JPH02151342A - Production of core and electrodeposition bellows using this core - Google Patents

Production of core and electrodeposition bellows using this core

Info

Publication number
JPH02151342A
JPH02151342A JP30380688A JP30380688A JPH02151342A JP H02151342 A JPH02151342 A JP H02151342A JP 30380688 A JP30380688 A JP 30380688A JP 30380688 A JP30380688 A JP 30380688A JP H02151342 A JPH02151342 A JP H02151342A
Authority
JP
Japan
Prior art keywords
core
melting point
bellows
low melting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30380688A
Other languages
Japanese (ja)
Inventor
Noritomo Matsukawa
松川 矩具
Takashi Miyazaki
崇 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP30380688A priority Critical patent/JPH02151342A/en
Publication of JPH02151342A publication Critical patent/JPH02151342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the core which is transferred with the surface state of a casting as it is by heating a low melting alloy material to the temp. lower than its m. p. temp. and compressing and forging the material with the compressive strength much smaller than the compressive strength at ordinary temp. to obtain a master pattern core, and heating this core to the m. p. or above in a casting mold, then cooling the core. CONSTITUTION:The low melting alloy material 1 is heated to the temp. lower by about 5 to 70 deg.C than its m. p. temp. and is compressed and forged in this state to form the 3rd master pattern core 4. This master pattern core 4 is disposed into a casting cavity 22 of the casting mold 21 for the core of a segmental die type made into a bellows shape. The master pattern core 4 disposed in such mold is heated to the m. p. temp. of the low melting alloy or above to melt at least the surface of the master pattern core 4. The casting mold 21 for the core is then cooled down to the m. p. temp. of the low melting alloy or below and the molding is parted from the casting mold 21, by which the bellows core 5 is obtd. The bellows core is subjected to chemical plating or electroplating to form a thin metallic film 8 and the core is heated to the temp. above the m. p. of the low melting alloy and below the m. p. of the thin metallic film 8 to dissolve away only the bellows core 5. The metallic bellows having high quality is easily produced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は中子の製造方法およびその中子を用いる電着ベ
ローズの製造方法に関し、特に、低融点合金を用いる中
子の製造方法およびその中子を用いる電着ベローズの製
造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a core and a method for manufacturing an electrodeposited bellows using the core, and in particular, a method for manufacturing a core using a low melting point alloy and the method for manufacturing an electrodeposited bellows using the core. The present invention relates to a method for producing electrodeposited bellows using a core.

〔従来技術および解決しようとする課8]従来、電着ベ
ローズの製造は、アルミニウム材料を切削加工してベロ
ーズ中子を形成し、このアルミニウム製ベローズ中子の
表面に電解メンキ等により所望の厚みに金属薄膜を形成
した後、前記アルミニウム製ベローズ中子のみをアルカ
リ溶液等の溶解剤により溶解除去することにより行って
いた。
[Prior art and problem to be solved 8] Conventionally, electroplated bellows are manufactured by cutting an aluminum material to form a bellows core, and then applying electrolytic polishing to the surface of this aluminum bellows core to a desired thickness. After a metal thin film is formed on the aluminum bellows core, only the aluminum bellows core is dissolved and removed using a dissolving agent such as an alkaline solution.

このような従来の電着ベローズの製造方法にあっては、
ベローズ中子としてアルミニウム材料を用いるとともに
、このアルミニウム材料からなる中子を溶解剤に溶解し
てしまうので、アルミニウム材料を回収することができ
ず、電着ベローズの製造コストが高くなってしまうとと
もに、アルミニウム材料を溶解剤で熔解する際に、水素
および酸素ガスが発生するので換気が不十分であると爆
発の危険性があり、さらに、切削加工によりアルミニウ
ム製ベローズ中子を形成する際の中子の加工に時間がか
かるとともに、ベローズ中子の表面を滑らかに形成する
ことが困難であるため、電着ベローズの製造効率も悪く
、得られる電着ベローズもその表面が粗いものとなり高
い品質のものが得られないという問題点を有していた。
In such a conventional method of manufacturing electrodeposited bellows,
Since an aluminum material is used as the bellows core and the core made of this aluminum material is dissolved in a dissolving agent, the aluminum material cannot be recovered, which increases the manufacturing cost of electrodeposited bellows. When aluminum material is melted with a dissolving agent, hydrogen and oxygen gases are generated and there is a risk of explosion if there is insufficient ventilation. It takes time to process and it is difficult to form the surface of the bellows core smoothly, so the manufacturing efficiency of electrodeposited bellows is poor, and the surface of the electrodeposited bellows obtained is rough, making it difficult to achieve high quality. The problem was that it was not possible to obtain

本発明は上記のような従来のもののもつ問題点を解決し
たものであって、中子材料に低融点合金を用いて、安価
、安全でかつ簡便に高品質の中子を製造することができ
る中子の製造方法を提供するとともに、その中子を用い
て高品質の金属ベローズを得ることができる電着ベロー
ズの製造方法を提供することを目的としている。
The present invention solves the problems of the conventional products as described above, and uses a low melting point alloy as the core material, making it possible to manufacture high-quality cores inexpensively, safely, and easily. It is an object of the present invention to provide a method for manufacturing a core, and also to provide a method for manufacturing an electrodeposited bellows, which allows high-quality metal bellows to be obtained using the core.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明の中子の製造方法は
、低融点合金材料を、その融点温度より5〜70℃低い
温度に加熱した状態で圧縮および/または鍛造し、原型
中子を成形した後、この原型中子を中子用鋳造型の鋳造
空所内に配設し、この鋳造空所内に配設した原型中子を
前記低融点合金の融点温度以上に加熱して、原型中子の
少なくとも表面を溶融した後、前記中子用鋳造型を前記
低融点合金の融点温度以下に冷却し、中子用鋳造型から
離型する手段を有しており、また、本発明の電着ベロー
ズの製造方法は、低融点合金材料を、その融点温度より
5〜70°C低い温度に加熱した状態で圧縮および/ま
たは鍛造し、原型中子を成形した後、この原型中子をベ
ローズ形状の鋳造空所を有する割型タイプの中子用鋳造
型の鋳造空所内に配設し、この鋳造空所内に配設した原
型中子を前記低融点合金の融点温度以上に加熱して、原
型中子の少なくとも表面を溶融した後、前記中子用鋳造
型を前記低融点合金の融点温度以下に冷却し、中子用鋳
造型から離型してベローズ中子を得て、このベローズ中
子に化学メッキ又は電解メッキを施してベローズ中子の
表面に金属薄膜を形成し、次いで表面に金属薄膜が形成
されたベローズ中子を低融点合金の融点温度以下で金属
薄膜の融点温度以下に加熱し、ベローズ中子のみを溶融
除去する手段を有している。
In order to achieve the above object, the core manufacturing method of the present invention compresses and/or forges a low melting point alloy material while heating it to a temperature 5 to 70 degrees Celsius lower than its melting point temperature, and produces a prototype core. After molding, this prototype core is placed in a casting cavity of a casting mold for cores, and the prototype core placed in this casting cavity is heated to a temperature higher than the melting point temperature of the low melting point alloy to form a mold. After melting at least the surface of the core, the core casting mold is cooled to a temperature below the melting point of the low melting point alloy, and the core casting mold is released from the core casting mold. The method for manufacturing bellows is to compress and/or forge a low melting point alloy material while heating it to a temperature 5 to 70°C lower than its melting point, form a prototype core, and then mold this prototype core into a bellows. disposed in a casting cavity of a split-type core casting mold having a shaped casting cavity, and heating the prototype core disposed within the casting cavity to a temperature higher than the melting point temperature of the low melting point alloy; After melting at least the surface of the prototype core, the core casting mold is cooled to below the melting point temperature of the low melting point alloy, and the mold is released from the core casting mold to obtain a bellows core. A thin metal film is formed on the surface of the bellows core by chemical plating or electrolytic plating, and then the bellows core with the thin metal film formed on the surface is heated to a temperature below the melting point temperature of the low melting point alloy and below the melting point temperature of the thin metal film. It has means for heating and melting and removing only the bellows core.

〔作用] 本発明は上記の手段を採用したことにより、固体のまま
の低融点合金材料を常温に比べて大幅に小さな圧縮強さ
で圧縮および/または鍛造して原型中子を得て、この原
型中子を鋳造型内で加熱して鋳造型の表面状態をそのま
ま転写した中子を製造することができ、また、この方法
で得られたベローズ用中子を用いて、その表面に金属メ
ッキを施した後、全体を低融点合金の融点以上でメッキ
金属以下の温度に加熱することにより中子のみを簡単に
溶融除去できることとなる。
[Function] By employing the above-mentioned means, the present invention compresses and/or forges a solid low-melting point alloy material with a compressive strength significantly lower than that at room temperature to obtain a prototype core. By heating the prototype core in a casting mold, it is possible to produce a core that directly transfers the surface condition of the casting mold, and by using the bellows core obtained by this method, metal plating can be applied to the surface of the core. After applying this, only the core can be easily melted and removed by heating the whole to a temperature above the melting point of the low melting point alloy and below the plating metal.

〔実施例〕〔Example〕

本発明に用いられる低融点合金材料としては、70〜2
50°Cの融点を有する合金であることが好ましく、さ
らに、錫(Sn)、ビスマス(Bi)、鉛(Pb)、カ
ドミウム(Cd)、亜鉛(Zn)およびアンチモン(S
b)のグループから選ばれる2〜4つの金属元素を含む
合金であるのが好ましく、たとえば、(1) B i 
/ P b/Sn/Cd=50/26.7/13.3/
10(融点70℃) 、(2) B i / P b 
/ Cd −51,65/40.20/8.15 (融
点91.5℃) 、(3)B i/S n=57/43
 (融点13B、5°c)、Pb/5n=38.1/6
1.9(融点183℃) 、(5) S n / Z 
n = 91/9(融点199°C) 、(6)P b
/S b=87. 5/12.5(融点247°C)等
が挙げられる。
The low melting point alloy material used in the present invention is 70 to 2
Preferably, the alloy has a melting point of 50°C, and further contains tin (Sn), bismuth (Bi), lead (Pb), cadmium (Cd), zinc (Zn) and antimony (S).
It is preferable that it is an alloy containing 2 to 4 metal elements selected from the group b), for example, (1) B i
/Pb/Sn/Cd=50/26.7/13.3/
10 (melting point 70°C), (2) B i / P b
/ Cd -51,65/40.20/8.15 (melting point 91.5°C), (3) B i/S n = 57/43
(melting point 13B, 5°c), Pb/5n=38.1/6
1.9 (melting point 183°C), (5) Sn/Z
n = 91/9 (melting point 199°C), (6) P b
/S b=87. 5/12.5 (melting point 247°C) and the like.

そして、第1図には上記のような低融点合金材料の圧縮
強さの温度依存性が示されていて、上記の(3)のB 
i / S n合金、(4)のP b / S n合金
、(5)のS n / Z n合金の3種類を検体合金
材料として以下の条件で試験し、縦軸を圧縮強さ(Kg
−f/cd) 、横軸を雰囲気温度(°C)として示し
た相関図である。
Figure 1 shows the temperature dependence of the compressive strength of the above-mentioned low melting point alloy material, and shows the B of (3) above.
Three types of specimen alloys, i/S n alloy, (4) P b /S n alloy, and (5) Sn/Z n alloy, were tested under the following conditions, and the vertical axis represents the compressive strength (Kg).
-f/cd), and is a correlation diagram in which the horizontal axis is the ambient temperature (°C).

すなわち、角棒インゴット合金材料を直径L2.7mm
、長さ25.4mmの試験用検体に切削加工し、この試
験用検体に温度と圧縮強さをパラメータとして変化させ
、0.2%オフセット値、2.5%変形値をASTMに
準拠して求めた(各々3個の検体数で実施)。
That is, a square bar ingot alloy material with a diameter L2.7 mm
A test specimen with a length of 25.4 mm was cut, and the temperature and compressive strength were changed as parameters, and a 0.2% offset value and a 2.5% deformation value were determined in accordance with ASTM. (Executed with 3 samples each)

この第1回の結果より、上記のB i / S n合金
材料においては、常温(25”C)では、2.5%変形
値が550 (Kg ・f/cd) 、0. 2%オフ
セット値が470(Kg−f/cシ)の圧縮強さをそれ
ぞれ示すが、融点(138,5℃)より70″C低い温
度ではそれぞれ330(Kg−f/cn)、275°C
(Kg−r/ca>となり、それぞれ常温の約6割の圧
縮強さになっていることが分かり、さらに、融点に近す
けば近ずくほど圧縮強さが小さ・くなり、融点より5 
’C低い温度では、2.5%変形値が150(K g−
f /cd) 、0. 2%オフセットイ直が125 
(Kg −r/c4)となり、それぞれ常温の3割弱の
圧縮強さになっている。
From the results of this first test, the above B i / S n alloy material has a 2.5% deformation value of 550 (Kg ・f/cd) and a 0.2% offset value at room temperature (25"C). shows a compressive strength of 470 (Kg-f/cn), respectively, but at a temperature 70"C lower than the melting point (138,5°C), it shows a compressive strength of 330 (Kg-f/cn) and 275°C, respectively.
(Kg-r/ca>, and it turns out that the compressive strength is about 60% of that at room temperature. Furthermore, the closer it gets to the melting point, the smaller the compressive strength becomes.
'C At low temperature, the 2.5% deformation value is 150 (K g-
f/cd), 0. 2% offset direct is 125
(Kg - r/c4), and each has a compressive strength slightly less than 30% of that at room temperature.

また、P b / S n合金材料およびS n / 
Z n合金材料においても、前者では、その融点(18
3°C)より70℃低い温度で、2.5%変形値および
0.2%オフセット値のそれぞれが常温の約6割となり
、融点より5℃低い温度で、2.5%変形値および0.
2%オフセット値のそれぞれが常温の3割弱の圧縮強さ
になっていて、後者では、その融点(199°C)より
70°C低い温度で、2.5%変形値および0.2%オ
フセット値のそれぞれが常温の約6割となり、融点より
5℃低い温度で、2.5%変形値および0.2%オフセ
ット4Bのそれぞれが常温の3割弱の圧縮強度さとなっ
ている。
Additionally, P b /S n alloy materials and S n /
In the case of Zn alloy materials, the melting point (18
At a temperature 70°C lower than 3°C, the 2.5% deformation value and 0.2% offset value are approximately 60% of room temperature, and at a temperature 5°C lower than the melting point, the 2.5% deformation value and 0. ..
Each of the 2% offset values has a compressive strength slightly less than 30% of that at room temperature, and the latter has a 2.5% deformation value and 0.2% at a temperature 70°C lower than its melting point (199°C). Each of the offset values is about 60% of the room temperature, and at a temperature 5° C. lower than the melting point, the 2.5% deformation value and the 0.2% offset 4B each have a compressive strength slightly less than 30% of the room temperature.

すなわ、ち、上記のような低融点合金材料はその融点温
度以下の融点に近い温度において常温に比べて大幅に小
さい圧縮強さで変形可能であることを示しており、本発
明者等は、低融点合金材料を完全に溶融することなく固
体のままでも小さな圧縮強さで圧縮および/または鍛造
してほぼ所望の中子形状に成形可能であり、さらに、こ
の原型中子を中子用鋳造型の鋳造空所内に配設し、この
中子用鋳造型を外部から加熱する又は高周波誘導加熱に
より鋳造型内部の原型中子を加熱して、少なくとも原型
中子の表面を溶融し、中子表面を鋳造型になじませると
ともに鋳造空所の表面粗さを完全に転写できるので、所
望の表面粗さを有する中子を簡便に製造できることを見
出したものである。
In other words, it has been shown that the above-mentioned low-melting point alloy material can be deformed with a compressive strength that is significantly smaller than that at room temperature at temperatures below its melting point and close to its melting point. , it is possible to compress and/or forge a low melting point alloy material as a solid without completely melting it with a small compressive strength and form it into almost the desired core shape, and furthermore, this prototype core can be used as a core material. The casting mold is placed in the casting cavity of the casting mold, and the mold for the core is heated from the outside or the master core inside the casting mold is heated by high-frequency induction heating to melt at least the surface of the master core and melt the core. It has been discovered that since the core surface can be adapted to the casting mold and the surface roughness of the casting cavity can be completely transferred, a core having a desired surface roughness can be easily produced.

以下、図面に示す本発明の実施例について説明する。Embodiments of the present invention shown in the drawings will be described below.

第2図(a) (b) (C) 〜第5図(a) (b
)には本発明による中子の製造工程を説明する図が示さ
れている。
Figure 2 (a) (b) (C) ~ Figure 5 (a) (b
) are diagrams illustrating the manufacturing process of the core according to the present invention.

本発明による中子の製造方法においては、まず、第2図
(a)に示すように棒状の低融点合金材料1を、上型1
1と下型12とからなる圧縮成形型の成形空所13内に
配設するとともに、この低融点合金材料1と圧縮成形型
とを低融点合金の融点温度より5〜70°C低い/!1
廣に加熱しておく。
In the method for manufacturing a core according to the present invention, first, a rod-shaped low melting point alloy material 1 is placed in an upper mold 1 as shown in FIG.
The low melting point alloy material 1 and the compression mold are placed in the molding cavity 13 of a compression mold consisting of a lower mold 1 and a lower mold 12, and the low melting point alloy material 1 and the compression mold are heated at a temperature of 5 to 70°C lower than the melting point temperature of the low melting point alloy. 1
Heat it up to a high temperature.

つぎに、第2図(b)に示すように上型11と下型12
とで前記低融点合金材料lを所定の圧縮強さで圧縮成形
した後、圧縮成形型を冷却して低融点合金を冷却し、成
形型から成形品を離型して第2図(C)に示す形状の第
1の原型中子2を得る。
Next, as shown in FIG. 2(b), the upper mold 11 and the lower mold 12 are
After compression molding the low melting point alloy material l with a predetermined compressive strength, the compression mold is cooled to cool the low melting point alloy, and the molded product is released from the mold, as shown in Fig. 2 (C). A first prototype core 2 having the shape shown in is obtained.

さらに、前記第2図(C)の第1の原型中子2を、第3
図(a)に示すように上型14と下型15とからなる圧
縮成形型の成形空所16内に配設するとともに、この第
1の原型中子2と圧縮成形型とを低融点合金の融点温度
より5〜70°C低い温度に加熱しておく。
Furthermore, the first prototype core 2 shown in FIG.
As shown in Figure (a), the first prototype core 2 and the compression mold are arranged in a molding cavity 16 of a compression mold consisting of an upper mold 14 and a lower mold 15, and the first prototype core 2 and the compression mold are made of a low melting point alloy. Heat to a temperature 5 to 70°C lower than the melting point of.

つぎに、第3図(b)に示すように上型14と下型15
とで前記第1の原型中子2を所定の圧縮強さで圧縮成形
した後、圧縮成形型を冷却して低融点合金を冷却し、成
形型から成形品を離型して第3図(C)に示す中央に凹
部3aを形成した第2の原型中子3を得る。
Next, as shown in FIG. 3(b), the upper mold 14 and the lower mold 15 are
After compression molding the first prototype core 2 with a predetermined compression strength, the compression mold is cooled to cool the low melting point alloy, and the molded product is released from the mold, as shown in FIG. A second prototype core 3 having a recess 3a formed in the center as shown in C) is obtained.

続いて、上記で得られた第2の原型中子3を、第4図に
示すように内周面に蛇腹形状の凹凸が設けられて上方が
開放した成形空所17を有する縦割型タイプの成形型1
8.18の成形空所17内に配設するとともに、前記第
2の原型中子3、成形型18.18および第2の原型中
子3の凹部3aより僅かに大径で前記成形型1日、18
の上方に位置するラム19とを低融点合金の融点温度よ
り5〜70°C低い温度に加熱しておく。
Subsequently, the second prototype core 3 obtained above was molded into a vertically split type molding type having a molding cavity 17 with bellows-shaped unevenness provided on the inner circumferential surface and open at the top, as shown in FIG. mold 1
8.18, and the second prototype core 3, the mold 18.18, and the mold 1 having a slightly larger diameter than the recess 3a of the second prototype core 3. Sun, 18
The ram 19 located above the ram 19 is heated to a temperature 5 to 70°C lower than the melting point temperature of the low melting point alloy.

つぎに第4図(b)に示すようにラム19を下降し、成
形型18.18の成形空所17内に配設した前記第2の
原型中子3の凹部3aに嵌入させ、この凹部3a内から
径方向外側に所定の圧縮強さを付与して第2の原型中子
3の凹部3aを拡開するとともに外周面を蛇腹状に成形
した後、成形型18.18およびラム19を冷却して低
融点合金を冷却し、前記ラム19を上方に移動し、成形
型18.18を型開きして成形品を離型し、さらに、一
端を閉塞した筒状の治具20を前記ラム19により僅か
に拡開して形成した凹部4a内にさし込んで第4図(C
)に示す外周面に蛇腹状の凹凸が形成された第3の原型
中子4を得る。
Next, as shown in FIG. 4(b), the ram 19 is lowered and fitted into the recess 3a of the second prototype core 3 disposed in the molding cavity 17 of the mold 18.18. After expanding the concave portion 3a of the second prototype core 3 by applying a predetermined compressive strength from the inside of the core 3a to the outside in the radial direction and molding the outer peripheral surface into a bellows shape, the mold 18.18 and the ram 19 are The low melting point alloy is cooled, the ram 19 is moved upward, the mold 18.18 is opened to release the molded product, and the cylindrical jig 20 with one end closed is moved to the Insert it into the recess 4a formed by slightly expanding it with the ram 19 and
) A third prototype core 4 having bellows-like irregularities formed on the outer circumferential surface is obtained.

続いて、上記で得られた第3の原型中子4を、第5図(
a)に示すように表面を鏡面状に滑らかに形成するとと
もに精密な蛇腹形状の凹凸を設けて上方を開放した鋳造
空所22を有する薄肉の割型タイプの鋳造型21.21
の鋳造空所22内に配設する。
Next, the third prototype core 4 obtained above is shown in FIG.
As shown in a), a thin-walled split-type casting mold 21.21 has a smooth mirror-like surface and a casting cavity 22 with precise bellows-shaped unevenness and an open upper part.
It is arranged in the casting cavity 22 of.

そして、この鋳造空所22内に配設した原型中子4を、
鋳造型21.21の外側から熱風、油浴、高周波誘導加
熱等の手段により低融点合金の融点温度以上に加熱して
、前記第3の原型中子4の少なくとも表面を溶融した後
、鋳造型21.21を融点温度以下に冷却し、鋳造型2
I、2Iを型開きして成形品を離型し第5図(1))に
示すようなベローズ中子5を得る。
Then, the prototype core 4 placed in this casting cavity 22 is
After melting at least the surface of the third prototype core 4 by heating from the outside of the casting mold 21 to a temperature higher than the melting point of the low melting point alloy by means such as hot air, an oil bath, or high-frequency induction heating, the casting mold 21.21 is cooled to below the melting point temperature and cast into mold 2.
I and 2I are opened and the molded product is released to obtain a bellows core 5 as shown in FIG. 5(1)).

上記の第2図(a)〜第4図(C)に示す各成形工程に
おける成形時の低融点合金材料への圧縮強さは、前記第
1回に示した相関図から明らかなように常温における低
融点合金材料の3〜6割程度の圧縮強さでよく、さらに
、本発明においては第5図(a) (b)に示すように
、前記成形工程でほぼ中子形状に圧縮成形された原型中
子をその少なくとも表面が溶融する程度に加熱して表面
を鋳造空所22の表面になじませるとともに、鏡面状に
仕上げた鋳造空所22の表面を完全に転写することにな
り、得られるベローズ中子5の表面を滑らかな鏡面状に
形成することができることとなる。
As is clear from the correlation diagram shown in Part 1, the compressive strength of the low melting point alloy material during forming in each of the forming steps shown in Figures 2(a) to 4(C) above is normal temperature. The compressive strength may be about 30 to 60% of that of the low melting point alloy material.Furthermore, in the present invention, as shown in FIGS. The prototype core is heated to such an extent that at least its surface is melted to make the surface conform to the surface of the casting cavity 22, and the mirror-finished surface of the casting cavity 22 is completely transferred. The surface of the bellows core 5 can be formed into a smooth mirror surface.

なお、上記の成形工程において、第4図(a) (b3
(C)の工程を省略して、治具20をインサートしない
とともに外表面を蛇腹状の凹凸を形成しないで、第31
4(blに示す粗い原型中子から直接に第5図(a)■
)の鋳造型内に配設してその原型中子を加熱し、原型中
子の表面を溶融する工程おしてもよいが、上記実施例で
示した工程を入れることにより、それ以後の工程の熱効
率を大幅に向上できるものである。
In addition, in the above molding process, FIG. 4(a) (b3
By omitting the step (C) and not inserting the jig 20 and not forming bellows-like irregularities on the outer surface, the 31st
4 (Fig. 5 (a) ■) directly from the rough prototype core shown in bl.
) may be placed in a casting mold to heat the prototype core and melt the surface of the prototype core, but by including the process shown in the above example, the thermal efficiency of the subsequent steps can be improved. It is possible to significantly improve the

また、前記鋳造型21.21は、上記のようなベローズ
中子等のアンダーカットがあるものについては上記の実
施例のように割型でなければならないが、アンダーカッ
トがない形状の中子を鋳造する場合には割型タイプのも
のでなくてもよい、さらに、この鋳造型21.21内に
配設する原型中子の表面を溶融する加熱手段において、
通常の熱風、油浴等による加熱の場合の鋳造型には伝熱
性のよい金属等の材料を選択し、高周波誘導加熱の場合
の鋳造型は金属以外の材料も選択することができる。
In addition, the casting mold 21.21 must be a split mold as in the above embodiment for those with undercuts such as the bellows core as described above, but for cores with no undercuts. In the case of casting, it is not necessary to use a split mold type.Furthermore, in the heating means for melting the surface of the prototype core disposed in the casting mold 21.21,
Materials such as metals with good heat conductivity are selected for the casting mold in the case of heating by ordinary hot air, oil bath, etc., and materials other than metal can be selected for the casting mold in the case of high-frequency induction heating.

つぎに上記で得られたベローズ中子5の表面への電解メ
ッキの工程について説明する。
Next, the process of electrolytic plating on the surface of the bellows core 5 obtained above will be explained.

まず、前記ベローズ中子5を、第6図に示すような硫酸
ニッケル水溶液等のメッキ液6に浸漬し、前記ベローズ
中子5を陰極とし、ニッケル等の金属棒7を陽極として
前記陰極と陽極との間に電流を所定時間流し、ベローズ
中子5の表面にニッケル等の金属薄膜8を形成する。
First, the bellows core 5 is immersed in a plating solution 6 such as a nickel sulfate aqueous solution as shown in FIG. A current is passed between them for a predetermined period of time to form a metal thin film 8 of nickel or the like on the surface of the bellows core 5.

つぎに、上記のようにして金属薄膜8を表面に形成した
ベローズ中子5の全体を低融点合金の融点温度以上で金
属薄膜8の融点温度以下に加熱し、ベローズ中子5のみ
を溶融除去することによって金属薄膜8を残して金属ベ
ローズ9を得ることができる。
Next, the entire bellows core 5 with the metal thin film 8 formed on its surface as described above is heated to a temperature higher than the melting point temperature of the low melting point alloy and lower than the melting point temperature of the metal thin film 8, and only the bellows core 5 is melted and removed. By doing so, the metal bellows 9 can be obtained while leaving the metal thin film 8.

上記のようにして製造される金属ベローズ9の表面は、
前記ベローズ中子5の鏡面状に形成された表面がそのま
ま転写された状態となるので、その仕上がり表面が精密
な鏡面状に形成され、切削加工したアルミニウム製中子
では形成できない高品質の金属ベローズを得ることがで
きることとなる。
The surface of the metal bellows 9 manufactured as described above is
Since the mirror-like surface of the bellows core 5 is directly transferred, the finished surface is formed into a precise mirror-like surface, resulting in a high-quality metal bellows that cannot be formed with a machined aluminum core. You will be able to obtain

なお、上記の実施例における電解メッキの金属材料は、
前記低融点合金材料よりも融点が高く、かつ低融点合金
材料と合金を形成しないものであればその材質に制限は
ない。
In addition, the metal material for electrolytic plating in the above examples is as follows:
There are no restrictions on the material as long as it has a higher melting point than the low melting point alloy material and does not form an alloy with the low melting point alloy material.

また、上記の実施例における電解メッキはこれに限定さ
れず、化学メッキであってもよく、両者を併用するもの
であって・もよい。
Further, the electrolytic plating in the above embodiments is not limited to this, and may be chemical plating or a combination of both.

〔発明の効果] 本発明は上記のように構成したので、低融点合金材料を
融点より5〜70 ’C低い温度に加熱することにより
、常温に対して大幅に小さな圧縮強さで、固体のままの
状態で低融点合金材料を所望の中子形状にほぼ成形加工
でき、さらに最終的にその原型中子の少なくとも表面を
、鋳造型の鋳造空所内部で溶融させるので、前記鋳造型
の鋳造空所内部を鏡面状に仕上げておけばそのまま中子
表面に転写されて表面が鏡面仕上げの高品質の中子を確
実に得ることができるとともに、溶融した液状の金属を
扱わないので作業の安全性が高く、また、そのベローズ
中子の表面に金属メッキを施した後、全体を所定の温度
に加熱することで中子のみを簡単に溶融除去でき、表面
が鏡面仕上げの高品質の金属ベローズが簡便に効率的に
製造できるなどのすぐれた効果を有するものである。
[Effects of the Invention] Since the present invention is configured as described above, by heating the low melting point alloy material to a temperature 5 to 70'C lower than the melting point, it is possible to form a solid with a compressive strength significantly lower than that at room temperature. The low melting point alloy material can be formed into almost the desired core shape in its original state, and furthermore, at least the surface of the original core is finally melted inside the casting cavity of the casting mold, so that the casting of the casting mold can be performed easily. If the inside of the cavity is finished to a mirror finish, the mirror finish will be transferred directly to the core surface, ensuring a high quality core with a mirror finish, and will also improve work safety since molten liquid metal is not handled. In addition, after the surface of the bellows core is plated with metal, only the core can be easily melted and removed by heating the entire body to a predetermined temperature, making it a high-quality metal bellows with a mirror-finished surface. It has excellent effects such as being able to be easily and efficiently manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる低融点合金材料の圧縮強さと温
度依存性との関係を示す図、第2図(a) (bl (
C)、第3図(a) (b) (C)、第4図(a) 
(b) (C)および第5図(a)さ)は本発明による
中子の製造方法の工程を説明する図、第6図は中子の表
面に電解メッキする工程図、第7図は第6図で得られた
表面に金属薄膜が形成された中子の断面図、第8図は第
7図のものから中子のみを除去した電着ベローズの斜視
図である。 1・・・・・・低融点合金材料 2・・・・・・第1の原型中子 3・・・・・・第2の原型中子 3a、4a・・・・・・凹部 4・・・・・・第3の原型中子 5・・・・・・ベローズ中子 6・・・・・・メッキ液 7・・・・・・金属棒 8・・・・・・金属薄膜 9・・・・・・電着ベローズ 11.14・・・・・・上型 12.15・・・・・・下型 13.16.17・・・・・・成形空所18・・・・・
・成形型 9・・・・・・ラム 0・・・・・・治具 ・・・・・・鋳造型 2・・・・・・鋳造空所 笛2 図 (b) (C) 第3図 (b) 3事2りを監ヤぎ (c) 第5図 (b) 第4図 (b) (C) 第61 第7図 第8図 ’u′!%べ°0−ス
Figure 1 is a diagram showing the relationship between the compressive strength and temperature dependence of the low melting point alloy material used in the present invention, and Figure 2 (a) (bl (
C), Figure 3 (a) (b) (C), Figure 4 (a)
(b) (C) and Fig. 5 (a) are diagrams explaining the steps of the core manufacturing method according to the present invention, Fig. 6 is a process diagram of electrolytic plating on the surface of the core, and Fig. 7 is FIG. 6 is a sectional view of the core obtained on the surface with a metal thin film formed thereon, and FIG. 8 is a perspective view of the electrodeposited bellows obtained by removing only the core from the one in FIG. 1...Low melting point alloy material 2...First prototype core 3...Second prototype core 3a, 4a...Concavity 4... ...Third prototype core 5 ... Bellows core 6 ... Plating solution 7 ... Metal rod 8 ... Metal thin film 9 ... ... Electroplated bellows 11.14 ... Upper mold 12.15 ... Lower mold 13.16.17 ... Molding cavity 18 ...
・Forming mold 9...Ram 0...Jig...Casting mold 2...Casting cavity flute 2 Figure (b) (C) Figure 3 (b) Supervise 3 things (c) Figure 5 (b) Figure 4 (b) (C) Figure 61 Figure 7 Figure 8 'u'! % base

Claims (1)

【特許請求の範囲】 (1)低融点合金材料(1)を、その融点温度より5〜
70℃低い温度に加熱した状態で圧縮および/または鍛
造し、原型中子(4)を成形した後、この原型中子(4
)を中子用鋳造型(21)、(21)の鋳造空所(22
)内に配設し、この鋳造空所(22)内に配設した原型
中子(4)を前記低融点合金の融点温度以上に加熱して
、原型中子(4)の少なくとも表面を溶融した後、前記
中子用鋳造型 (21)、(21)を前記低融点合金の融点温度以下に
冷却し、中子用鋳造型(21)、(21)から離型する
ことを特徴とする中子の製造方法。 (2)低融点合金材料(1)を、その融点温度より5〜
70℃低い温度に加熱した状態で圧縮および/または鍛
造し、原型中子(4)を成形した後、この原型中子(4
)をベローズ形状の鋳造空所(22)を有する割型タイ
プの中子用鋳造型(21)、(21)の鋳造空所(22
)内に配設し、この鋳造空所(22)内に配設した原型
中子(4)を前記低融点合金の融点温度以上に加熱して
、原型中子(4)の少なくとも表面を溶融した後、前記
中子用鋳造型(21)、(21)を前記低融点合金の融
点温度以下に冷却し、中子用鋳造型 (21)、(21)から離型してベローズ中子(5)を
得て、このベローズ中子(5)に化学メッキ又は電解メ
ッキを施してベローズ中子(5)の表面に金属薄膜(8
)を形成し、次いで表面に金属薄膜(8)が形成された
ベローズ中子(5)を低融点合金の融点温度以上で金属
薄膜(8)の融点温度以下に加熱し、ベローズ中子(5
)のみを溶融除去することを特徴とする電着ベローズの
製造方法。
[Scope of Claims] (1) The low melting point alloy material (1) is
After compressing and/or forging at a temperature lower than 70°C to form a prototype core (4), the prototype core (4) is
) for the core casting mold (21), and the casting cavity (22) of (21).
), and the prototype core (4) disposed in the casting cavity (22) is heated to a temperature higher than the melting point temperature of the low melting point alloy to melt at least the surface of the prototype core (4). After that, the core casting molds (21), (21) are cooled to below the melting point temperature of the low melting point alloy, and the molds are released from the core casting molds (21), (21). Core manufacturing method. (2) The low melting point alloy material (1) is
After compressing and/or forging at a temperature lower than 70°C to form a prototype core (4), the prototype core (4) is
) is a split-type core casting mold (21) having a bellows-shaped casting cavity (22), and the casting cavity (22) of (21) is
), and the prototype core (4) disposed in the casting cavity (22) is heated to a temperature higher than the melting point temperature of the low melting point alloy to melt at least the surface of the prototype core (4). After that, the core casting molds (21), (21) are cooled to below the melting point temperature of the low melting point alloy, and released from the core casting molds (21), (21) to form a bellows core ( 5) is obtained, and this bellows core (5) is subjected to chemical plating or electrolytic plating to form a metal thin film (8) on the surface of the bellows core (5).
), and then the bellows core (5) with the metal thin film (8) formed on the surface is heated above the melting point temperature of the low melting point alloy to below the melting point temperature of the metal thin film (8), to form the bellows core (5).
) is melted and removed.
JP30380688A 1988-11-30 1988-11-30 Production of core and electrodeposition bellows using this core Pending JPH02151342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30380688A JPH02151342A (en) 1988-11-30 1988-11-30 Production of core and electrodeposition bellows using this core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30380688A JPH02151342A (en) 1988-11-30 1988-11-30 Production of core and electrodeposition bellows using this core

Publications (1)

Publication Number Publication Date
JPH02151342A true JPH02151342A (en) 1990-06-11

Family

ID=17925527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30380688A Pending JPH02151342A (en) 1988-11-30 1988-11-30 Production of core and electrodeposition bellows using this core

Country Status (1)

Country Link
JP (1) JPH02151342A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141971A (en) * 1974-10-07 1976-04-08 Suwa Seikosha Kk mis gatahandotaisochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141971A (en) * 1974-10-07 1976-04-08 Suwa Seikosha Kk mis gatahandotaisochi

Similar Documents

Publication Publication Date Title
JPS6356344A (en) Method and device for manufacturing molded metallic part
US8656751B2 (en) Apparatus and method for manufacturing implant using amorphous alloy
JP2007118040A (en) Forging-formed article, producing method therefor and forging-formed apparatus, and producing system for forging article and preliminary formed article
CN107186139A (en) The H profile steel manufacture method of nuclear fusion stack magnet support
JPH04502731A (en) Method for manufacturing thixotropic materials
CN107739877B (en) One Albatra metal roller set and preparation method thereof
SK279465B6 (en) Method for production of a compact vehicle wheel made of light metal
JP2018202479A (en) Diploid cast forging method for solid-liquid transition-controlled aluminum alloy
CN102861904A (en) Special molding machining method of positioning support body
KR20060021965A (en) Method for manufacturing aluminium lower arm of vehicle
JPH02151342A (en) Production of core and electrodeposition bellows using this core
CN107598129A (en) A kind of magnesium alloy seamless closure frame and its semi-solid forming method
CN109622866A (en) The manufacturing process of large-scale GH4169 alloy forged piece
WO2008111723A1 (en) Ball joint integrated aluminum control arm for automobile and method of fabricating the same
JP2012525497A (en) Manufacturing method of titanium extension parts
CN207255200U (en) A kind of magnesium alloy seamless closure frame
CN112122377A (en) Semi-solid forming method for copper-clad aluminum composite material
CN106834638B (en) A kind of manufacturing method of steel brake drum
JPS58163541A (en) Forging method of part having long fin
JPH05123809A (en) Working method for precise aluminum product having hole
CN218310641U (en) Die for aluminum alloy paddle shell forging
RU2262408C1 (en) Hollow article hot forging method
CN1400414A (en) Flange with neck
CN1683575A (en) Process for preparing semisolid non-dendritic zinc base alloy
JPH05155633A (en) Vessel forming mold