゆき零となる現象が短時間のうちに起
こる。そこで本実施例は、以上の様な圧力バランスと粉
体切り出し爪の変動現象を、第1図のDDCユニット6
の内部でタイムリーに判断して、各部における粉体の閉
塞を検知する。
An example of a method for detecting powder clogging (occlusion) applied to a post-mix type powder mixing/transporting device having the above-mentioned functions will be described below. FIG. 3 is a flowchart showing one embodiment. This embodiment is realized by the internal control procedure (control algorithm) of the DDC unit 6 shown in FIG. It is possible to detect the beginning of blockage of pipes during powder transport or supply by measuring the pressure at each part and checking for changes in the balance of each part. That is, as shown in FIG. 4, the pressure normally decreases in the order of reservoir tank, confluence pipe, and nozzle, but if the conveyance line +6A in FIG. The pressure in the reservoir tank becomes abnormally high (approaching the carrier gas supply pressure value) and becomes higher than other reservoir tanks, causing the pressure balance to become out of order. Furthermore, when the mixed powder supply line 41 begins to become clogged, the pressure in the confluence pipe 31 begins to rise, causing the reservoir tank 11 to become clogged.
As the pressure approaches the pressure value of 11. ...and the confluence pipe 31 have the same pressure value (
is equal to the carrier gas supply pressure value). In addition to these phenomena, when the pipe is blocked, it is natural that the powder to be transported cannot be supplied, so the amount of powder cut out from the reservoir tank 11 decreases as the rotary feeder 12 rotates. The phenomenon of snow zero occurs in a short period of time. Therefore, in this embodiment, the above-mentioned pressure balance and the fluctuation phenomenon of the powder cutting claws were investigated by the DDC unit 6 in Fig. 1.
Timely judgment is made inside the system to detect powder blockage in various parts.

第3図において、本実施例の閉塞の検知方法は、まず、
第4図に示す粉体流量対圧力特性を記憶しておき、この
特性値と測定値から、圧力偏差チェックまたは圧力変化
率チェックをタイムリーに行って、配管閉塞現象の開始
を把握し警報を発する。
In FIG. 3, the blockage detection method of this embodiment is as follows:
The powder flow rate vs. pressure characteristics shown in Figure 4 are memorized, and based on these characteristic values and measured values, a pressure deviation check or a pressure change rate check can be performed in a timely manner to detect the onset of pipe blockage and issue an alarm. emanate.

第4図に例示する装置各部における流m対圧力特性は、
粉体材料の銘柄の変更やプロセス変更等によりその特性
が変化するが、初期設計条件を元にDDCユニット内で
ある間隔で学習機能を用い、各部の粉体流量と圧力の関
係を実状に合うように補正する。その詳細は特に本発明
とは無関係なため省略するが、粉体吹き込みが正常で定
常状態に到達したという判断と、操業データのザンブリ
ング方法と演算方法(例えばザンブリング点数と間隔、
平均処理方法など)を決めて信号処理すれば補正できる
The flow m vs. pressure characteristics in each part of the device illustrated in FIG. 4 are as follows:
Although the characteristics change due to changes in the brand of powder material or process changes, the learning function is used at certain intervals within the DDC unit based on the initial design conditions to adapt the relationship between the powder flow rate and pressure at each part to the actual situation. Correct it as follows. The details are omitted because they are not particularly relevant to the present invention, but the judgment that the powder injection is normal and has reached a steady state, the zumbling method and calculation method of the operational data (for example, the number of zumbling points and the interval,
This can be corrected by determining an average processing method, etc., and performing signal processing.

上記における圧力偏差チェックとは、第5図の説明図に
示すように圧力測定時点の粉体流mPに対する測定値(
p+またはPI′)と学習機能より求めた正常な粉体流
量対圧力特性グラフ八から算出した圧力偏差(ΔP、ま
たはΔP1′)が、正常な変動範囲BまたはCの幅以内
にあるかを判定し、超えていれば異常と判定して警報を
発することである。また、圧力変化率チェックとは、圧
力偏差では正常な変動幅B、C内にある場合でも、前回
の圧力測定時点から今回の圧力測定時点までの時間(i
’ )に粉体流量がF 2− F 3と変化し、圧力が
l) 、 −4p3に変化した場合、その圧力変化率(
PP、) / ((F’3−F’、)・T)を求めて、
これが正常な圧力変化率の変動範囲内であるかを判定し
、超えていれば異常と判断して警報を発することである
The pressure deviation check mentioned above refers to the measured value for the powder flow mP at the time of pressure measurement (
Determine whether the pressure deviation (ΔP or ΔP1') calculated from the normal powder flow rate vs. pressure characteristic graph 8 obtained from the learning function and the learning function is within the normal fluctuation range B or C. However, if it exceeds the limit, it is determined that there is an abnormality and a warning is issued. In addition, pressure change rate check means that even if the pressure deviation is within normal fluctuation ranges B and C, the time (i
'), the powder flow rate changes to F2-F3 and the pressure changes to l), -4p3, the rate of pressure change (
Find PP, ) / ((F'3-F',)・T),
It is determined whether this is within the normal fluctuation range of the rate of pressure change, and if it is exceeded, it is determined that there is an abnormality and an alarm is issued.

次にこれらの警報がどの部分て発生したかを判断し、続
いてシリーズにその警報の発生した部分の圧ツノの上昇
と粉体の切り出し量(粉体流量)の減少化傾向を判断し
、判断がNoであれば一過性の現象で閉塞は回避された
ものとしてその回の検知動作を終了し、YlεSであれ
ば各部に即して閉塞開始箇所の特定を行い、アラーム表
示を行う。
Next, determine in what part these alarms occurred, and then in series, determine the rise in the pressure horn and the decreasing trend in the amount of powder cut out (powder flow rate) in the part where the alarm occurred. If the determination is No, it is assumed that the blockage has been avoided due to a temporary phenomenon, and the current detection operation is terminated.If the determination is YlεS, the blockage starting point is specified according to each part, and an alarm is displayed.

以−ヒのようにして本実施例は配管閉塞現象を予知する
This embodiment predicts a pipe clogging phenomenon as described below.

以下に、上記配管閉塞アラームが発生した場合において
、その配管閉塞を自動的に回避する方法を述べる。第6
図はその回避方法の実施例を示すフローチャートである
。この方法ら第1図のDDCユニット6に含まれる制御
手順等で実現される。
Below, a method for automatically avoiding pipe blockage when the pipe blockage alarm occurs will be described. 6th
The figure is a flowchart showing an example of the avoidance method. This method is realized by the control procedure included in the DDC unit 6 shown in FIG.

本実施例の配管閉塞の回避方法は、閉塞の発生開始場所
に即して以■のように行われる。
The method of avoiding pipe blockage according to this embodiment is carried out as follows depending on the location where the blockage starts.

(+)ノズル42の閉塞の場合 粉体吹き込みを一時停止する状態(pause)を自動
的に作りノズルを容器より抜く。これにより、ノズルの
浸漬深さに応して自動的に粉体インジェクションが停止
し、ノズルが大気中で搬送カスのみインジエクノヨンす
る状態となり、ノズル部閉塞が回避できる。ノズル部背
圧センサにより閉塞回避(判別は粉体流量0での圧力特
性値より行う)できたなら再びインジェクションを再開
4−る。これらを自動的に行う。
(+) In the case of blockage of the nozzle 42, a state (pause) is automatically created in which powder blowing is temporarily stopped, and the nozzle is removed from the container. As a result, powder injection is automatically stopped according to the immersion depth of the nozzle, and the nozzle is in a state in which only the transported waste is injected in the atmosphere, thereby avoiding clogging of the nozzle portion. If blockage can be avoided using the nozzle back pressure sensor (discrimination is made from the pressure characteristic value at powder flow rate of 0), injection is restarted again. Do these automatically.

(2)混合粉体供給ライン41の閉塞の場合ノズル部閉
塞の場合と同様の制御を行うが、閉塞回避の判断は、合
流管部圧力センサによる粉体流量対圧力特性に基づく。
(2) In the case of blockage of the mixed powder supply line 41, the same control as in the case of blockage of the nozzle part is performed, but the judgment to avoid blockage is based on the powder flow rate versus pressure characteristic by the confluence pipe part pressure sensor.

(3)搬送ライン+6A、16Bの閉塞の場合先ず、該
当する搬送ラインのりザーバタンクへの加圧ガス供給ラ
インのガスffi S Vをα%増大する(αは設備に
より適正値が仔在する)ようガス流m制御系(バルブユ
ニット)に設定値変更指令を出すと同時に、粉体流量S
Vを制御するロータリーフィーダ制御系(モータ)に、
β%扮粉体爪減少指令を出4゛。この状態をi” 、 
(タイマー)たけ続行し、リザーバタンク圧力対粉体流
量特性により配管閉塞回W $11別を行う。配管閉塞
回避の場合、ガス流m制御系および粉体流量制御系(ロ
ータリーフィーダ制御系)へ出力した指令を、′r(タ
イマー)経過後に(ランプ状に)元に戻し、粉体吹き込
みを継続ケる。
(3) In the case of blockage of the transport line +6A, 16B, first increase the gas ffi S V of the pressurized gas supply line to the relevant transport line's reservoir tank by α% (α has an appropriate value depending on the equipment). At the same time as issuing a setting value change command to the gas flow m control system (valve unit), the powder flow rate S
In the rotary feeder control system (motor) that controls V,
Issued β% powder nail reduction command 4゛. This state is "i",
(Timer) Continue for a long time, and perform another pipe blockage W $11 depending on the reservoir tank pressure vs. powder flow rate characteristics. To avoid piping blockage, the commands output to the gas flow m control system and powder flow control system (rotary feeder control system) are returned to their original state (in a ramp) after the 'r (timer) elapses, and powder injection continues. Keru.

らし、配管閉塞が回避できないときは、さらにガスmを
α%増大し、粉体tIT′Lmをβ%減少する指令を出
し、′r、(タイマー)だけ続行して配管閉塞回避判断
を行う。回避の場合は、前述と同様に、TI′+’ry
′(タイマー)経過後に(ランプ状に)元に戻して粉体
吹き込みを継続する。
However, if the pipe blockage cannot be avoided, a command is issued to further increase the gas m by α% and reduce the powder tIT'Lm by β%, and continues for 'r, (timer) to make a judgment to avoid the pipe blockage. In the case of avoidance, as above, TI'+'ry
’ (timer), return to the original position (in a ramp shape) and continue powder blowing.

これでも配管閉塞が回避できないときは、1゛+ ’r
 t (タイマー)後に、配管閉塞していない正常なリ
ザーバタンクの粉体流Mをさらに一律にγ%たけ減少さ
せて、T3(タイマー)間様子を見る。これで配管閉塞
か回避できたなら、逆の操作をしながら元に戻す。即ち
’r3′(タイマー)経過後に(ランプ状に)正常なリ
ザーバタンクの粉体流量を元に戻し、つぎに′r t′
+ ′I゛p′(タイマー)経過後に(ランプ状に)、
配管閉塞していた加圧カス供給ラインのカス量を元に戻
し、さらに粉体流量を元に戻す。
If the pipe blockage cannot be avoided even with this, 1゛+'r
After t (timer), the powder flow M in the normal reservoir tank with no piping blockage is further uniformly reduced by γ%, and the situation is observed during T3 (timer). If you can avoid the pipe blockage by doing this, put it back together by doing the reverse operation. That is, after 'r3' (timer) has elapsed, the normal powder flow rate of the reservoir tank is restored (in a ramp), and then 'r t'
+ After 'I゛p' (timer) elapses (in a ramp shape),
The amount of waste in the pressurized waste supply line, which was blocked, is restored to its original level, and the powder flow rate is also restored to its original level.

以」二の方法による配管閉塞回避アルゴリズムによって
回避できないときは、(1)(2)項と同様の手段を自
動的にとる。即ち、粉体吹き込みの時停止F処理状態に
移行させろ。これでも配管閉塞が回避できないとき、全
停へ移行する。
If the pipe blockage cannot be avoided using the algorithm for avoiding pipe blockage using the method described in (1) and (2) above, the same measures as in (1) and (2) are automatically taken. In other words, shift to the stop F processing state during powder blowing. If the pipe blockage cannot be avoided even with this, the system will switch to a complete shutdown.

第7図は、4種の粉体材料を混合・搬送する他のポスト
ミックス方式の混合・搬送装置の概略を示す構成図であ
る。この構成例は精錬工程中の溶銑予備処理に適用した
もので、その主要部の構成は第1図の構成を4種の粉体
材料A、BCI)の混合・搬送に拡張したしのなので、
同じ部材番号を付してその説明(上省略する。ただし、
周知のように溶銑予備処理においては、トビードカー7
にて搬送される溶銑の脱珪、脱燐、脱硫処理が行われる
。また、脱珪用反応剤(混合粉体)としてはダスト(F
ed、Fe203)および石灰が用いられ、脱燐用反応
剤どしては」二足ダスト、石灰に加えて71;タル石、
ソーダ灰が用いられ、脱(lc用反応剤としては石灰と
ソーダ灰か用いられるので、ダスト、石灰、ホタル石、
ソーダ灰のそれぞれを粉体材料として各リザーバタンク
11へ収納する。
FIG. 7 is a block diagram schematically showing another post-mix type mixing/transporting device for mixing and transporting four types of powder materials. This configuration example is applied to hot metal pretreatment during the refining process, and the main configuration is the configuration shown in Figure 1 expanded to mix and transport four types of powder materials A and BCI).
Give the same part number and explain it (the above is omitted. However,
As is well known, in hot metal pretreatment, Tobeed Car 7
The hot metal transported is subjected to desiliconization, dephosphorization, and desulfurization treatments. In addition, dust (F
ed, Fe203) and lime are used, and the reactants for dephosphorization include 'bipod dust, in addition to lime71; talstone,
Soda ash is used, and lime and soda ash are used as reaction agents for removal (LC), so dust, lime, fluorspar,
Each piece of soda ash is stored in each reservoir tank 11 as a powder material.

図中、8はDDCユニット6にパターン制御等のデータ
や制御指令を与えろ制御盤である。第6図のフローチャ
ート中のパラメータ(α、β1TT、’ 、Tt、T、
′ 、7.T3.T3’ ) は粉体性状、設備構成に
より適正値が存在するが、この第7図に示ず4銘柄粉体
の装置の場合の数値の一例を挙げておく。
In the figure, 8 is a control panel that provides data and control commands such as pattern control to the DDC unit 6. Parameters (α, β1TT,', Tt, T,
', 7. T3. Although T3') has an appropriate value depending on the powder properties and equipment configuration, an example of the value in the case of an apparatus using four brands of powder, which is not shown in FIG. 7, will be given below.

(例)α=30.β−25.T、=60secT+′ 
=60sec、’I’2=Tt′ =60sec。
(Example) α=30. β-25. T,=60secT+'
=60sec, 'I'2=Tt' =60sec.

7=10.T、=T3′ =60secなお、上記実施
例において圧力偏差チエックと圧力変化率チェックは、
その一方だけを実施してし良いし、両方実施しても本発
明の目的は十分達仕られる。このように、本発明はその
主旨に沿って種々に応用され、種々の実施態様を取り得
るしのである。
7=10. T, = T3' = 60 sec In the above embodiment, the pressure deviation check and pressure change rate check are as follows:
The object of the present invention can be fully achieved by implementing only one of them, or by implementing both. In this way, the present invention can be applied in various ways and can take various embodiments in accordance with its gist.

[発明の効果] 以上の説明で明らかなように、本発明の粉体の混合・搬
送における閉塞検知方法によれば、粉体の混合・搬送に
ポストミックス方式を採用し、混合する粉体の混合比、
銘柄等の選択自由度が飛躍的に向上した装置の、配管閉
塞トラブルに素早く対応できるようになり、設備稼働率
を大1+に向上させる効果を有する。さらに、本発明を
適用した粉体の混合搬送装置を精錬を目的とした溶銑予
備処理に用いた場合、−回の処理で脱珪、脱燐、脱硫の
処理を設備トラブルな〈実施可能になり、溶銑予備処理
の作業性・稼働率を飛躍的に向上しうるしのとなる。
[Effects of the Invention] As is clear from the above explanation, according to the blockage detection method for mixing and transporting powder of the present invention, a post-mix method is adopted for mixing and transporting powder, and the mixing ratio,
The degree of freedom in selecting brands, etc. has been dramatically improved, making it possible to quickly respond to piping blockage problems, which has the effect of improving the equipment operating rate by a large 1+. Furthermore, when the powder mixing and conveying device to which the present invention is applied is used for preliminary treatment of hot metal for the purpose of refining, it is possible to perform desiliconization, dephosphorization, and desulfurization processes in one process without any equipment trouble. , which dramatically improves the workability and operation rate of hot metal pretreatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の閉塞検知方法を適用する粉
体混合・搬送装置の一例を示す図、第2図はl) I)
 Cユニットの回路構成を示すブロック図、第3図は粉
体の閉塞検知方法の一実施例を示すタイムチャート、第
4図は粉体tIlf、量対圧力特性図、第5図は圧力偏
差チェックと圧力変化率チェックの説明図、第6図は粉
体の閉塞の回避方法の実施例を示すフローチャート、第
7図は他の粉体の混合・搬送装置の構成図、第8図は従
来の粉体の混合・搬送方法および装置の説明図である。 4・・ランス部、6・ DDCユニット、11・・・リ
ザーバタンク、12・・・ロークリフィーダ、+6A。 1613・・搬送ライン、31 合流管、41・・、昆
り粉体供給ライン、42・・・噴射ノズル。
Fig. 1 is a diagram showing an example of a powder mixing/conveying device to which a blockage detection method according to an embodiment of the present invention is applied, and Fig. 2 is a diagram showing an example of a powder mixing/conveying device to which a blockage detection method according to an embodiment of the present invention is applied.
A block diagram showing the circuit configuration of the C unit, Fig. 3 is a time chart showing an example of a powder blockage detection method, Fig. 4 is a powder tIlf, quantity vs. pressure characteristic diagram, and Fig. 5 is a pressure deviation check. Fig. 6 is a flowchart showing an example of a method for avoiding powder clogging, Fig. 7 is a configuration diagram of another powder mixing/transporting device, and Fig. 8 is a conventional FIG. 2 is an explanatory diagram of a powder mixing/transporting method and apparatus. 4. Lance part, 6. DDC unit, 11. Reservoir tank, 12. Roch feeder, +6A. 1613... Conveyance line, 31 Merging pipe, 41... Kelp powder supply line, 42... Injection nozzle.

Claims (1)

【特許請求の範囲】[Claims] (1)異なる粉体が収納された複数の圧力容器を加圧し
ながら各圧力容器に接続された各輸送管内に各収納粉体
を切出して搬送気体で気送し、該各輸送管の合流点で気
送粉体を混合し、混合粉体を該合流点下流側のランス部
先端から溶融金属中に吹込む粉体の混合・搬送に際し、 まず前記粉体搬送系の圧力容器、輸送管、合流点、ラン
ス部の圧力を検出しつつこれらの間の圧力偏差または圧
力変化率を求め、 次に前記圧力容器からランス部先端の吹き込み点に至る
圧力バランス変動を前記圧力偏差または圧力変化率から
チェックし、この圧力バランス変動と圧力容器からの粉
体切り出し量の変動とをもとに前記粉体搬送系の閉塞を
検知することを特徴とする粉体の混合・搬送における閉
塞検知方法。
(1) While pressurizing multiple pressure vessels containing different powders, each stored powder is cut out into each transport pipe connected to each pressure vessel and pneumatically transported with a carrier gas, and the confluence of the transport pipes is When mixing and conveying the powder, the mixed powder is mixed and conveyed into the molten metal from the tip of the lance part on the downstream side of the confluence point, first, the pressure vessel of the powder conveyance system, the transport pipe, While detecting the pressure at the confluence point and the lance part, find the pressure deviation or pressure change rate between them, and then calculate the pressure balance fluctuation from the pressure vessel to the injection point at the tip of the lance part from the pressure deviation or pressure change rate. A blockage detection method in powder mixing and conveyance, characterized in that blockage in the powder conveyance system is detected based on the pressure balance fluctuation and the change in the amount of powder cut out from the pressure vessel.
JP63184070A 1988-07-23 1988-07-23 Blockage detection method in powder mixing and transportation Expired - Lifetime JPH0662216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184070A JPH0662216B2 (en) 1988-07-23 1988-07-23 Blockage detection method in powder mixing and transportation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184070A JPH0662216B2 (en) 1988-07-23 1988-07-23 Blockage detection method in powder mixing and transportation

Publications (2)

Publication Number Publication Date
JPH02152819A true JPH02152819A (en) 1990-06-12
JPH0662216B2 JPH0662216B2 (en) 1994-08-17

Family

ID=16146854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184070A Expired - Lifetime JPH0662216B2 (en) 1988-07-23 1988-07-23 Blockage detection method in powder mixing and transportation

Country Status (1)

Country Link
JP (1) JPH0662216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299694A (en) * 1990-12-26 1994-04-05 Aluminum Pechiney Apparatus and process for separating a material in fluidized bed form and the detection of clogging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019267U (en) * 1995-03-20 1995-12-12 村田産業株式会社 Surveying nail

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106720A (en) * 1983-11-14 1985-06-12 Kobe Steel Ltd Method of detecting clogging in pulverized material gas-stream conveyor device
JPS6345332A (en) * 1986-04-23 1988-02-26 Kawasaki Steel Corp Method and apparatus for mixing and conveying powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106720A (en) * 1983-11-14 1985-06-12 Kobe Steel Ltd Method of detecting clogging in pulverized material gas-stream conveyor device
JPS6345332A (en) * 1986-04-23 1988-02-26 Kawasaki Steel Corp Method and apparatus for mixing and conveying powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299694A (en) * 1990-12-26 1994-04-05 Aluminum Pechiney Apparatus and process for separating a material in fluidized bed form and the detection of clogging

Also Published As

Publication number Publication date
JPH0662216B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US4341234A (en) Method and apparatus for emptying vessels
US4835701A (en) Post-mix method and system for supply of powderized materials
JP2569324B2 (en) Method and apparatus for mixing and conveying powder
JPH02152819A (en) Clogging detecting method in mixing and carrying of powder
JP6139763B1 (en) Powder parallel blowing system and powder parallel blowing method
CN115285533B (en) Charging device and method for granular materials, electronic equipment and storage medium
CN111705179A (en) Powder spraying device, powder spraying device for converter bottom blowing powder spraying and powder spraying method
JP3704853B2 (en) Hot metal preliminary refining method
US4613113A (en) Apparatus for blowing powdery refining agent into refining vessel
KR100432159B1 (en) Pressure control apparatus for distributor in a fine coal blowing equipment
KR20130101786A (en) Method for making steel and bubbling apparatus for the same
JPH10176210A (en) Method for restraining slag foaming
JPH09208050A (en) Powder and granular material blowing-control device
US5188661A (en) Dual port lance and method
JP6107070B2 (en) Powder conveying method and powder conveying apparatus
JPS59205410A (en) Operating process of converter
JPH01172118A (en) Method for operating conveyor via junction vessel
JP2000073115A (en) Method for controlling blowing of powder into reaction vessel
JPH07332873A (en) Replenishing powder blowing tank
CN114870583B (en) All-condition denitration control system and method based on ammonia escape monitoring
JP2001316713A (en) Method for controlling top-blown oxygen into oxygen steel making furnace
JPH07150218A (en) Method for controlling blowing of powdery material into molten steel
US8623270B2 (en) Dual outlet injection system
JPH04304306A (en) Method and device for automatically controlling discharge of molten iron from torpedo ladle car
JPH05125424A (en) Method for restraining slag foaming