JPH02151279A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH02151279A
JPH02151279A JP63301320A JP30132088A JPH02151279A JP H02151279 A JPH02151279 A JP H02151279A JP 63301320 A JP63301320 A JP 63301320A JP 30132088 A JP30132088 A JP 30132088A JP H02151279 A JPH02151279 A JP H02151279A
Authority
JP
Japan
Prior art keywords
piezoelectric element
lever arm
lever
tip
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63301320A
Other languages
Japanese (ja)
Inventor
Shigeo Kuwabara
重雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP63301320A priority Critical patent/JPH02151279A/en
Publication of JPH02151279A publication Critical patent/JPH02151279A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an efficient rotary drive with high capacity at a high speed by disposing a telescopic piezoelectric element at a lever ratio by a lever arm, and symmetrically arranging a plurality of drive sources in which movable strokes are increased. CONSTITUTION:A lever arm 3 is brought into contact with the movable end of a piezoelectric element 4, a predetermined prepressure is applied to integrally mount the other ends of the lever arm 3, the piezoelectric element 4 at mounting fittings 5 by bolts 6, 7. A rotary drum 1 is pressed by the lateral deflection vibration of the lever are 3, and so disposed at a predetermined angle theta and a gap delta as to unidirectionally rotate by a frictional force. The movable stroke of the telescopic piezoelectric element 4 is several mum, but amplified to hundreds of mum by the lever ratio of the lever arm 3 and resonance effect, and converted to a rotatable drive. One piezoelectric element 4 has, for example, 20mmu of diameter, power source E=200V, f=40kHz is applied, approx. 100mum of movable stroke and approx. 20kg of maximum force are obtained. A plurality of drive units of the piezoelectric element 4 are disposed on the periphery of the drum 1 to obtain a rotary force of large capacity at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波を利用した超音波モータの躯動原理に係
り、伸縮状に可動する圧電素子を駆動源として1個の回
転ドラムの円周上に左右両方向の回転が任意に得られる
ように伸縮形圧電素子をテコアームによりテコ比をとっ
て配し、可動ストロークを拡大した駆動源を対称的に複
数配設し、高速、高容量で効率のよい回転駆動が得られ
るようにした超音波モータに関するものである・〔従来
の技術〕 従来の圧電素子を用いた超音波モータの一例としては、
第4図に示される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the principle of rotation of an ultrasonic motor that uses ultrasonic waves, and uses a piezoelectric element that moves in an elastic manner as a drive source to drive the circular motion of a single rotating drum. Expandable piezoelectric elements are arranged around the circumference with a lever arm to provide a lever ratio so that rotation in both left and right directions can be obtained arbitrarily, and multiple drive sources with expanded movable strokes are arranged symmetrically to achieve high speed and high capacity. This relates to an ultrasonic motor that can provide efficient rotational drive. [Prior art] An example of an ultrasonic motor using a conventional piezoelectric element is:
It is shown in FIG.

第4図は従来の超音波モータの一例を示す斜視図であり
、円輪状にした圧電体14の上部に振動板15が固着さ
れ、これらがケース9に取着されている。また、振動板
15の円板表面に対向せしめて、回転円板8の円輪板面
を密接させ、この面を強く押すように回転円板8の側面
より皿ばね13により押接し、これを固定する抑え金1
2など一体的に翰10に回転可能なよう軸着し、さらに
圧電体14に電線11を接続して超音波モータを一体構
築している。
FIG. 4 is a perspective view showing an example of a conventional ultrasonic motor, in which a diaphragm 15 is fixed to the top of a ring-shaped piezoelectric body 14, and these are attached to a case 9. Further, the circular plate surface of the rotating disk 8 is brought into close contact with the disk surface of the diaphragm 15, and the disc spring 13 is pressed against the side surface of the rotating disk 8 so as to strongly press this surface. Fixing pin 1
2 and the like are integrally rotatably attached to the fence 10, and electric wires 11 are further connected to the piezoelectric body 14 to integrally construct an ultrasonic motor.

かようなごとく構成された超音波モータは、電線11よ
り直流を源がパルス的に供給されると、圧電体14は円
1輪状に複数的に分割され、交互に極性動作が隣り合わ
せになっているので、個個の円輪状の素子部位では厚み
方向に伸縮する。この表面に振動板15が固着されてい
るので一体的に変位し、この伸縮する振動数と振動板1
5の円輪部の固有振劾数が等しくなっているので、伸縮
の振動は増幅されて振動板15の表面が横振動、すなわ
ち回転円板8の回転方向の振動により波打ち的に厚み方
向に変位を伴って、電源の印加に相応して円輪の板面上
に頭次波が進行して回転移動する。
In the ultrasonic motor configured as described above, when a DC source is supplied in pulses from the electric wire 11, the piezoelectric body 14 is divided into a plurality of circular rings, and the polarity operation is alternately arranged next to each other. Therefore, each ring-shaped element portion expands and contracts in the thickness direction. Since the diaphragm 15 is fixed to this surface, it is displaced integrally, and this expanding and contracting frequency and the diaphragm 1
Since the natural vibration frequencies of the circular ring portions 5 are equal, the expansion and contraction vibrations are amplified, and the surface of the diaphragm 15 becomes wavy in the thickness direction due to transverse vibrations, that is, vibrations in the rotational direction of the rotating disk 8. Accompanied by the displacement, a head wave propagates on the plate surface of the circular ring in response to the application of power and rotates.

この表面には回転円板8が押接されているので、この押
接部の摩擦作用すなわち振動板15の横振動作用に対す
る回転円板8の反作用により波の進行方向とは逆の方向
へ回転円板8は回転する。
Since the rotating disk 8 is pressed against this surface, the rotating disk 8 rotates in a direction opposite to the direction of wave propagation due to the frictional action of this pressed portion, that is, the reaction of the rotating disk 8 to the transverse vibration action of the diaphragm 15. The disk 8 rotates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述した構成においては振動板15の表面波の
速度は、円輪の接線に対し幅方向(図中Wで示す)で一
定速に移動する。しかるに、軸10に対する変位角度θ
と、その回転半径Rと、波の移動距離Sの間には、 S w R# の関係が必要であるが、振動板15の幅Wが線でない限
り回転半径Rは幅Wの分、上下限で差異があり、波の移
動一定とすれば、変位角度0は常に異った値となり、振
動板15が剛体である限り、変位角度θが異った運動は
許されず幅W上でスリップを伴って回転円板8は運動す
ることになる。
However, in the above-described configuration, the speed of the surface wave of the diaphragm 15 moves at a constant speed in the width direction (indicated by W in the figure) with respect to the tangent to the circular ring. However, the displacement angle θ with respect to the axis 10
, the rotation radius R, and the moving distance S of the wave must have the relationship S w R#, but unless the width W of the diaphragm 15 is a line, the rotation radius R is increased by the width W. If there is a difference at the lower limit and the movement of the wave is constant, the displacement angle 0 will always be a different value, and as long as the diaphragm 15 is a rigid body, movement with a different displacement angle θ is not allowed and slips on the width W. The rotating disk 8 moves accordingly.

このことにより、回転トルクが有効に得られなかったり
、圧電体14側の力を増しても、それを受ける回転円板
8側の幅Woを増すと、前述のようにスリ、プが多くな
り、発熱などを伴い、幅Woを小さくせざるを得なくな
る。もちろん摩擦面積が小さくとも押接力を大きくすれ
ば摩擦力は増加するが、面圧が高くなると板面材の摩擦
量が増加するので実用には供されず、結果的に小さな容
量しか得られず、しかも効率が悪くなる。また半径を大
きくすれば、トルクは大きくなるが、現在の技術では大
きくすると、精度、安定性などの問題で余り大きく出来
ない。すなわち結果的に小容量のものしか裏作されず、
大きな問題となっている。
As a result, rotational torque cannot be obtained effectively, or even if the force on the piezoelectric body 14 side is increased, if the width Wo on the rotating disk 8 side that receives the force is increased, slips and drops will increase as described above. , it is necessary to reduce the width Wo due to heat generation and the like. Of course, even if the friction area is small, increasing the pressing force will increase the friction force, but as the surface pressure increases, the amount of friction on the plate material will increase, so this is not practical, and as a result, only a small capacity can be obtained. , and the efficiency becomes worse. Also, if the radius is increased, the torque will be increased, but with the current technology, it is not possible to increase the torque too much due to problems such as accuracy and stability. In other words, as a result, only small quantities of products are produced,
This has become a big problem.

現在市販されている一般的な進行波型のものとしては、
容量4W、トルクT=4kg−cmと極めて小さなもの
が殆んどである。
The common traveling wave types currently on the market are:
Most of them are extremely small, with a capacity of 4 W and a torque T of 4 kg-cm.

本発明は上述した点に鑑みて創案されたもので、その目
的とするところは、高効率で高速、大容量の超音波モー
タを提案することにある。
The present invention was devised in view of the above-mentioned points, and its purpose is to propose a highly efficient, high-speed, and large-capacity ultrasonic motor.

〔問題点を解決するための手段〕[Means for solving problems]

つまり、その目的を達成するための手段は、伸縮形の圧
電素子の可動先端にテコ作用と共振作用を伴わせもった
テコアームを配設し、圧電素子の可動ストロークを増幅
させ、これを駆動源として回転ドラムの円周上に所要の
角度θと隙間δを持たせて回転ドラムが一方向に回転す
るように配役し、これらの駆動源が回転ドラムを左右任
意に回転させるように対称的に複数カ所配して一体構築
したものである。
In other words, the means to achieve this purpose is to provide a lever arm with lever action and resonance action at the movable tip of a telescoping piezoelectric element, amplify the movable stroke of the piezoelectric element, and use this as a driving source. The rotating drum is arranged so that it rotates in one direction with a required angle θ and gap δ on the circumference of the rotating drum, and these drive sources are arranged symmetrically so that the rotating drum can be rotated arbitrarily left and right. It was constructed by installing multiple locations.

一般に、伸縮形の圧電素子は高周波(数十KHz)で可
動力が可能で駆動力も大きい(数百kgf)が、その可
動ストロークは数μmと極めて小さい。この小さなスト
ロークで回転ドラムの円周上を押圧しても各部品の製作
誤差・所要の隙間などより決まる最少ストロークに満た
ないため、そのままでは使用不可能である。そこで、本
発明では圧電素子の可動先端にテコの作用をするテコア
ームを配し、その先端の可動ストロークを長さ比効果に
より増幅し、伴せて圧電素子の連動周波数と共振するよ
うにしているので、更正こ増振幅され、大きなストロー
クと高周波数、高押圧力がテコアームの先端より回転ド
ラムの円周上を押圧して回転伝達される。このため極め
て高速、大容量、高効率に回転駆動がなされる。
In general, a telescopic piezoelectric element is capable of movable force at a high frequency (several tens of KHz) and has a large driving force (several hundred kgf), but its movable stroke is extremely small, such as a few μm. Even if the circumference of the rotating drum is pressed with this small stroke, it cannot be used as is because it does not reach the minimum stroke determined by manufacturing errors and required gaps of each part. Therefore, in the present invention, a lever arm that acts as a lever is arranged at the movable tip of the piezoelectric element, and the movable stroke of the tip is amplified by the length ratio effect, thereby resonating with the interlocking frequency of the piezoelectric element. Therefore, the amplitude of the correction is increased, and a large stroke, high frequency, and high pressing force are transmitted from the tip of the lever arm to the circumference of the rotating drum. For this reason, rotational drive is performed at extremely high speed, large capacity, and high efficiency.

〔作 用〕[For production]

その作用は次に述べる一実施例において併せて詳述する
Its operation will be explained in detail in one embodiment described below.

以下、本発明のものの一実施例を図面に基づいて説明す
ると共に、併せて作用も詳述する。
Hereinafter, one embodiment of the present invention will be explained based on the drawings, and the operation will also be explained in detail.

〔実施 例〕〔Example〕

第1図は本発明の超音波モータの一実施例を示す全体構
成概念図、第2図は第1図の側面概念図、第3図は第1
図のア部拡大図である。
FIG. 1 is a conceptual diagram of the overall configuration showing one embodiment of the ultrasonic motor of the present invention, FIG. 2 is a conceptual side view of FIG. 1, and FIG.
It is an enlarged view of part A of the figure.

第1図〜第3図において、伸縮形の圧電素子4を駆動源
にする超音波モータにおいて、圧電素子4の可動先端に
テコアーム3を接設し、この部分に所要の予圧力を付与
し、このテコアーム3及び圧電素子4の他端を取付金具
5にボルト6.7により取着一体化し、テコアーム3の
固定端を起点として圧電素子4の接設位置とテコアーム
3の先端位置が所要倍数のテコ比(第1,3図中L/i
)となるようにし、更に圧電素子4の固有振劾数とテコ
アーム3の横たわみ固有振劾数が同数になるようにして
その先端を回転ドラム1の外周部位・または内周部位に
配し、テコアーム3の横たわみ振動により回転ドラム1
が押圧され摩擦力により一方向へ回転するように所要の
角度θと隙間δをもたせて配設し、角度0を回転ドラム
が左回転と右回転が一軸上で得られるように軸2を中心
として対称位置に互いに逆向きに配し、更に同方向の角
度θを対向的に複数カ所配設し、回転ドラム1が左右任
意の回転が得られるように構成し、軸2はベアリングな
どで支持し、これらを一体化して超音波モータを構築し
たものである。
In FIGS. 1 to 3, in an ultrasonic motor using a retractable piezoelectric element 4 as a driving source, a lever arm 3 is attached to the movable tip of the piezoelectric element 4, and a required preload force is applied to this part. The other ends of the lever arm 3 and the piezoelectric element 4 are integrally attached to the mounting bracket 5 with bolts 6.7, and the connecting position of the piezoelectric element 4 and the tip position of the lever arm 3 are set by a required multiple, starting from the fixed end of the lever arm 3. Leverage ratio (L/i in Figures 1 and 3)
), and further arrange the tip of the piezoelectric element 4 on the outer circumference or the inner circumference of the rotating drum 1 so that the natural vibration number of the piezoelectric element 4 and the horizontal natural vibration number of the lever arm 3 are the same number, Rotating drum 1 due to horizontal vibration of lever arm 3
The rotating drum is placed with a required angle θ and gap δ so that it is pressed and rotates in one direction due to frictional force, and the rotating drum is centered around shaft 2 so that the rotating drum can rotate to the left and right on one axis at an angle of 0. The rotary drums 1 are arranged in opposite directions in symmetrical positions, and are arranged at multiple locations facing each other at the same angle θ, so that the rotary drum 1 can rotate freely from side to side, and the shaft 2 is supported by a bearing or the like. However, these are integrated to construct an ultrasonic motor.

このように構築された超音波モータにおいて、例えば右
回転駆動を得る場合、第1図に示す′gL源左用はOF
Fにし、電源有用の回路に直流電圧をパルス状に印加す
ると、図に示す右回転部位の圧電素子4が伸び、(IE
源の+、−の極を逆にすれば縮む)この可動先端に接設
しているテコアーム3は横たわみを生じその先端はテコ
比(L/A)により所要数倍に拡大する。更にこのテコ
アーム3の固有振劾数は圧電素子4の固有振劾数と同数
になっており、′1源のパルス状のON、OFFの駆動
サイクルをこの固有振劾数と一致させて印加するので、
圧電素子4の共振増幅とテコアーム3の共振効果により
前記のテコ比(L/1)とあいまってテコアームの先端
は極めて大きく振動する。このことによって、回転ドラ
ム1に若干の隙間δを弛 もたせて配設されているこの始端は、回転ドラム1の周
上を押圧し、摩擦力により回転ドラム1を回転させるト
ルクが生じる。もちろんテコアーム3の返りの動作では
、角度θを適宜に配設することにより回転ドラムlより
離れ、この間回転系の慣性モーメントにより前記抑圧方
向に回転ドラム1は回転し、次の周期の抑圧を受ける。
In the ultrasonic motor constructed in this way, when obtaining clockwise rotational drive, for example, the 'gL source for left shown in Fig. 1 is OF
When the setting is set to
If the + and - poles of the source are reversed, the lever arm 3 will contract.) The lever arm 3 attached to this movable tip causes a lateral deflection, and the tip expands by a required number of times depending on the lever ratio (L/A). Furthermore, the natural vibration number of this lever arm 3 is the same as the natural vibration number of the piezoelectric element 4, and the pulse-like ON/OFF drive cycle of the '1 source is applied in accordance with this natural vibration number. So,
Due to the resonance amplification of the piezoelectric element 4 and the resonance effect of the lever arm 3, combined with the aforementioned lever ratio (L/1), the tip of the lever arm vibrates extremely greatly. As a result, this starting end, which is disposed on the rotating drum 1 with a slight gap δ, presses against the circumference of the rotating drum 1, and a torque that rotates the rotating drum 1 is generated due to frictional force. Of course, in the return movement of the lever arm 3, by setting the angle θ appropriately, it moves away from the rotating drum 1, and during this time, the rotating drum 1 rotates in the suppression direction due to the moment of inertia of the rotating system, and is subjected to the next period of suppression. .

この抑圧周期は前記のとおり圧14素子4の固有振劾数
に合致させて駆動し、一般には2〜5万Hz程度と極め
で高いので回転ドラム1は円滑な回転を連続的に行う。
As described above, this suppression period is driven to match the natural vibration frequency of the pressure 14 element 4, and is generally extremely high, about 20,000 to 50,000 Hz, so that the rotary drum 1 continuously rotates smoothly.

ここで伸縮形の圧電素子4の可動ストロークは数μmで
あるが、テコアーム3のテコ比作用と共振効果により数
百μmに増幅されて回転駆動に変換される。例えば、本
発明の実験機では一個当りの圧電素子4を直径20mμ
ぐらいのものとし、電源g=zoov、 f=40KH
zヲ印加L、f :I7− ム3の先端で可動ストロー
ク約100μm、最大力約20kgを得ている。これら
の圧電素子4の駆動部を回転ドラム1の周上に複数的に
配設しているので、高速で大容量の回転力が得られる。
Here, the movable stroke of the telescopic piezoelectric element 4 is several μm, but it is amplified to several hundred μm due to the lever ratio action of the lever arm 3 and the resonance effect, and is converted into rotational drive. For example, in the experimental machine of the present invention, each piezoelectric element 4 has a diameter of 20 mμ.
Power source g=zoov, f=40KH
zwo application L, f: I7- At the tip of arm 3, a movable stroke of about 100 μm and a maximum force of about 20 kg are obtained. Since a plurality of drive units for these piezoelectric elements 4 are arranged around the circumference of the rotary drum 1, a large amount of rotational force can be obtained at high speed.

またテコアーム3は高疲労強度を維持することとその先
端は耐摩耗性に優れていることが必要なので、本発明の
実験では振動たわみ部は二、ケルクロム鋼の強靭なもの
とし、その先端にセラミックスなどの耐摩耗性の高い材
料を使用し、これに対応する回転ドラム1の周上にはT
iN(チタンナイトライド)などの硬質で耐摩耗性のよ
い表面処理を旋し、実用的な結果を得ている。
In addition, the lever arm 3 needs to maintain high fatigue strength and its tip must have excellent wear resistance, so in the experiments of the present invention, the vibration deflection part was made of strong Kerchrome steel, and the tip was made of ceramic. A material with high wear resistance such as
We have achieved practical results by applying hard and wear-resistant surface treatments such as iN (titanium nitride).

次に、左回転する場合は有用電源はOFFにして、前記
同様左回転用電源にパルス状の高周波1圧を印加すれば
左回転が得られる。また、回転ドラム1にブレーキトル
クを発生させるためには左右同時にパルス状ではない連
続的な°4圧を印加することにより、テコアーム3の先
端部位は回転ドラム1の外周面を押圧してブレーキング
作用が働く。このブレーキトルクは1圧の強弱により任
意に調整されるので、精密な位置決め、ロボットの駆動
などには印加する周波数と電圧形態の調整などにより最
適な駆動源として極めて利便性が高い。
Next, when rotating to the left, turn off the useful power source and apply one pulsed high frequency voltage to the power source for counterclockwise rotation, as described above, to obtain counterclockwise rotation. In addition, in order to generate braking torque on the rotating drum 1, a continuous non-pulse pressure of 4 degrees is applied to the left and right sides at the same time, so that the tip of the lever arm 3 presses the outer peripheral surface of the rotating drum 1 and performs braking. The action works. Since this brake torque can be arbitrarily adjusted by the strength of one pressure, it is extremely convenient as an optimal drive source for precise positioning, robot drive, etc. by adjusting the applied frequency and voltage form.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、従来のように駆動
摩擦面の幅Wによる半径差に起因するすべり摩擦運動が
なく、回転ドラム1の円周表面に線状に加力されるので
駆動効率が高く長寿命が得られる。また回転ドラムlの
径および幅を増し、これに対応させて伸縮形の圧電素子
4とテコアーム3の数、駆動力を増せば無理なく大容量
が得られ、更に従来の圧電素子にくらべても高周波数な
ので高速で、また駆動力が大きいので高容量のものが得
られる。また、伸縮形の圧電素子4の代りに積層形の圧
電素子を使用すればより大きな可動ストロークが得られ
、その機能は全く同じであるが、枚数が増すので固有振
劾数は下がり、経済的にも高くなり、この点でも本発明
のものは改良されている。
As explained above, according to the present invention, there is no sliding friction movement caused by the radius difference due to the width W of the drive friction surface as in the conventional case, and a linear force is applied to the circumferential surface of the rotary drum 1, resulting in drive efficiency. High durability and long life can be obtained. Furthermore, by increasing the diameter and width of the rotating drum l, and correspondingly increasing the number and driving force of the telescoping piezoelectric elements 4 and lever arms 3, a large capacity can be easily obtained, and even more so than conventional piezoelectric elements. Since the frequency is high, the speed is high, and the driving force is large, so a high capacity can be obtained. Furthermore, if a laminated piezoelectric element is used instead of the telescoping type piezoelectric element 4, a larger movable stroke can be obtained, and the function is exactly the same, but since the number of piezoelectric elements increases, the natural vibration number decreases, making it more economical. The present invention is also improved in this respect.

更に、従来のものはせいぜい容t4 W 、 1100
rp程度が実用限界でありたが、本発明では極めて大容
it(例えば7.5KW)で高速回転(例えば1010
0rpまで実用的に可能である。また従来例では回転円
板8に摩擦力を得るために皿ばね13によりスラスト力
を付与しているので、この力はベアリング。
Furthermore, the conventional one has a capacity of t4W, 1100 at most.
rp was the practical limit, but in the present invention, it is extremely large capacity (for example, 7.5KW) and high speed rotation (for example, 1010KW).
It is practically possible up to 0rp. Furthermore, in the conventional example, a thrust force is applied to the rotating disc 8 by a disc spring 13 in order to obtain a frictional force, so this force is applied to a bearing.

軸10などに付加されて寿命、調整9強度など相応して
不利になっていたが、本発明では伸縮形の圧電素子4と
共振体3の一体化した駆動源を対称的に配し、回転ドラ
ムlの内力として相互に打消すようにしたので、この種
の力は軸2に付加されず極めて経済的で長寿命が得られ
る・ すなわち本発明の超音波モータは、高容量で高効率でし
かも従来の電気モータに比べ極小の慣性モーメントで同
等の容量が得られるので、省力機器、ロボットなど極め
て多用に実用的に供される有用なものである。
However, in the present invention, the driving source, which is an integral part of the extensible piezoelectric element 4 and the resonator 3, is symmetrically arranged, and the rotation Since the internal forces of the drum 1 cancel each other out, this kind of force is not applied to the shaft 2, resulting in extremely economical and long life.In other words, the ultrasonic motor of the present invention has a high capacity and high efficiency. Furthermore, since the same capacity can be obtained with an extremely small moment of inertia compared to a conventional electric motor, it is useful for a wide variety of practical uses such as labor-saving equipment and robots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超音波モータの構造体の一実施例を示
す要部正面概念図、第2図は第1図の側面概念図、第3
図は第1図中のア部拡大図、第4図は従来の超音波モー
タの一例の要部構造図である0 1・・・・・・回転ドラム、2・・・・・・軸、3・・
・・・・テコアーム、4・・・・・・圧電素子、5・・
・・・・取付金具、6,7・・・・・・ボルト、8・・
・・・・回転円板、9・・・・・・ケース、10・・・
・・・軸、11・・・・・・電線、12・・・・・・抑
え金、13・・・・・・皿ばね、14・・・・・・圧電
体、15・・・・・・振動板。
FIG. 1 is a conceptual front view of essential parts showing one embodiment of the structure of an ultrasonic motor according to the present invention, FIG. 2 is a conceptual side view of FIG. 1, and FIG.
The figure is an enlarged view of the part A in Fig. 1, and Fig. 4 is a structural diagram of the main parts of an example of a conventional ultrasonic motor. 3...
... Lever arm, 4 ... Piezoelectric element, 5 ...
...Mounting bracket, 6,7...Bolt, 8...
...Rotating disk, 9...Case, 10...
...shaft, 11...electric wire, 12...presser, 13...disc spring, 14...piezoelectric body, 15...・Vibration plate.

Claims (1)

【特許請求の範囲】[Claims]  伸縮形の圧電素子を駆動源にする超音波モータにおい
て、前記圧電素子の可動先端にテコアームを接設し、圧
電素子の接設位置と前記テコアームとの先端位置が所要
倍数のテコ比となるようテコアームの一端を固定して固
定端を起点とし、更に圧電素子の固有振劾数とテコアー
ムの横たわみ固有振動数を同数とし、その先端を回転ド
ラムの外周部位または内周部位に、テコアームの横たわ
み振動により回転ドラムが押圧され、一方向へ回転する
ように所要の角度と隙間を持たせて配設し、該角度を、
回転ドラムが左回転と右回転が一軸上で得られるように
軸を中心として対称位置に互いに逆向きにすると共に、
同方向の角度を対向的に複数カ所配設して回転ドラムが
左右任意の方向の回転が得られるように一体構成し、圧
電素子の伸縮振動をテコアームで受け、その先端をテコ
及び共振効果により可動ストロークを大きく振動させ、
これにより回転を得るようにしたことを特徴とする超音
波モータ。
In an ultrasonic motor using a telescoping piezoelectric element as a driving source, a lever arm is connected to the movable tip of the piezoelectric element, so that the connecting position of the piezoelectric element and the tip position of the lever arm have a lever ratio of a required multiple. Fix one end of the lever arm, use the fixed end as the starting point, set the natural vibration frequency of the piezoelectric element and the horizontal natural frequency of the lever arm to be the same number, and place the tip of the lever arm on the outer or inner circumference of the rotating drum, on the side of the lever arm. The rotating drum is pressed by the flexural vibration and is arranged with a required angle and gap so that it rotates in one direction, and the angle is changed to
The rotating drums are symmetrically positioned around the axis so that left rotation and right rotation are obtained on one axis, and the rotating drums are oriented in opposite directions to each other.
The rotary drum is integrally configured so that it can rotate in any left or right direction by arranging the angles in the same direction at multiple locations, and receives the expansion and contraction vibration of the piezoelectric element with a lever arm, and the tip of the drum is provided with lever and resonance effects. Vibrate the movable stroke greatly,
An ultrasonic motor characterized in that rotation is obtained by this.
JP63301320A 1988-11-29 1988-11-29 Ultrasonic motor Pending JPH02151279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63301320A JPH02151279A (en) 1988-11-29 1988-11-29 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301320A JPH02151279A (en) 1988-11-29 1988-11-29 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH02151279A true JPH02151279A (en) 1990-06-11

Family

ID=17895440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301320A Pending JPH02151279A (en) 1988-11-29 1988-11-29 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH02151279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125348A (en) * 2006-11-13 2008-05-29 Eta Sa Manufacture Horlogere Suisse Mems (micro electro mechanical system) micromotor and clock equipped therwith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125348A (en) * 2006-11-13 2008-05-29 Eta Sa Manufacture Horlogere Suisse Mems (micro electro mechanical system) micromotor and clock equipped therwith

Similar Documents

Publication Publication Date Title
JP2935504B2 (en) motor
US4947076A (en) Piezo electric motor
EP0401762A2 (en) Vibration driven motor
JPS5937672B2 (en) Rotary drive device using ultrasonic vibration
JPH0374183A (en) Ultrasonic motor
JPH02151279A (en) Ultrasonic motor
JPH1066362A (en) Oscillatory-wave motor equipped with piezoelectric pressing member
JPH0226280A (en) Ultrasonic motor
JPH0241672A (en) Ultrasonic motor
JPH02142371A (en) Ultrasonic motor
JPH072028B2 (en) Ultrasonic motor
JPS63242185A (en) Piezoelectric motor
JP2639845B2 (en) Ultrasonic actuator
JP2684418B2 (en) Ultrasonic actuator
JPH0721114Y2 (en) Ultrasonic motor
JP3113481B2 (en) Piezo motor
JP2508203B2 (en) Vibration wave motor
JPH01238470A (en) Directly driving device
JPH0467785A (en) Ultrasonic actuator
JPH062478Y2 (en) Ultrasonic motor
JPH01103175A (en) Supersonic drive
JPS6016180A (en) Rotary drive device
JPH0649117Y2 (en) Ultrasonic linear motor
JPH04133676A (en) Driving method for actuator and ultrasonic actuator realizing this driving method
JPH03107381A (en) Ultrasonic motor