JPH02150181A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH02150181A
JPH02150181A JP63304939A JP30493988A JPH02150181A JP H02150181 A JPH02150181 A JP H02150181A JP 63304939 A JP63304939 A JP 63304939A JP 30493988 A JP30493988 A JP 30493988A JP H02150181 A JPH02150181 A JP H02150181A
Authority
JP
Japan
Prior art keywords
electrode
light
image pickup
voltage
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63304939A
Other languages
Japanese (ja)
Other versions
JP2591120B2 (en
Inventor
Katsumi Adachi
克己 足達
Shigeo Kondo
繁雄 近藤
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63304939A priority Critical patent/JP2591120B2/en
Publication of JPH02150181A publication Critical patent/JPH02150181A/en
Application granted granted Critical
Publication of JP2591120B2 publication Critical patent/JP2591120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To make the title device suitable for an asynchronous input/output by providing an image pickup element obtained with successively laminating a light transmitting substrate, a transparent electrode, a first electrode patterned to an optical semiconductor island, an aeolotropic solid electrolyte, and second electrodes, an image pickup means, a means to irradiate beams on the optical semiconductor, etc. CONSTITUTION:The image pickup element obtained by successively laminating light transmitting substrate 101, a transparent electrode 102, optical semiconductors 103 and 104, a first electrode 105 patterned to an island, an aeolotropic solid electrolyte 106, and second electrodes 107 is provided. When light passed through an image pickup lens 305 irradiates the optical semiconductors 103 and 104, a voltage in proportion to the illumination light is generated at an optical battery 113. At the time of the image pickup, since the transparent electrode 102 and the second electrode 107 are short-circuited, the generated voltage charges a secondary battery 114, and the pattern of the illumination light is converted into the voltage pattern of the secondary battery. The charge can be held for a period in a range from a several hours to several hundred hours depending the types of the solid electrolytes. Thus, when the light is once inputted, it is stored, and repeatedly read. Thus, the image pickup device suitable for the asynchronous operation can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は二次元光学像を電気信号に変換し、変換後の電
気信号が記憶される撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an imaging device that converts a two-dimensional optical image into an electrical signal and stores the electrical signal after the conversion.

従来の技術 従来の撮像装置として一般的に用いられているのにCO
D(Charge  Coupled  Device
)がある。これはシリコン・フォトダイオードに誘起さ
れた信号電荷をCCDシフトレジスタで外部へ読み出す
ものである。
Conventional technologyAlthough it is commonly used as a conventional imaging device, CO
D (Charge Coupled Device
). This is to read signal charges induced in a silicon photodiode to the outside using a CCD shift register.

発明が解決しようとする課題 しかしながらCCD撮像素子はテレビジョン信号のよう
な一定周期の繰り返し出力には適するが、ランダムな周
期の出力には不適であった。その理由は、周期が長くな
ると熱による暗電流のため、光が当たらなくとも白レベ
ルの出力を出してしまうためである。室温ではおよそ1
秒〜数秒が限界である。
Problems to be Solved by the Invention However, although the CCD image pickup device is suitable for repeatedly outputting a television signal at a fixed period, it is not suitable for outputting at a random period. The reason for this is that when the cycle becomes long, a dark current due to heat causes a white level output to be output even when no light hits it. Approximately 1 at room temperature
The limit is seconds to several seconds.

また、光学像が短時間のみ照射される場合にこの光学像
を捕らえることも適していない。CCDは−度量力する
とその電荷は消えてしまう、つまり記憶機能を持ってい
ないためである。これに対処する方法には外部に膨大な
量の画像メモリーを持って全て記録する方法と、目的の
光学像がどうか判断しつつ必要な像のみ記録する方法が
ある。
It is also not suitable to capture an optical image if it is only illuminated for a short time. This is because the CCD's charge disappears when it is used for measurement, that is, it does not have a memory function. There are two ways to deal with this: one is to have a huge amount of external image memory and record everything, and the other is to record only the necessary images while determining whether or not the desired optical image is present.

前者は構成が大きくなりすぎる、後者は制御が複雑にな
る欠点があった。以上述べたようにCCDは非周期動作
には適していない撮像素子であった。
The former has the disadvantage that the configuration is too large, and the latter has the disadvantage that control is complicated. As described above, the CCD is an image sensor that is not suitable for non-periodic operation.

本発明はかかる点に鑑み、非周期の入出力に適した撮像
装置を提供することを目的とする。
In view of this, an object of the present invention is to provide an imaging device suitable for aperiodic input/output.

課題を解決するための手段 本発明は、光透過性基板、透明電極、光半導体ないしは
光導電体、島状にパターン化された第1電極、異方性固
体電解質、第2電極を順次積層してなる撮像素子と、前
記光半導体に光学像を撮像する手段と、垂直方向と水平
方向に走査される光ビームを前記光半導体ないしは光導
電体に照射する手段とを備えたことを特徴とする撮像装
置である。
Means for Solving the Problems The present invention consists of sequentially stacking a light-transmissive substrate, a transparent electrode, a photosemiconductor or a photoconductor, a first electrode patterned in an island shape, an anisotropic solid electrolyte, and a second electrode. The present invention is characterized by comprising: an imaging device consisting of an optical semiconductor; a means for capturing an optical image on the optical semiconductor; and a means for irradiating the optical semiconductor or the photoconductor with a light beam scanned in the vertical and horizontal directions. It is an imaging device.

作用 本発明は前記しな構成により、撮像時は以下の動作を行
なう、光透過性基板を通じて光半導体に光半導体材料の
バンドギャップより大きいエネルギーを有する光を照射
すると、光半導体において伝導帯では励起電子が、また
価電子帯ではホールが生成される。このとき、透明電極
と第2電極とを電気的に短絡すると、この電子及びホー
ルの作用により第1電極及び第2電極ではそれぞれ特定
の電気化学反応が発生し、この反応により第1電極と第
2電極間の電圧が変化する。この第1電極と第2電極間
の電圧は第1電極、固体電解質、第2電極により構成さ
れる二次電池の起電圧に相当し、光照射を停止した後も
そのまま維持される。
Effect of the present invention With the above-described configuration, the following operation is performed during imaging.When an optical semiconductor is irradiated with light having an energy larger than the band gap of the optical semiconductor material through a light-transmitting substrate, excitation occurs in the conduction band of the optical semiconductor. Electrons and, in the valence band, holes are generated. At this time, when the transparent electrode and the second electrode are electrically short-circuited, a specific electrochemical reaction occurs at the first electrode and the second electrode due to the action of these electrons and holes, and this reaction causes the first electrode and the second electrode to The voltage between the two electrodes changes. The voltage between the first electrode and the second electrode corresponds to the electromotive voltage of the secondary battery constituted by the first electrode, the solid electrolyte, and the second electrode, and is maintained as it is even after the light irradiation is stopped.

つまり照射光の二次元パターンが二次電池の二次元パタ
ーンに変換されるのである。
In other words, the two-dimensional pattern of the irradiated light is converted into the two-dimensional pattern of the secondary battery.

読み出し時には細く絞った光ビームを光半導体に照射し
てその部分の光半導体のみを電気的に導通状態にするこ
とで、第1電極と第2電極間の電圧を透明電極を介して
外部に取り出すことにより行なう。
During readout, the optical semiconductor is irradiated with a narrowly focused light beam to make only that part of the optical semiconductor electrically conductive, thereby extracting the voltage between the first and second electrodes to the outside via the transparent electrode. Do it by doing this.

消去時は透明電極と第2電極間を撮像時とは逆の電圧の
印加により第1電極と第2電極間の二次電池電圧を放電
することで行なう。
Erasing is performed by discharging the secondary battery voltage between the first electrode and the second electrode by applying a voltage opposite to that during imaging between the transparent electrode and the second electrode.

又、光導電体の場合もその抵抗が照射光に反比例するの
で適宜書き込み電源にて二次電池に充電することによっ
て同様の作用が得られる。
Also, in the case of a photoconductor, since its resistance is inversely proportional to the irradiation light, a similar effect can be obtained by appropriately charging the secondary battery with a writing power source.

実施例 第1図は本発明の第1の実施例における撮像装置の構成
図を示すものである。第1図において、100は光透過
性基板、透明電極、光半導体ないしは光導電体、島状に
パターン化された第1電極、異方性固体電解質、第2電
極107を順次積層してなる撮像素子、200は撮像索
子100の信号処理回路である。詳細は後述する。30
0は光ビームを発生するレーザー発振器、301は焦点
レンズ、302はレーザー光を垂直走査(低速側走査)
するガルバノメータ、303はレーザー光を水平走査(
高速側走査)する回転多面鏡、304は撮像素子100
に照射する光を切り換える反射鏡、305は撮像レンズ
である。
Embodiment FIG. 1 shows a configuration diagram of an imaging apparatus in a first embodiment of the present invention. In FIG. 1, reference numeral 100 denotes an imaging device formed by sequentially laminating a light-transmitting substrate, a transparent electrode, a photosemiconductor or a photoconductor, a first electrode patterned in an island shape, an anisotropic solid electrolyte, and a second electrode 107. The element 200 is a signal processing circuit of the imaging cord 100. Details will be described later. 30
0 is a laser oscillator that generates a light beam, 301 is a focusing lens, and 302 is a laser beam that vertically scans (low speed side scanning)
A galvanometer 303 scans the laser beam horizontally (
304 is an image sensor 100;
305 is an imaging lens.

この第1図の構成において、撮像時では反射鏡304は
点線で示す角度に固定され、撮像レンズ305によって
作り出された光学像は撮像素子100に焦点を結ぶ。読
み出し時並びに消去時は反射鏡304は実線で示す角度
に固定され、垂直走査と水平走査されたレーザー光が撮
像素子100に照射される。
In the configuration shown in FIG. 1, during imaging, the reflecting mirror 304 is fixed at an angle indicated by a dotted line, and the optical image created by the imaging lens 305 is focused on the imaging element 100. During reading and erasing, the reflecting mirror 304 is fixed at the angle shown by the solid line, and the image sensor 100 is irradiated with vertically and horizontally scanned laser light.

次に、撮像素子100の内部について第2図、第3図と
共に説明する。第2図は撮像素子100の断面図を示し
、101はガラス等でできた光透過性基板、102はイ
ンジウム・錫等でできた透明電極、103はP型のアモ
ルファスシリコン、104はI型のアモルファスシリコ
ン、105は島状にパターン化された第1電極、106
は異方性固体電解質、107は第2電極、108は保護
膜を示す。
Next, the inside of the image sensor 100 will be explained with reference to FIGS. 2 and 3. FIG. 2 shows a cross-sectional view of the image sensor 100, where 101 is a light-transmitting substrate made of glass or the like, 102 is a transparent electrode made of indium/tin, etc., 103 is P-type amorphous silicon, and 104 is I-type amorphous silicon. Amorphous silicon, 105 is a first electrode patterned into an island shape, 106
is an anisotropic solid electrolyte, 107 is a second electrode, and 108 is a protective film.

なお、撮像時の入射光並びに読み出し時のレーザー光は
透明基板101側から照射される。光半導体としては上
記の他に、S i 、Zn5e、ZnTe、CdS、C
dSe、CdTe、A IXGal−XAs(0≦X≦
1 )、GaAs1−XPX(0≦X≦1 )、A I
 Sb、  I nP、MoS2.MoSe2゜WS2
、”vVs e2. MXI n S2 (M=Cuま
たはAg、O<X<1>、MXI nSe2(M=Cu
またはAg、O<X<1)等を使用することができ、こ
れらのP型、N型、あるいはP−I、N−I、P−I−
N接合型のものを選択することができる。
Note that incident light during imaging and laser light during readout are irradiated from the transparent substrate 101 side. In addition to the above, optical semiconductors include Si, Zn5e, ZnTe, CdS, C
dSe, CdTe, A IXGal-XAs (0≦X≦
1), GaAs1-XPX (0≦X≦1), A I
Sb, InP, MoS2. MoSe2゜WS2
, "vVs e2. MXI n S2 (M=Cu or Ag, O<X<1>, MXI nSe2 (M=Cu
Or Ag, O<X<1), etc. can be used, and these P type, N type, or P-I, N-I, P-I-
An N-junction type can be selected.

固体電解質の材料としてはRbC1−CuC1−CuI
系やCu I −Cu20−M o 03系の結晶状及
びガラス状銅イオン導電性固体電解質物、または、Rb
I−AgI系やA gI −A g20− B2O2系
の結晶状及びガラス状銀イオン導電性固体電解質物を用
いることができる。
The solid electrolyte material is RbC1-CuC1-CuI
crystalline and glassy copper ion conductive solid electrolytes of CuI-Cu20-Mo03 series, or Rb
I-AgI-based or AgI-A g20-B2O2-based crystalline or glassy silver ion conductive solid electrolytes can be used.

第3図に撮像素子100の平面図を示す。第3図におい
て第2図と同一番号のものはその層を示す。109は透
明電極102の取り出し電極部、110は第2電極10
7の取り出し電極部を示す。
FIG. 3 shows a plan view of the image sensor 100. In FIG. 3, the same numbers as in FIG. 2 indicate the layers. 109 is the extraction electrode part of the transparent electrode 102, and 110 is the second electrode 10.
7 shows the extraction electrode section.

第3図は第1電極を横6列、縦6行に島化した例である
FIG. 3 shows an example in which the first electrodes are formed into islands in 6 columns horizontally and 6 rows vertically.

次に第4図に信号処理回路200の内部と撮像素子10
0の等価回路に示す。第4図において201aと201
bは連動している動作切換スイッチ、202はインピー
ダンス変換用の増幅器、203は消去用電源である。そ
して第4図の113は第2図の透明電極102と第1電
極105の間にできた光半導体102と103からなる
光電池であり、この起電圧は照射光に比例する。第4図
の114は第2図の第1電極105と異方性固体電解質
106とは第2電極107からなる二次電池である。第
1電極が互いに独立なので、直列接続された光電池と二
次電池の組が島化された数だけあることになる。第3図
の例では6×6の36個である。
Next, FIG. 4 shows the inside of the signal processing circuit 200 and the image sensor 10.
0 is shown in the equivalent circuit. In Fig. 4, 201a and 201
202 is an amplifier for impedance conversion, and 203 is an erasing power supply. Reference numeral 113 in FIG. 4 is a photovoltaic cell composed of optical semiconductors 102 and 103 formed between the transparent electrode 102 and the first electrode 105 in FIG. 2, and the electromotive force is proportional to the irradiated light. Reference numeral 114 in FIG. 4 is a secondary battery in which the first electrode 105 and anisotropic solid electrolyte 106 in FIG. 2 are replaced by a second electrode 107. Since the first electrodes are independent from each other, there are as many sets of photovoltaic cells and secondary batteries connected in series as islands. In the example of FIG. 3, there are 36 (6×6).

以上のように構成されたこの実施例の撮像装置において
、以下その動作を第5図と共に説明する。
The operation of the imaging apparatus of this embodiment configured as described above will be explained below with reference to FIG. 5.

まず、第5図(a)は撮像時の動作原理を示す。First, FIG. 5(a) shows the principle of operation during imaging.

撮像レンズ305を通った光が光半導体103と104
に照射されこの照射光に比例した電圧が光電池113に
発生するゆ撮像時は透明電極102と第2電極103は
短絡されているのでこの発生した電圧は二次電池114
を充電し、照射光のパターンを二次電池の電圧パターン
に変換したことになる。この充電電荷は固体電解質の種
類によって異なるが数時間から数百時間保持可能である
Light passing through the imaging lens 305 passes through the optical semiconductors 103 and 104.
The transparent electrode 102 and the second electrode 103 are short-circuited during imaging, so the generated voltage is applied to the secondary battery 114.
This means that the irradiated light pattern is converted into the voltage pattern of the secondary battery. This charged charge can be maintained for several hours to several hundred hours, although it varies depending on the type of solid electrolyte.

次に、第5図(b)に読み出し時の動作原理を示す。読
み出し時は第1図の反射鏡304を切り換え、一定強度
のレーザー光を照射する。このレーザー光は島化された
第1電極105のパターンにそって縦横に走査され、あ
る瞬間には一つの島だけ照射している。そして透明電極
102と第2電極103は増幅器202に接続されてい
るので、レーザー光が当たっている光電池113と二次
電池114の電圧差が増幅器202の入力となる。
Next, FIG. 5(b) shows the operating principle at the time of reading. At the time of reading, the reflecting mirror 304 shown in FIG. 1 is switched to irradiate laser light of a constant intensity. This laser beam is scanned vertically and horizontally along the pattern of the island-shaped first electrode 105, and only one island is irradiated at a certain moment. Since the transparent electrode 102 and the second electrode 103 are connected to the amplifier 202, the voltage difference between the photovoltaic cell 113 and the secondary battery 114, which are irradiated with laser light, becomes an input to the amplifier 202.

光電池113の電圧はレーザー光が一定、つまり一定電
圧なので撮像時の照射光に比例した二次電池114の電
圧を読み出せることになる。レーザー光が当たらない他
の素子の光電池は開放と等価なので影響をおよぼさない
やまた増幅器202の入力電流を二次電池114のリー
ク電流程度にすれば、この読み出しによる二次電池11
4の電圧低下は無視できるので読み出しを何回でも、ま
たは長時間性なっても良い。
Since the voltage of the photocell 113 is constant for the laser beam, that is, the voltage is constant, it is possible to read the voltage of the secondary battery 114 that is proportional to the irradiation light during imaging. Since the photovoltaic cells of other elements that are not hit by the laser beam are equivalent to being open, they will not be affected.Also, if the input current of the amplifier 202 is set to about the leakage current of the secondary battery 114, the secondary battery 11 due to this readout
Since the voltage drop of 4 is negligible, reading may be performed any number of times or for a long period of time.

次に、第5図(c)に消去時の動作原理を示す。Next, FIG. 5(c) shows the principle of operation during erasing.

消去時は撮像時と逆の電圧を外部から印可して行なう、
この場合の光半導体113は順方向バイアスのダイオー
ドと等価なので、二次電池114の電荷を放電すること
になる。この時の外部の消去用電卿り03の電圧はダイ
オード動作の光電池113の順方向電圧よりも高くして
おく必要がある。
When erasing, a voltage opposite to that used during imaging is applied externally.
Since the optical semiconductor 113 in this case is equivalent to a forward bias diode, the charge of the secondary battery 114 is discharged. At this time, the voltage of the external erasing voltage 03 needs to be higher than the forward voltage of the diode-operated photovoltaic cell 113.

以上のようにこの実施例によれば、光半導体の誘起電圧
を二次電池に充電することにより、長時間の記憶が可能
となる。これにより一度光入力があるとそれを記憶し、
何度でも読み出すことができる非周期動作に適した撮像
装置を得ることができる。
As described above, according to this embodiment, long-term storage is possible by charging the secondary battery with the induced voltage of the optical semiconductor. This way, once there is an optical input, it is memorized,
An imaging device suitable for non-periodic operation that can be read out any number of times can be obtained.

また、第3図では6×6のマトリクスで説明したが、マ
トリクス駆動していないので、この素子数に基本的に制
限は受けない。この制限はレーザーのビーム径ないしは
二次電池が細分化されることによる読み出し電流の減少
のS/N比で決まる。
Furthermore, although the explanation has been made using a 6×6 matrix in FIG. 3, since no matrix driving is performed, there is basically no restriction on the number of elements. This limit is determined by the laser beam diameter or the S/N ratio of the reduction in readout current due to the subdivision of the secondary battery.

この範囲内で数多くの素子を集積することが可能である
It is possible to integrate a large number of elements within this range.

第6図は本発明の第2の実施例における撮像装置に使用
する撮像素子の断面図を示すものである。
FIG. 6 shows a cross-sectional view of an imaging element used in an imaging device according to a second embodiment of the present invention.

第2の実施例は第1の実施例の光電池を光導電体に変え
たものである。第6図において、115は光導電体であ
り、これ以外は第2図と同様であるので同一番号で示す
。光導電体115はアモルファスシリコン、Si、Zn
5e、ZnTe、CdS 、 Cd S e 、 Cd
 T e等が使用できる。
In the second embodiment, the photovoltaic cell of the first embodiment is replaced with a photoconductor. In FIG. 6, reference numeral 115 is a photoconductor, and since the rest is the same as in FIG. 2, it is designated by the same number. The photoconductor 115 is made of amorphous silicon, Si, Zn.
5e, ZnTe, CdS, CdS e, Cd
T e etc. can be used.

第7図に第6図の撮像素子の等価回路とそれに対応した
信号処理回路を示す、第7図において、第4図と同一機
能のものは同一番号を付して説明を省略する。第7図に
おいて116は第6図の光導電体115の抵抗で照射光
に反比例する。そして第1の実施例と同様に第1電極1
05が互いに独立なので、直列接続された抵抗と二次電
池の組が島化された数だけあることになる。204は撮
像時の書き込み電源、205は消去時の電源である。
FIG. 7 shows an equivalent circuit of the image sensor shown in FIG. 6 and a corresponding signal processing circuit. In FIG. 7, parts having the same functions as those in FIG. 4 are given the same numbers and their explanations are omitted. In FIG. 7, 116 is the resistance of the photoconductor 115 shown in FIG. 6, which is inversely proportional to the irradiated light. Then, as in the first embodiment, the first electrode 1
05 are independent from each other, there are as many sets of resistors and secondary batteries connected in series as islands. Reference numeral 204 indicates a write power supply during imaging, and 205 indicates a power supply during erasing.

以上のように構成されたこの第2の実施例の撮像装置に
おいて、以下その動作を第8図と共に説明する。
The operation of the imaging apparatus of the second embodiment configured as described above will be explained below with reference to FIG. 8.

まず、第8図(a)は撮像時の動作原理を示す。First, FIG. 8(a) shows the principle of operation during imaging.

撮像レンズ305を通った光が光導電体115に照射さ
れこの照射光に反比例した抵抗116になる。撮像時は
書き込み電源204が接続されているのでこの抵抗11
6を通じて二次電池114を充電し、第1の実施例と同
様に照射光のパターンを二次電池の電圧パターンに変換
したことになる。
The light passing through the imaging lens 305 is irradiated onto the photoconductor 115, resulting in a resistance 116 that is inversely proportional to the irradiated light. During imaging, the write power supply 204 is connected, so this resistor 11
6, the secondary battery 114 is charged, and the pattern of the irradiated light is converted into the voltage pattern of the secondary battery as in the first embodiment.

次に、第8図(b)に読み出し時の動作原理を示す。第
1の実施例と同様に読み出し時は第1図の反射鏡304
を切り換え、一定強度のレーザー光を照射する。レーザ
ー光が当たっている光導電体のみ短絡状態になるので撮
像時の照射光に比例した二次電池114の電圧を読み出
せることになる。他は素子は開放状態なので影響をおよ
ぼさない 次に第8図(C)に消去時の動作原理を示す。
Next, FIG. 8(b) shows the operating principle at the time of reading. As in the first embodiment, when reading, the reflecting mirror 304 in FIG.
, and irradiate the laser beam with a certain intensity. Since only the photoconductor that is irradiated with the laser light is short-circuited, the voltage of the secondary battery 114 that is proportional to the irradiation light during imaging can be read out. Since the other elements are in an open state, there is no influence. Next, FIG. 8(C) shows the principle of operation during erasing.

消去時は撮像時と逆の電圧を電源205にて印加し、同
時に光を照射して光導電体116を短絡状態にして二次
電池114を放電することで行なう。
Erasing is performed by applying a voltage opposite to that during imaging from the power supply 205 and simultaneously irradiating light to short-circuit the photoconductor 116 and discharge the secondary battery 114.

この光を読み出し時のレーザー光と兼用してもよい。こ
の場合、部分消去が可能となる。全体消去の場合は走査
する必要がないので別な光源を用いて一度に消去しても
よい。また、消去時間を長く設定できる場合は電源20
5を用いずに短絡するだけでも良い。
This light may also be used as a laser light during readout. In this case, partial erasure becomes possible. In the case of total erasing, there is no need to scan, so a separate light source may be used to erase all at once. Also, if you can set a longer erasing time, please set the power supply to 20
It is also possible to simply short-circuit without using 5.

以上のようにこの実施例によれば、第1の実施例と同様
に二次電池に充電することにより、長時間の記憶が可能
となる。そして光導電体の方が光電池よりも光吸収波長
、怒度の点で選択の幅が広い利点がある。
As described above, according to this embodiment, by charging the secondary battery as in the first embodiment, long-term storage becomes possible. Photoconductors have the advantage of offering a wider range of options than photovoltaic cells in terms of light absorption wavelength and intensity.

なお、第1及び第2の実施例では読みだしにレーザー光
を使用したが、レーザーのようにコーヒーレントな光は
必須条件でなく一定強度の光であれば良く、通常のラン
プ光で可能である。
Note that although laser light was used for reading in the first and second embodiments, coherent light such as a laser is not a necessary condition, and light of a constant intensity is sufficient, and ordinary lamp light can be used. be.

発明の詳細 な説明したように、本発明によれば、間欠的に発生する
現象の撮像やランダムな周期の出力にも対応できる撮像
装置を得ることができ、その実用的効果は大きい。
As described in detail, according to the present invention, it is possible to obtain an imaging device that can cope with imaging of phenomena that occur intermittently and output with random cycles, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における撮像装置の構成
図、第2図は同実施例の撮像素子の断面図、第3図は同
実施例の撮像素子の平面図、第4図は同実施例の撮像素
子と信号処理回路の等価回路図、第5図(a)〜(C)
は同実施例の動作説明図、第6図は本発明の他の実施例
における撮像装置に使用する撮像素子の断面図、第7図
は同実施例の撮像素子と信号処理回路の等価回路図、第
8図(a)〜(C)は同実施例の動作説明図である。 100・・・撮像素子、101・・・光透過性基板、1
02・・・透明電極、103.104・・・光半導体、
105・・・第1電極、106・・・異方性固体電解質
、107・・・第2電極、200・・・信号処理回路、
300・・・レーザー発振器、302・・・ガルバノメ
ータ、303・・・回転多面鏡、305・・・撮像レン
ズ。 代理人の氏名 弁理士 粟野重孝 はが1名第 図 第 図 第 図 第 図 第 図 第 図 勧n回階 !O5
FIG. 1 is a configuration diagram of an imaging device according to a first embodiment of the present invention, FIG. 2 is a sectional view of an imaging device of the same embodiment, FIG. 3 is a plan view of an imaging device of the same embodiment, and FIG. 4 5(a) to (C) are equivalent circuit diagrams of the image sensor and signal processing circuit of the same example.
is an explanatory diagram of the operation of the same embodiment, FIG. 6 is a sectional view of an image sensor used in an imaging device according to another embodiment of the present invention, and FIG. 7 is an equivalent circuit diagram of the image sensor and signal processing circuit of the same embodiment. , FIGS. 8(a) to 8(C) are explanatory diagrams of the operation of the same embodiment. 100...Image sensor, 101...Light transparent substrate, 1
02... Transparent electrode, 103.104... Optical semiconductor,
105... First electrode, 106... Anisotropic solid electrolyte, 107... Second electrode, 200... Signal processing circuit,
300... Laser oscillator, 302... Galvanometer, 303... Rotating polygon mirror, 305... Imaging lens. Name of agent: Patent attorney Shigetaka Awano (1 person) O5

Claims (3)

【特許請求の範囲】[Claims] (1)光透過性基板、透明電極、光半導体、島化された
第1電極、異方性固体電解質、第2電極を順次積層して
なる撮像素子と、前記光半導体に光学像を撮像する手段
と、垂直方向と水平方向に走査される光ビームを前記光
半導体に照射する手段とを備えたことを特徴とする撮像
装置。
(1) An imaging device formed by sequentially stacking a light-transmissive substrate, a transparent electrode, an optical semiconductor, an islanded first electrode, an anisotropic solid electrolyte, and a second electrode, and capturing an optical image on the optical semiconductor. An imaging device comprising: means for irradiating the optical semiconductor with a light beam scanned in a vertical direction and a horizontal direction.
(2)光透過性基板、透明電極、光導電体、島化された
第1電極、異方性固体電解質、第2電極を順次積層して
なる撮像素子と、前記光導電体に光学像を撮像する手段
と、垂直方向と水平方向に走査される光ビームを前記光
導電体に照射する手段とを備えたことを特徴とする撮像
装置。
(2) An imaging device comprising a light-transmissive substrate, a transparent electrode, a photoconductor, an islanded first electrode, an anisotropic solid electrolyte, and a second electrode laminated in sequence, and an optical image formed on the photoconductor. An imaging device comprising: means for imaging; and means for irradiating the photoconductor with a light beam scanned in vertical and horizontal directions.
(3)請求項2記載の撮像装置に一定の強度の光を前記
光導電体に照射する手段を加えることを特徴とする撮像
装置。
(3) An imaging device according to claim 2, further comprising means for irradiating the photoconductor with light of a constant intensity.
JP63304939A 1988-12-01 1988-12-01 Imaging device Expired - Fee Related JP2591120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304939A JP2591120B2 (en) 1988-12-01 1988-12-01 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304939A JP2591120B2 (en) 1988-12-01 1988-12-01 Imaging device

Publications (2)

Publication Number Publication Date
JPH02150181A true JPH02150181A (en) 1990-06-08
JP2591120B2 JP2591120B2 (en) 1997-03-19

Family

ID=17939137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304939A Expired - Fee Related JP2591120B2 (en) 1988-12-01 1988-12-01 Imaging device

Country Status (1)

Country Link
JP (1) JP2591120B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031159A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation detector
US8791389B2 (en) 2006-01-25 2014-07-29 Lincoln Global, Inc. Electric arc welding wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791389B2 (en) 2006-01-25 2014-07-29 Lincoln Global, Inc. Electric arc welding wire
JP2009031159A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation detector

Also Published As

Publication number Publication date
JP2591120B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US4672454A (en) X-ray image scanner and method
US5409550A (en) Solar cell module
WO2018224910A1 (en) Image capture device and electronic apparatus
CN102103034B (en) Optical property measuring system and method
US4660095A (en) Contact-type document scanner and method
JPS5848962A (en) Array device for photosensor
EP0263759A1 (en) Electrostatic image detector
US3746867A (en) Radiation responsive signal storage device
US3865975A (en) Deep trap, laser activated image converting system
JP2591120B2 (en) Imaging device
JP2003223789A (en) Data storage media and method utilizing layer adjacent storage layer
EP0342058A3 (en) Image pickup apparatus
US3515880A (en) Radiation sensitive recording system using solid state electrolytic layer
US5260559A (en) Method of detecting image information by photoelectric device
US3631409A (en) Electro-optic readout of information using a schlieren optical system
US6469292B1 (en) Photodetector and method of driving the same
US5036396A (en) Solid image-pickup device having storage cell unit
EP0338091A1 (en) Light-receiving element and method of operating the same
EP0252820A1 (en) Photoconductor image detector with a memory
US4139909A (en) Optoelectronic memory
JP2603621B2 (en) Information storage element
US3529300A (en) Method and apparatus for retrieving information stored by persistent internal polarization using a pure optical read out technique
JPH0322681A (en) Solid-state image pickup device
JPH0795825B2 (en) Solid-state imaging device
JPH0322682A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees