JPH02151707A - Scale - Google Patents

Scale

Info

Publication number
JPH02151707A
JPH02151707A JP30635788A JP30635788A JPH02151707A JP H02151707 A JPH02151707 A JP H02151707A JP 30635788 A JP30635788 A JP 30635788A JP 30635788 A JP30635788 A JP 30635788A JP H02151707 A JPH02151707 A JP H02151707A
Authority
JP
Japan
Prior art keywords
single crystal
crystal member
linear motion
straight moving
intensity meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30635788A
Other languages
Japanese (ja)
Inventor
Keisho Yamamoto
山本 恵章
Hiroshi Kawada
河田 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30635788A priority Critical patent/JPH02151707A/en
Publication of JPH02151707A publication Critical patent/JPH02151707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To control a position where resolving power in an Angstrom -unit is high by observing the crystal lattice of a single crystal member on the basis of the output of an intensity meter and detecting the moving position or quantity of a moving part on the basis of the lattice distance of the single crystal member. CONSTITUTION:The X-rays from an irradiation means 7 are applied to an intensity meter 8 through the third - first single crystal members 6, 5, 3 (formed along the straight moving direction of the straight moving part 2 of an X-axis precise straight moving mechanism through a piezoelectric element 4) arranged at an equal interval. When the straight moving part 2 is moved by the indication from a microcomputer 10, said straight moving part 2 shields the passage of said X-rays and a silicon crystal lattice intermittently. Therefore, the output of the intensity meter 8 is changed at the cycle corresponding to a single crystal lattice distance. A wave memory 9 detects the trough and ridge parts of the output of the intensity meter 8 to perform counting. This counting direction is changed over according to the straight moving direction of the straight moving part 2 given from the microcomputer 10. The microcomputer 10 multiplies the count value in the memory 9 by the lattice distance of the single crystal member 3 to calculate the moving quantity and position of the straight moving part 2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体製造装置、超精密加工装置、等に用いら
れる超精密位置決め用に開発されたスケールに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a scale developed for ultra-precision positioning used in semiconductor manufacturing equipment, ultra-precision processing equipment, etc.

く口)従来の技術 従来のスケールは、マグネットの磁素であるN極、S極
の変化を磁気ヘッドにより検出するもの、あるいは、精
密に形成された金属薄膜の凹凸を反射光の回折と干渉に
より光学的に検知するもので、せいぜい光の波長の10
分の1程度の分解能しか得られない。
Conventional technology Conventional scales use a magnetic head to detect changes in the magnetic N and S poles of a magnet, or they use a precisely formed metal thin film to interfere with the diffraction of reflected light. It is optically detected by
Only about 1/2 of the resolution can be obtained.

半導体とりわけVLSIの集積度は100メガビツトに
むかっており、その線幅も0.1ミクロンを割ろうとし
ている。そのためのパターン形成技術の位置決め精度は
o、oxミクロン、あるいは、0.001ミクロンにな
り、従来のリニアスケールの分解能を100倍以上、高
精度化しなければならない。
The integration density of semiconductors, especially VLSI, is approaching 100 megabits, and the line width is also on the verge of breaking 0.1 micron. The positioning accuracy of the pattern forming technology for this purpose is 0, ox microns, or 0.001 microns, and the resolution must be more than 100 times higher than that of conventional linear scales.

すなわち、全く新しい位置決め用のスケールの開発が、
最先端技術の各分野で、待望きれている。
In other words, the development of a completely new positioning scale
It is highly anticipated in various fields of cutting-edge technology.

(ハ) 発明が解決しようとする課題 本発明は従来不可能とされていた、0.001ミクロン
の位置決めを実現することを技術課題としている。
(c) Problems to be Solved by the Invention The technical problem of the present invention is to realize positioning of 0.001 microns, which has been considered impossible in the past.

二) 課題を解決するための手段 本発明はこのような点に鑑みて為されたものであって、
移動機構と、この移動機構の移動部一面の移動方向に沿
って形成された単結晶部材と、この移動部外に設けられ
、上記単結晶部材に光を照射するための光照射手段と、
上記移動部外に設けられ、上記単結晶部材を通して送ら
れて来る光を受けその強度を計測して成る強度計と、か
ら成り、この強度計からの出力により単結晶部材の結晶
格子を観測し、上記移動部の移動量を検出している。
2) Means for solving the problem The present invention has been made in view of the above points,
a moving mechanism, a single crystal member formed along the moving direction of one side of the moving part of the moving mechanism, a light irradiation means provided outside the moving part for irradiating the single crystal member with light,
An intensity meter is provided outside the moving part and receives the light sent through the single crystal member and measures its intensity.The crystal lattice of the single crystal member is observed based on the output from this intensity meter. , the amount of movement of the moving section is detected.

ホ)作 用 単結晶部材の格子間隔を基準にして分解能の高いスケー
ルの調整が行われる。
e) Operation: High-resolution scale adjustment is performed based on the lattice spacing of the single crystal member.

へ)実施例 第1図は本発明スケールの一実施例であって、(1)は
同図で示すX軸方向に直動する直動部(2)を有するX
軸精密直動機構、(3)は上記直動部(2)の高動力向
に沿って圧電素子(4)を介して形成された第1の単結
晶部材を示し、例えばシリコン単結晶が利用される。(
5)(6)は上記直動部(2)の高動力向に設けられた
第2、第3の単結晶部材であって、上記第1の単結晶部
材(3)と第2の単結晶部材(5)及び第2の単結晶部
材(5)と第3の単結晶部材(6)は等間隔になってい
る。また、上記第1〜第3の単結晶部材(2)(5)(
6)の結晶方位は同じ方向になっている。(7)は上記
第3の単結晶部材(6)側から第1の単結晶部材(3)
側へX線等の光を照射する照射手段を示し、具体的には
銀をターゲットとしたX線管が使用される。(8)は上
記照射手段(7)から照射されたX線を第3、第2、第
1の単結晶部材(6)(5)(3)を介して受ける強度
針であって、シンチレーションカウンタから成る。(9
)はこの強度計(8)からの出力の山又は谷部に応じて
カウントを行うウェーブメモリ、(10)はX軸駆動回
路(11)を介して上記X軸精密直動機構(1)を動作
させるマイクロコンピュータを示し、動作方向に応じて
ウェーブメモリ(9)に■カウントするかθカウントす
るかを指示する。 (12)は上記直動機構(1)外に
設けられ、タングステン等の材料で形成された先細形状
の探針を示し、走査型トンネル電流顕微鏡用のものが使
用され、先端部の曲率半径が0.14m以上になるよう
成形されている。また、この探針(12)は上記第1の
単結晶部材(3)から1m1In程度に近ずけられてい
る。 (13)は上記第1の単結晶部材(3)及び探針
(12)間に電圧を印加する電圧印加手段、(14)は
上記単結晶部材(3)と探針(12)間に流れるトンネ
ル電流を計測し、電圧値に変換する電流−電圧変換器で
あり、その出力は増幅器(15)、対数変換器(16)
を介して比較器(17)に与えられる。この比較器(1
7)は標準電源(18)から与えられる基準電圧と上記
対数変換器(16)からの出力を比較し、“H′”L”
信号を出力する。 (19)はこの比較器(17)の出
力を積分する積分器を示し、その出力は増幅器(20)
へ与えられる。この増幅器(20)からの電圧により圧
電素子(4)から成る2軸駆動機構が動作されて第1の
単結晶部材(2)と探針(3〉との間に流れる電流が一
定になるように第1の単結晶部材(3)が微動される。
f) Embodiment Figure 1 shows an example of the scale of the present invention, in which (1) is an
Axial precision linear motion mechanism (3) indicates a first single crystal member formed via a piezoelectric element (4) along the high power direction of the linear motion section (2), for example, silicon single crystal is used. be done. (
5) (6) are second and third single-crystal members provided in the high-power direction of the linear motion section (2), which are connected to the first single-crystal member (3) and the second single-crystal member; The member (5), the second single crystal member (5), and the third single crystal member (6) are equally spaced. In addition, the first to third single crystal members (2) (5) (
The crystal orientations of 6) are in the same direction. (7) is the first single crystal member (3) from the third single crystal member (6) side.
An irradiation means for irradiating light such as X-rays to the side is shown, and specifically, an X-ray tube targeting silver is used. (8) is an intensity needle that receives the X-rays irradiated from the irradiation means (7) through the third, second, and first single crystal members (6), (5), and (3), and is a scintillation counter. Consists of. (9
) is a wave memory that performs counting according to the peaks or valleys of the output from this intensity meter (8), and (10) is a wave memory that performs counting according to the peaks or valleys of the output from this intensity meter (8), and (10) is a wave memory that operates the above-mentioned X-axis precision linear motion mechanism (1) via an X-axis drive circuit (11). It shows the microcomputer to be operated and instructs the wave memory (9) whether to count ① or θ according to the direction of operation. (12) is a tapered probe made of a material such as tungsten, which is installed outside the linear motion mechanism (1), and is used for scanning tunneling current microscopes, with a radius of curvature at the tip. It is molded to be 0.14 m or more. Further, this probe (12) is placed close to the first single crystal member (3) by about 1 m1In. (13) is a voltage applying means for applying a voltage between the first single crystal member (3) and the probe (12), and (14) is a voltage applying means for applying a voltage between the first single crystal member (3) and the probe (12). This is a current-voltage converter that measures tunnel current and converts it into a voltage value, and its output is sent to an amplifier (15) and a logarithmic converter (16).
to the comparator (17). This comparator (1
7) compares the reference voltage given from the standard power supply (18) and the output from the logarithmic converter (16), and determines "H'" and "L".
Output a signal. (19) shows an integrator that integrates the output of this comparator (17), and its output is sent to the amplifier (20).
given to. The voltage from this amplifier (20) operates a two-axis drive mechanism consisting of a piezoelectric element (4) so that the current flowing between the first single crystal member (2) and the probe (3) becomes constant. The first single crystal member (3) is slightly moved.

即ち、これにより、第1の単結晶部材(3)の2軸方向
への微少なずれが補正され、第1の単結晶部材(3)と
上記第2、第3の単結晶部材(5)(6)間の距離が常
に一定に保たれる。
That is, as a result, the slight deviation of the first single crystal member (3) in the biaxial direction is corrected, and the first single crystal member (3) and the second and third single crystal members (5) (6) The distance between them is always kept constant.

このような、スケールにおいては照射手段(7)からの
xIlが第3、第2、第1の単結晶部材(6)(5)(
3)を通して強度針(8)に与えられる。マイクロコン
ピュータ(10)からの指示により、直動体(2)が動
くとX線の通過路をシリコンの結晶格子が間欠的にさえ
切る。このため強度計(8)からは第2図に示すように
単結晶格子間隔に応じた周期で強度計(8)の出力が変
化する。ウェーブメモリ(9〉はこの強度計(8)出力
の谷部又は山部を検出してカウントを行う、そして、こ
のカウント方向はマイクロコンピュータ(10)から与
えられる直動部(2)の原動力向により切り換えられる
。マイクロコンピュータ(10)はこのウェーブメモリ
く9)内のカウント数に、単結晶部材(3)の格子間距
離を乗算することで直動部の移動量及び移動位置が算出
詐れる。
In such a scale, xIl from the irradiation means (7) is transmitted to the third, second, and first single crystal members (6) (5) (
3) to the strength needle (8). When the translational body (2) moves according to instructions from the microcomputer (10), the silicon crystal lattice even intermittently cuts the passage of the X-rays. Therefore, the output of the intensity meter (8) changes at a period corresponding to the single crystal lattice spacing, as shown in FIG. The wave memory (9) detects the troughs or peaks of the output of the intensity meter (8) and performs counting, and this counting direction is determined by the direction of the driving force of the linear motion part (2) given from the microcomputer (10). The microcomputer (10) multiplies the count in this wave memory (9) by the interlattice distance of the single crystal member (3), thereby incorrectly calculating the amount of movement and the movement position of the linear motion part. .

第3図は本発明スケールの他の実施例を示すブロック図
であって、第1図と同一部分には同一符号を付している
。同図においては、X軸直動機構(1)の代わりにX軸
に対して回転可能に設けられた円筒形の回転部(2°)
を有したX軸精密回転機構(1゛)を設けた点である。
FIG. 3 is a block diagram showing another embodiment of the scale of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In the same figure, instead of the X-axis linear motion mechanism (1), a cylindrical rotating part (2°) provided to be rotatable with respect to the X-axis is shown.
The point is that an X-axis precision rotation mechanism (1゛) is provided.

また、第1の単結晶部材(3′)は上記回転部(2゛)
内周に圧電素子(4)を介して形成されている。また、
上記回転部(り゛)の第1の単結晶部材(3゛)外周部
にはロール状の第2、第3の単結晶部材(5’)(6’
)が設けられている。
Further, the first single crystal member (3') is connected to the rotating part (2').
It is formed on the inner periphery with a piezoelectric element (4) interposed therebetween. Also,
Roll-shaped second and third single crystal members (5') (6'
) is provided.

こうした構成では回転部(2′)の回転量に応じたカウ
ント数がウェーブメモリ(10)に保持される。マイク
ロコンピュータ(10)でこのカウント数を格子点距離
で乗算し、回転部(2°〉の直径と円周率πで除算する
ことで回転角が求まる。
In such a configuration, a count number corresponding to the amount of rotation of the rotating section (2') is held in the wave memory (10). The microcomputer (10) multiplies this count number by the lattice point distance and divides it by the diameter of the rotating part (2°) and the pi ratio π to find the rotation angle.

(ト)発明の効果 以上述べた如く本発明スケールは単結晶の格子間隔を基
準にして移動部の移動位置や移動量を検出しているので
、オングストローム単位の分解能の高い位置調整が行わ
れる。
(g) Effects of the Invention As described above, the scale of the present invention detects the movement position and movement amount of the moving part based on the lattice spacing of the single crystal, so that position adjustment is performed with high resolution in angstrom units.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明スケールの一実施例ブロック図、第2図
は動作を説明するための説明図、第3Lよ 図本発明スケールの他の実施例ブロック図であ八 る。 (1)・・・X軸精密直動機構、(2)・・・直動部、
(3)(3’)(5)(5’)(6)(6’)・・・単
結晶部材、(4)・・・圧電素子、(7)・・・照射手
段、(8)・・・強度計、(9)・・・ウェーブメモリ
、(10)・・・マイクロコンピュータ、(11)・・
・X軸駆動回路。
FIG. 1 is a block diagram of one embodiment of the scale of the present invention, FIG. 2 is an explanatory diagram for explaining the operation, and FIG. 3L is a block diagram of another embodiment of the scale of the present invention. (1)...X-axis precision linear motion mechanism, (2)...linear motion part,
(3) (3') (5) (5') (6) (6')...Single crystal member, (4)...Piezoelectric element, (7)...Irradiation means, (8). ...Intensity meter, (9)...Wave memory, (10)...Microcomputer, (11)...
・X-axis drive circuit.

Claims (1)

【特許請求の範囲】 1)直動機構と、この直動機構の直動部一面の直動方向
に沿って形成された単結晶部材と、この直動部外に設け
られ、上記単結晶部材に光を照射するための光照射手段
と、上記直動部外に設けられ、上記単結晶部材を通して
送られて来る光を受けその強度を計測して成る強度計と
、から成り、この強度計からの出力により単結晶部材の
結晶格子を観測し、上記直動部の移動量を検出すること
を特徴としたスケール。 2)回転機構と、この回転機構の回転部一面の回転方向
に沿って形成された単結晶部材と、この回転部外に設け
られ、上記単結晶部材に光を照射するための光照射手段
と、上記回転部外に設けられ、上記単結晶部材を通して
送られて来る光を受けその強度を計測して成る強度計と
から成り、この強度計からの出力により単結晶部材の結
晶格子を観測し、上記回転部の回転量を検出することを
特徴としたスケール。 3)上記光照射手段から照射される光はX線としたこと
を特徴とする特許請求の範囲第1項又は第2項記載のス
ケール。
[Claims] 1) A linear motion mechanism, a single crystal member formed along the linear motion direction on one surface of the linear motion section of the linear motion mechanism, and a single crystal member provided outside the linear motion section; the light irradiation means for irradiating light onto the surface of the substrate, and an intensity meter provided outside the linear motion section that receives the light sent through the single crystal member and measures its intensity. A scale characterized in that the crystal lattice of a single crystal member is observed by the output from the scale, and the amount of movement of the linear motion part is detected. 2) a rotating mechanism, a single crystal member formed along the rotation direction of one surface of the rotating part of the rotating mechanism, and a light irradiation means provided outside the rotating part for irradiating the single crystal member with light; , an intensity meter installed outside the rotating part, which receives the light transmitted through the single crystal member and measures its intensity; and the crystal lattice of the single crystal member is observed based on the output from this intensity meter. , a scale that detects the amount of rotation of the rotating part. 3) The scale according to claim 1 or 2, wherein the light irradiated from the light irradiation means is an X-ray.
JP30635788A 1988-12-02 1988-12-02 Scale Pending JPH02151707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30635788A JPH02151707A (en) 1988-12-02 1988-12-02 Scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30635788A JPH02151707A (en) 1988-12-02 1988-12-02 Scale

Publications (1)

Publication Number Publication Date
JPH02151707A true JPH02151707A (en) 1990-06-11

Family

ID=17956095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30635788A Pending JPH02151707A (en) 1988-12-02 1988-12-02 Scale

Country Status (1)

Country Link
JP (1) JPH02151707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191673B1 (en) * 1998-05-21 2001-02-20 Mitsubushi Denki Kabushiki Kaisha Current transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191673B1 (en) * 1998-05-21 2001-02-20 Mitsubushi Denki Kabushiki Kaisha Current transformer

Similar Documents

Publication Publication Date Title
JP2709088B2 (en) Rotation amount measurement method
JP2623123B2 (en) Fine movement stage device
US5432346A (en) Relative position change amount detecting apparatus having bi-directional probe with compensated movement
JP2761801B2 (en) Angular positional relationship detection method and encoder using the same
CA1087389A (en) Distance measuring gauge using relative movement between diffraction gratings
US4215480A (en) Distance measuring gauge
JPH02151707A (en) Scale
JPH02108913A (en) Scale
JPH02243918A (en) Displacement detector
JP2000258366A (en) Minute part x-ray diffraction apparatus
CN220896050U (en) SFB laser device
JP2977166B2 (en) X-ray diffractometer with wide-range X-ray detector
Yun et al. Langmuir trough dedicated for x‐ray study of monolayer systems
JP3057089B2 (en) Rotary encoder
JP2000227468A (en) Superconducting quantum interference element microscope sensor and manufacture thereof
KR100338378B1 (en) An Apparatus and a Method for Dynamic Laser Marking
JP2559048B2 (en) Relative displacement measurement device
JPH04307305A (en) Non contact dimension measuring instrument
JP2889664B2 (en) Rotation amount measurement method
JP2686651B2 (en) Displacement detector
JPH03257302A (en) Positioning apparatus of probe and scanning-type tunnel microscope
JPH03291502A (en) Alignment mechanism and inter-atomic force microscope using same
JPH10289866A (en) Synchrotron radiation intensity measuring instrument and x-ray exposure device equipped with the instrument
JP3179128B2 (en) Method and apparatus for generating detection signal of magnetic optical fiber encoder
JPH0620926A (en) Synchrotron radiation scanning apparatus for exposure