JPH02150727A - Device for measuring output of laser - Google Patents

Device for measuring output of laser

Info

Publication number
JPH02150727A
JPH02150727A JP30220988A JP30220988A JPH02150727A JP H02150727 A JPH02150727 A JP H02150727A JP 30220988 A JP30220988 A JP 30220988A JP 30220988 A JP30220988 A JP 30220988A JP H02150727 A JPH02150727 A JP H02150727A
Authority
JP
Japan
Prior art keywords
integrating sphere
laser
output
laser beam
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30220988A
Other languages
Japanese (ja)
Other versions
JP2677845B2 (en
Inventor
Yuji Mitsuda
密田 祐次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP30220988A priority Critical patent/JP2677845B2/en
Publication of JPH02150727A publication Critical patent/JPH02150727A/en
Application granted granted Critical
Publication of JP2677845B2 publication Critical patent/JP2677845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To make an integrating sphere small and to make an entire device small in size by providing many small holes on the incidence part of the integrating sphere, freely transmitting laser light so that it may be subdivided and detecting the output with the aid of a sensor. CONSTITUTION:A 2nd base 9 where a hemispherical groove 7 is formed is fixed to the front surface of a 1st base 3. The integrating sphere 11 is formed by the grooves 5 and 7 and the inner surface of the sphere 11 is formed as a diffused reflecting surface. The incidence part 13 is formed on the front surface of the base 9 and many small holes 15 are provided there so that the laser light LB is freely transmitted. The light LB is subdivided by the small holes 15 and the output is detected by a thermo pile sensor 23. The sensor 23 is provided at a position where it communicates with a sensor port 19 provided at the proper position of the integrating sphere 11 through a hole 21 formed on the 1st base 3. The incident laser light LB is subdivided by the small holes 15 and made incident on the integrating sphere 11, so that the integrating sphere 11 is made small and the entire device is made small in size.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は比較的小型のレーザの出力測定装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a relatively small laser output measuring device.

(従来の技術) 例えば板金の切断等を目的とするレーザ加工においては
放電励起炭酸ガスレーザが使用される。
(Prior Art) For example, in laser processing for the purpose of cutting sheet metal, a discharge excited carbon dioxide laser is used.

上記レーザ加工を適切に行うためには、板金の厚さ、種
類、ガス圧、切断速度に応じてレーザの出力を制御する
必要があり、実際のレーザの出力を測定しながら放電注
入電流によってレーザの出力を閉ループ制御していた。
In order to properly perform the above laser processing, it is necessary to control the laser output according to the thickness, type, gas pressure, and cutting speed of the sheet metal. The output was controlled in a closed loop.

実際のレーザの出力を測定する方法としては、(2)、
熱的方法、(ω、光電的方法、(C)、放射的方法があ
るが、例えば熱的方法を用いた場合として、従来はサー
モパイルセンサをレーザの出力測定装置として用いてい
た。
As a method to measure the actual laser output, (2)
There are thermal methods, (ω), photoelectric methods, (C), and radiation methods. For example, when using the thermal method, a thermopile sensor has conventionally been used as a laser output measuring device.

すなわち、上記サーモパイルセンサは、熱伝導の良い円
盤上の金属からなる受光体に、複数の熱伝導を直列に配
置した構成である。したがって、レーザ光を受光体の受
光面に当てることにより、レーザの出力を受光体に吸収
させてレーザの出力に応じた熱容量に変換して、更に複
数の熱伝導によりこの熱容量をレーザの出力に応じた電
気信号に変換してレーザの出力を測定するものである。
That is, the thermopile sensor has a configuration in which a plurality of heat conductors are arranged in series on a photoreceptor made of a disc-shaped metal with good heat conduction. Therefore, by applying laser light to the light-receiving surface of the photoreceptor, the laser output is absorbed by the photoreceptor and converted into a heat capacity corresponding to the laser output, and then this heat capacity is converted into laser output through multiple heat conductions. The output of the laser is measured by converting it into a corresponding electrical signal.

しかし、光軸に垂直なレーザ光の断面は所定の強度分布
を・有しており、このような状態下においてレーザの出
力を正確に測定するためには、前記サーモパイルセンサ
の受光体の径をレーザ光の径以下にすることができない
。したがって、受光体の径が大きくなり、熱時定数を小
さくすることができず、レーザ光が受光体の受光面に当
ってからレーザの出力に応じた電気信号を検出するまで
の応答速度が遅くなり、レーザの出力が熱容量に変換さ
れて更に電気信号に換えられるまでに通常1秒から10
9秒の時間を要する。そのために、レーザ加工において
は、レーザの出力を適切に制御できず適切なレーザ加工
を行い得ないという問題点があった。
However, the cross section of the laser beam perpendicular to the optical axis has a predetermined intensity distribution, and in order to accurately measure the laser output under such conditions, it is necessary to adjust the diameter of the photoreceptor of the thermopile sensor. It cannot be made smaller than the diameter of the laser beam. Therefore, the diameter of the photoreceptor becomes large, making it impossible to reduce the thermal time constant, and the response speed from when the laser beam hits the light receiving surface of the photoreceptor to when an electrical signal corresponding to the laser output is detected is slow. It usually takes from 1 second to 10 seconds for the laser output to be converted to heat capacity and then to an electrical signal.
It takes 9 seconds. Therefore, in laser processing, there has been a problem in that the output of the laser cannot be properly controlled and appropriate laser processing cannot be performed.

そこで、上記問題点を解決するために、レーザ光の強度
分布を均一にして受光体の受光面積をできるだけ小さく
すべく積分球を備えたレーザの出力測定装置を開発した
Therefore, in order to solve the above-mentioned problems, we developed a laser output measuring device equipped with an integrating sphere in order to make the intensity distribution of the laser beam uniform and to minimize the light-receiving area of the photoreceptor.

上記レーザの出力測定装置については、レーザ光が入射
するための入射部を備えた積分球の適宜位置には、セン
サポートが形成しであると共に、このセンサポートを透
過したレーザ光の出力を検出するために、適宜位置には
センサポートの径とほぼ等しい径を有した受光体を備え
たサーモバイルセンサが設けである。上記積分球は中空
の球であり、内壁面が高い反射率でコーティングされた
拡散反射面となっている。
Regarding the laser output measurement device mentioned above, a sensor port is formed at an appropriate position on an integrating sphere equipped with an incident part for laser light to enter, and the output of the laser light transmitted through this sensor port is detected. In order to do this, a thermomobile sensor equipped with a photoreceptor having a diameter approximately equal to the diameter of the sensor port is provided at an appropriate position. The above-mentioned integrating sphere is a hollow sphere, and the inner wall surface is coated with a high reflectance to form a diffuse reflection surface.

したがって、所定の強度分布をもって入射部から入射し
てくるレーザ光は、積分球の内壁面内において多数回反
射を繰り返えすことにより、積分球の内のレーザ光の強
度は比較的均一になってくる。これによって、レーザ光
の出力を測定するために、レーザ光の径とほぼ同−又は
それ以上の径をした受光体を用いる必要はなく、面積の
小さな受光体を用いるだけでよいものである。
Therefore, the laser beam that enters from the entrance with a predetermined intensity distribution is reflected many times within the inner wall surface of the integrating sphere, so that the intensity of the laser beam within the integrating sphere becomes relatively uniform. It's coming. Accordingly, in order to measure the output of the laser beam, it is not necessary to use a photoreceptor with a diameter that is approximately the same as or larger than the diameter of the laser beam, and it is sufficient to use a photoreceptor with a small area.

(発明が解決しようとする課題) しかし、前述のごとき積分球を備えたレーザの出力測定
装置においては、入射部から入射してきたレーザ光を積
分球内で多数回拡散反射させて、レーザ光の強度を均一
にするためには、入射してくるレーザ光の径に比べて積
分球の内径をかなり大きくする必要があり、積分球、換
言すればレーザの出力装置が大型化するという問題点が
あった。
(Problem to be Solved by the Invention) However, in the laser output measurement device equipped with an integrating sphere as described above, the laser beam entering from the input part is diffusely reflected many times within the integrating sphere, and the laser beam is In order to make the intensity uniform, it is necessary to make the inner diameter of the integrating sphere considerably larger than the diameter of the incident laser beam, which poses the problem of increasing the size of the integrating sphere, or in other words, the laser output device. there were.

そこで、本発明は上記の問題点を解決すべく、比較的小
型のレーザの出力装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a relatively small-sized laser output device in order to solve the above-mentioned problems.

[発明の構成] (課題を解決するための手段) 前述のごとき従来の問題点を解決するために、本発明に
おいては、積分球に入射部を設け、レーザ光が透過自在
に小孔を多数設け、上記積分球の適宜位置に、レーザ光
の出力を検出する出力検出センサを設けてなるものであ
る。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the conventional problems as described above, in the present invention, an input part is provided in the integrating sphere, and a large number of small holes are formed so that the laser beam can freely pass through. An output detection sensor for detecting the output of the laser beam is provided at an appropriate position on the integrating sphere.

(作用) 前記の構成において、所定の強度分布をもったレーザ光
が入射部に設けた多数の小孔を透過する。このときにレ
ーザ光は多数のかなり細いレーザ光に細分化される。
(Function) In the above configuration, laser light having a predetermined intensity distribution is transmitted through a large number of small holes provided in the entrance portion. At this time, the laser beam is subdivided into a large number of fairly narrow laser beams.

上記多数のかなり細いレーザ光が積分球内で多数回反射
を繰り返す。これによって、積分球内のレーザ光の強度
は平均化されてほぼ均一なものとなる。そして、はぼ均
一になったレーザ光の出力を出力検出センサにより検出
する。
The large number of fairly narrow laser beams described above are reflected many times within the integrating sphere. As a result, the intensity of the laser light within the integrating sphere is averaged and becomes approximately uniform. Then, the output of the laser beam, which has become more or less uniform, is detected by an output detection sensor.

(実施例) 以下、本発明に係る実施例を図面に基づいて説明する。(Example) Embodiments according to the present invention will be described below based on the drawings.

第1図、第2図を参照するに、レーザの出力測定装置1
における第1積分球ベース3の前側(第1図において左
側、第2図において紙面に向って表側)中央部には半球
状の溝5が形成しである。
Referring to FIGS. 1 and 2, a laser output measuring device 1
A hemispherical groove 5 is formed in the center of the front side (left side in FIG. 1, front side facing the paper in FIG. 2) of the first integrating sphere base 3.

後側(第1図において右側、第2図において紙面に向っ
て裏側)に半球状の溝7を形成した第2積分球ベース部
材9が、第1積分球ベース3の前面に固定して設けであ
る。上記半球状の溝5.7によって積分球11が形成さ
れ、また、この積分球11の内壁面は高い反射率でコー
ティングされた拡散反射面となっている。゛ 上記第2積分球ベース9の前部にはレーザ光LBが入射
してくるための入射部13が形成してあり、この入射部
13には積分球11に連通した小孔15が第2図に示す
ように所定間隔に亘って多数形成しである。なお、上記
入射部′13の周縁部には筒状部材17が設けである。
A second integrating sphere base member 9 having a hemispherical groove 7 formed on the rear side (the right side in FIG. 1, the back side toward the paper surface in FIG. 2) is fixedly provided on the front surface of the first integrating sphere base 3. It is. An integrating sphere 11 is formed by the hemispherical groove 5.7, and the inner wall surface of the integrating sphere 11 is a diffuse reflection surface coated with a high reflectance.゛An entrance part 13 for the laser beam LB to enter is formed in the front part of the second integrating sphere base 9, and this entrance part 13 has a second small hole 15 communicating with the integrating sphere 11. As shown in the figure, a large number of them are formed at predetermined intervals. It should be noted that a cylindrical member 17 is provided at the peripheral edge of the incident portion '13.

上記積分球11の適宜位置にはレーザ光LBの径に比較
してかなり小さい径のセンサポート19が形成してあり
、このセンサポート19は第1積分球ベース3に形成し
た孔21に連通しである。
A sensor port 19 having a diameter considerably smaller than the diameter of the laser beam LB is formed at an appropriate position on the integrating sphere 11, and this sensor port 19 communicates with a hole 21 formed in the first integrating sphere base 3. It is.

上記センサポート19に入射してきたレーザ光LBの出
力を検出するために、孔21にはサーモバイルセンサ2
3が設けである。
A thermomobile sensor 2 is provided in the hole 21 to detect the output of the laser beam LB that has entered the sensor port 19.
3 is a provision.

より詳細には、孔21には支持部材25が設けてあり、
この支持部材25にはセンサポート19に入射してきた
レーザ光LBの出力を熱容量に変換するために熱伝導の
良い金属からなる受光体27が設けである。ここで、上
記受光体27はその径は比較的小さく、受光面積は小さ
いものである。
More specifically, the hole 21 is provided with a support member 25,
This support member 25 is provided with a photoreceptor 27 made of a metal with good thermal conductivity in order to convert the output of the laser beam LB incident on the sensor port 19 into heat capacity. Here, the photoreceptor 27 has a relatively small diameter and a small light-receiving area.

また、受光体27には複数の熱伝導(図示省略)が直列
に配置してあり、サーモバイルセンサ23に設けた出力
コード29.31は、前記第1積分球ベース3の適宜位
置に取付けたコネクタ33に接続しである。
Further, a plurality of heat conductors (not shown) are arranged in series on the photoreceptor 27, and output cords 29 and 31 provided on the thermomobile sensor 23 are attached to appropriate positions on the first integrating sphere base 3. It is connected to the connector 33.

上記第1.第2積分球ベース3,9に吸収された熱を冷
却するために、第2積分球ベース9の適宜位置には冷却
管35が設けである。
Above 1. In order to cool down the heat absorbed by the second integrating sphere bases 3 and 9, cooling pipes 35 are provided at appropriate positions on the second integrating sphere base 9.

前述の本実施例の構成に基づき作用について第1図、第
2図、第3図(A)、(B)、(C)を参照しながら説
明する。
The operation based on the configuration of this embodiment described above will be explained with reference to FIGS. 1, 2, 3 (A), (B), and (C).

第3図(A)に示すような所定の強度分布をもったレー
ザ光LBが、入射部13に形成した多数の小孔15を貫
通して積分球11内に入射する。
Laser light LB having a predetermined intensity distribution as shown in FIG. 3(A) passes through a large number of small holes 15 formed in the entrance portion 13 and enters the integrating sphere 11.

このときに、レーザ光LBは小孔13の径と同一の径を
有する多数のレーザ光LBに細分化されて、レーザ光の
強度分布は第3図(B)に示すようになる。また、小孔
13を貫通しなかったレーザ光LBは入射部13に熱と
して変換され、この熱は冷却水路35により放熱される
At this time, the laser beam LB is subdivided into a large number of laser beams LB having the same diameter as the diameter of the small hole 13, and the intensity distribution of the laser beam becomes as shown in FIG. 3(B). Further, the laser beam LB that has not passed through the small hole 13 is converted into heat by the incident part 13, and this heat is radiated by the cooling water channel 35.

小孔13により細分化された上記多数のレーザ光[Bは
、積分球11の内壁面において多数回反射を繰り返すこ
とになる。これによって、積分球11内のレーザ光1B
の強度はほぼ均一になるものである。
The large number of laser beams [B] segmented by the small holes 13 are reflected many times on the inner wall surface of the integrating sphere 11. As a result, the laser beam 1B inside the integrating sphere 11
The strength of is almost uniform.

そして、はぼ均一な強度をもつレーザ光LBは、センサ
ポート19を経由してサーモバイルセンサ23の受光体
27の受光面に当たる。これによって、受光体27によ
ってレーザの出力に応じた熱に変換されて、この熱容量
はレーザの出力に応じた電気信号に変換される。
The laser beam LB having a nearly uniform intensity passes through the sensor port 19 and hits the light receiving surface of the photoreceptor 27 of the thermomobile sensor 23 . Thereby, the photoreceptor 27 converts the heat into heat corresponding to the output of the laser, and this heat capacity is converted into an electric signal corresponding to the output of the laser.

以上のごとき本実施例によれば、所定の強度分布をもつ
レーザ光LBが積分球11内で多数回反射を繰り返して
、レーザ光LBの強度はほぼ均一となることにより、レ
ーザの出力を検出覆るだめの受光体27の面積を小さく
することができると共に、受光体27の熱時定数を小さ
くすることができる。したがって、レーザの出力測定装
置1の応答速度が速くなるものである。また、例えばレ
ーザ加工にレーザの出力測定装置1を用いてレーザの出
力を検出し制御する場合においても、応答速度が速いた
めに適切にレーザ加工を行うことができるものであ。
According to this embodiment as described above, the laser beam LB having a predetermined intensity distribution is reflected many times within the integrating sphere 11, and the intensity of the laser beam LB becomes almost uniform, thereby detecting the laser output. The area of the photoreceptor 27 to be covered can be reduced, and the thermal time constant of the photoreceptor 27 can be reduced. Therefore, the response speed of the laser output measuring device 1 becomes faster. Further, even when the laser output measurement device 1 is used for laser processing, for example, to detect and control the laser output, the response speed is fast, so that the laser processing can be performed appropriately.

また、所定の径を有したレーザ光LBが多数の小孔15
を透過し、レーザ光1Bが多数の径の小さいレーザ光L
Bに細分化されて積分球11内に人!)1するものであ
るから、積分球11の内径を小さくすることができると
共に積分球11を小さくすることができ、ひいてはレー
ザの出力装置1を小さくすることができるものである。
Further, the laser beam LB having a predetermined diameter is emitted through a large number of small holes 15.
, the laser beam 1B passes through a large number of small diameter laser beams L
It is subdivided into B and there are people inside the integrating sphere 11! )1, the inner diameter of the integrating sphere 11 can be made smaller, and the integrating sphere 11 can also be made smaller, which in turn allows the laser output device 1 to be made smaller.

なお、本発明は前述の実施例の説明に限ることなく、サ
ーモバイルセンサ23の代わりに光電スイッチを設けた
りする等適宜の変更を行うことにより、その他種々の態
様で実施可能である。
Note that the present invention is not limited to the description of the above-described embodiments, and can be implemented in various other forms by making appropriate changes such as providing a photoelectric switch in place of the thermomobile sensor 23.

[発明の効果] 以上のごとき実施例の説明により理解されるように、本
発明によれば所定の径を有したレーザ光が多数の小孔を
透過し、レーザ光が多数の細いレーザ光に細分化されて
積分球内に入射するものであるから、積分球の内径を小
さくすることができると共に積分球を小さくすることが
でき、ひいてはレーザの出力測定装置を比較的小さくす
ることができるものである。
[Effects of the Invention] As understood from the description of the embodiments above, according to the present invention, a laser beam having a predetermined diameter is transmitted through a large number of small holes, and the laser beam is divided into a large number of narrow laser beams. Since the light is segmented and incident on the integrating sphere, the inner diameter of the integrating sphere can be made smaller, and the integrating sphere can also be made smaller, which in turn allows the laser output measuring device to be made relatively smaller. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る実施例を説明するものであり、第1
図はレーザの出力測定装置の側断面図である。第2図は
レーザの出力測定の正面図である。 第3図(A)は第1図における△−A線に沿ったレーザ
光の強度分布図である。第3図(B)は第1図における
B−B線に沿ったレーザ光の強度分重囲である。第3図
(C) は第1図におけるC− C線に沿ったレーザ光の強度分布図である。 1・・・レーザの出力測定装置 1・・・積分球 3・・・入射部 5・・・小孔
The drawings are for explaining embodiments according to the present invention.
The figure is a side sectional view of a laser output measuring device. FIG. 2 is a front view of laser output measurement. FIG. 3(A) is an intensity distribution diagram of the laser beam along the Δ-A line in FIG. 1. FIG. 3(B) shows the intensity distribution of the laser beam along the line BB in FIG. 1. FIG. 3(C) is an intensity distribution diagram of the laser beam along line C--C in FIG. 1. 1...Laser output measuring device 1...Integrating sphere 3...Incidence part 5...Small hole

Claims (1)

【特許請求の範囲】[Claims]  積分球に入射部を設け、レーザ光が透過自在に小孔を
多数設け、上記積分球の適宜位置に、レーザ光の出力を
検出する出力検出センサを設けてなることを特徴とする
レーザの出力測定装置。
A laser output characterized in that an integrating sphere is provided with an entrance part, a large number of small holes are provided through which the laser beam can freely pass, and an output detection sensor for detecting the output of the laser beam is provided at an appropriate position on the integrating sphere. measuring device.
JP30220988A 1988-12-01 1988-12-01 Laser output measuring device Expired - Fee Related JP2677845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30220988A JP2677845B2 (en) 1988-12-01 1988-12-01 Laser output measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30220988A JP2677845B2 (en) 1988-12-01 1988-12-01 Laser output measuring device

Publications (2)

Publication Number Publication Date
JPH02150727A true JPH02150727A (en) 1990-06-11
JP2677845B2 JP2677845B2 (en) 1997-11-17

Family

ID=17906267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30220988A Expired - Fee Related JP2677845B2 (en) 1988-12-01 1988-12-01 Laser output measuring device

Country Status (1)

Country Link
JP (1) JP2677845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099061B2 (en) 2018-06-11 2021-08-24 Nichia Corporation Measurement device for light-emitting device and method for measuring light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370766B2 (en) 2015-11-13 2018-08-08 ファナック株式会社 Laser power sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099061B2 (en) 2018-06-11 2021-08-24 Nichia Corporation Measurement device for light-emitting device and method for measuring light-emitting device

Also Published As

Publication number Publication date
JP2677845B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5318362A (en) Non-contact techniques for measuring temperature of radiation-heated objects
US4262198A (en) Broadband optical radiation detector
US4263585A (en) Intrusion detection system with a segmented radiation sensing mirror
GB1474191A (en) Measurement of surface roughness
US5130543A (en) Direction sensitive energy detecting apparatus
JPH10137195A (en) Radiation clinical thermometer
US4865446A (en) Laser power and energy meter
US4728196A (en) Arrangement for determining a surface structure, especially for roughness
EP0054353B1 (en) Apparatus for reception and radiation of electromagnetic energy in predetermined fields of view
US6456383B1 (en) Method and apparatus for making absolute range measurements
JPH02150727A (en) Device for measuring output of laser
US4627722A (en) Method and apparatus for optically measuring three-dimensional coordinates
ITMI970505A1 (en) DEVICE FOR DETECTION OF OPTICAL PARAMETERS OF A LASER BEAM
JPS58113839A (en) Detector for dew point
JPS58106413A (en) Light reflecting sensor
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
IT9020824A1 (en) OPTICAL SENSOR DEVICE
JPH08184556A (en) Optical gas detector
US4077723A (en) Method of measuring thickness
JPS5948324B2 (en) Inclination detection roughness measurement method using light reflection
JPS59157512A (en) Optical position detector
JPH0433379B2 (en)
JPS5750606A (en) Solar sensor
JPS60146112A (en) Light reflection type detector
JPH0351725A (en) Emissivity measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees