JPH0322682A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH0322682A
JPH0322682A JP1158015A JP15801589A JPH0322682A JP H0322682 A JPH0322682 A JP H0322682A JP 1158015 A JP1158015 A JP 1158015A JP 15801589 A JP15801589 A JP 15801589A JP H0322682 A JPH0322682 A JP H0322682A
Authority
JP
Japan
Prior art keywords
light
solid
state image
storage battery
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158015A
Other languages
Japanese (ja)
Inventor
Takeshi Miyabayashi
毅 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1158015A priority Critical patent/JPH0322682A/en
Priority to US07/537,797 priority patent/US5036396A/en
Publication of JPH0322682A publication Critical patent/JPH0322682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To expand the dynamic range and to improve the reproduction accuracy of a picture by using a battery for an optical memory element whose light absorbing characteristic differs from at charging and at discharge, detecting a reflecting light by light radiation to the element with the optical system and reading the signal. CONSTITUTION:An optical memory element 1 forming a solid-state image pickup element consists of a cell of a sheet battery 2 and a photoelectric conversion element 3 formed on a cathode conductor 4 of the battery 2. A light from an object radiates to the solid-state image pickup element 21 to store the charge corresponding to the object image to each element thereby forming an optical latent image. Then the light from a light source 31 radiates to an anode member of the solid-state image pickup element 21 with a polygon mirror 33 with scanning and a reflected light at that time is detected by a detector 35. Then a lithium ion quantity in a vanadium oxide of the anode member is changed in response to the charge of each element and the spectral intensity of the reflecting light changes accordingly. Thus, a signal corresponding to the optical image of the object is detected by a detector 35.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体撮像装置に関する. [従来の技術] 従来、固体撮像装置として電荷結合素子(CCD)が広
く用いられている.このCODは入射光により生じた電
荷を転送信号で転送する素子である. [発明が解決しようとする課題】 ところで、このCODは、電荷の転送効率が表面準位密
度、デバイスの形状や種々の動作条件で変動し易く、そ
のため、正確に光情報を電気信号として取り出すには動
作条件を厳しく管理しなければならない.また、COD
は電荷転送回路が複雑で微細化が困難であり、大面積、
高密度のCCDを形成することが極めて困難である 本発明は、上記問題を解消するもので、一画素毎に蓄電
機能を付与し、入射した光情報から容易に、かつ広い範
囲に亘って正確に蓄電量を計測することができ、複雑な
信号読出し回路を必要とせず、光学系を用いて信号の読
出しが可能な固体撮像装置を提供することを目的とする
. [課題を解決するための手段] 上記目的を達成するため本発明の固体撮像装置は、充電
時と放電時の光吸収特性が異なる陽極材を持つシート状
蓄電池セルの陰極上に光電変換素子を搭載することによ
り形戒した光メモリ素子を複数個配列した固体撮像素子
と、前記光電変換素子が受光した時に生じる電気エネル
ギーを前記蓄電池へ充電する充電回路と、充電された蓄
電池を放電する放電回路と、前記の充電によって固体撮
像素子に蓄積された電荷の続出時に前記陽極材へ光を照
射する光照射手段と、この光照射手段からの照射光の陽
極材による反射光を検出する検出手段とを具備したもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device. [Prior Art] Charge-coupled devices (CCDs) have been widely used as solid-state imaging devices. This COD is an element that transfers charges generated by incident light using a transfer signal. [Problems to be Solved by the Invention] Incidentally, in this COD, the charge transfer efficiency tends to vary depending on the surface state density, the shape of the device, and various operating conditions, so it is difficult to accurately extract optical information as an electrical signal. operating conditions must be strictly controlled. Also, COD
The charge transfer circuit is complicated and is difficult to miniaturize, requiring a large area and
The present invention solves the above problem, in which it is extremely difficult to form a high-density CCD.It provides a power storage function to each pixel, and it is possible to easily and accurately collect incident light information over a wide range. The purpose of this invention is to provide a solid-state imaging device that can measure the amount of stored electricity, and that can read signals using an optical system without requiring a complicated signal readout circuit. [Means for Solving the Problems] In order to achieve the above object, the solid-state imaging device of the present invention includes a photoelectric conversion element on the cathode of a sheet-shaped storage battery cell having an anode material with different light absorption characteristics during charging and discharging. A solid-state image sensor in which a plurality of optical memory elements are arranged in a manner such that the photoelectric conversion element receives light; a charging circuit that charges the storage battery with electrical energy generated when the photoelectric conversion element receives light; and a discharge circuit that discharges the charged storage battery. , a light irradiation means for irradiating light to the anode material when the charge accumulated in the solid-state image sensor by the charging continues, and a detection means for detecting light reflected by the anode material of the irradiation light from the light irradiation means. It is equipped with

[作用] 上記構成において、光電変換素子に光照射することによ
り生じた電気エネルギーをシート状蓄電池セルに充電す
る.蓄電池の陽極部がその充電状態により光吸収特性が
異なる物質であると、光メモリ素子の各光吸収特性が変
化するので、光照射手段により陽極部に光照射し、この
反射光をモニタすることで光メモリに形成された光潜像
に対応した電気信号を読出すことができる。
[Function] In the above configuration, the sheet-shaped storage battery cells are charged with electrical energy generated by irradiating the photoelectric conversion element with light. If the anode of the storage battery is made of a material that has different light absorption characteristics depending on its state of charge, each light absorption characteristic of the optical memory element will change. Electrical signals corresponding to the optical latent image formed on the optical memory can be read out.

[実施例] 以下、本発明を具体化したー実施例を図面を参照して説
明する. 第l図は本発明で用いる固体撮像素子を構成する光メモ
リ素子1の構威を示す. 光メモリ素子1は、シート状蓄電池2のセルと、同蓄電
池2の陰極集電体4上に形成された光電変換素子3から
なる.シート状蓄電池2は、陰極集電体4と、L i−
Aj合金からなる陰lf!5と、Li Br−Li8P
40等からなる固体電解質6と、v205,■6013
等からなる陽極7と、Ni等でなる陽極集電体8・から
なる.光電変換素子3は、Aj等で形成される表面電極
13と、SIO2等で形戒される反射防止膜9と、p−
Si10とi−Si11およびn−Si12からなる.
このような構成の光メモリ素子lに、光hνを入射する
と、一画素毎に受光量に応じ光電変換素子3により電気
エネルギーが生み出され、各シート状蓄電池2に蓄電さ
れ、光潜像が形成される.第2図は上記光メモリ素子1
をマトリックス状に配置結合した固体撮像素子2lを示
す。
[Examples] Hereinafter, examples that embody the present invention will be described with reference to the drawings. FIG. 1 shows the structure of an optical memory device 1 constituting the solid-state image sensor used in the present invention. The optical memory element 1 consists of cells of a sheet-shaped storage battery 2 and a photoelectric conversion element 3 formed on a cathode current collector 4 of the storage battery 2. The sheet storage battery 2 includes a cathode current collector 4 and a Li-
Yin lf made of Aj alloy! 5 and Li Br-Li8P
Solid electrolyte 6 consisting of 40 etc., v205, ■6013
An anode 7 made of Ni, etc., and an anode current collector 8 made of Ni, etc. The photoelectric conversion element 3 includes a surface electrode 13 formed of Aj or the like, an antireflection film 9 formed of SIO2 or the like, and a p-
Consists of Si10, i-Si11 and n-Si12.
When light hν is incident on the optical memory element l having such a configuration, electrical energy is generated by the photoelectric conversion element 3 according to the amount of light received for each pixel, and is stored in each sheet-shaped storage battery 2, forming an optical latent image. Ru. FIG. 2 shows the optical memory element 1.
A solid-state image sensing device 2l is shown in which the elements are arranged and combined in a matrix.

第3図は上記光電変換素子3に光があたった時のシート
状蓄電池2への充電回路および充電された蓄電池2を放
電するための放電回路を示す。
FIG. 3 shows a charging circuit for the sheet-like storage battery 2 and a discharging circuit for discharging the charged storage battery 2 when the photoelectric conversion element 3 is exposed to light.

第3図において、受光時はスイッチ17はON、スイッ
チ16はOFFであり、信号保持時はスイッチ16.1
7は共にOFFであり、消去時、スイッチ16はON、
スイッチl7はOFFにする.第2図において、固体撮
像素子21は上記各電極のX方向.Y方向の引き出しT
h極22.23を有し、これらの電極はスイッチ16に
接続されている.このスイッチ16には、マトリックス
スキャン動作されるシフトレジスタ等を用いている.こ
こで、蓄電池に用いている充電状態と放電状態とで光吸
収特性が異なる物質について第5図(a)(b)により
説明する。同図はLixV205の赤外線スペクトル《
横軸は振動数、縦軸は透過率)を示す.いま、シート状
蓄電池2の陽極7が酸化バナジウム系、陰極5がリチウ
ム(Li)系のものであれば、充電により酸化バナジウ
ム中からリチウムイオンのデインター力レーションが生
じる。陽極材がV 2 0 sであれば、赤外吸収スペ
クトルは第5図<a)に示すようにリチウムの?インタ
ー力レーションにより吸収極大が、振動数1 , 00
0〜1 , 020付近で変化する。また、V201■
であれば同図(b)に示すように吸収極大か振動数80
0〜900付近で変化する. このような吸収特性の変化をモニターすることで、各素
子の受光量を検知することができ、固体撮像素子として
の機能を得ることができる.第4図に固体taiaa素
子21を用いた固体撮像装置の一例を示す.同装置は、
固体撮像素子21に蓄積された電荷を読出すための光を
放射ずる光源31と、光源31からの光を面スキャンす
るための光偏向機32と、同偏向1132からの光を固
体撮像素子21へ投射するポリゴンミラ−33と、固体
撮像素子21からの反射光を集光する集光レンズ34と
、反射光を検出する検出1135から構成される.上記
の光源31としては陽極材としてV205を選択した場
合、波長11.0 〜12.5,u mのレーザ光が好
ましい. 上記構或において、固体撮像素子21に被写体からの光
を照射して各素子に被写体像に対応した電荷を蓄積し光
潜像を形戒する。この後、固体撮像素子21の陽極材に
、光源31からの光をポリゴンミラ−33によりスキャ
ン動作させて照射し、その時の反射光を検出機35にて
検出する.すると、前記各素子の電荷量に応じて陽極材
の酸化バナジウム中のリチウムイオン量が変化している
ため、これに応じて上記反射光のスペクトル強度が変化
する.したがって、検出1135には被写体の光学像に
対応した信号を検出することができる.[発明の効果] 以上のように本発明の固体撮像装置によれば、被写体か
らの受光量に応じて電荷が蓄積される光メモリ素子の蓄
電池に、充電時と放電時とで光吸収特性が異なるものを
用い、光学系にて素子への光照射による反射光を検出し
て信号を読出すようにしている.したがって、素子の蓄
積電荷量を光吸収特性の変化を利用して読出すことがで
き、従来のCODを用いた場合に比し、蓄積電荷を正確
に読出すことができ、ダイナミックレンジが大きく、画
像の再現性精度が高い.また、使用する照射光としての
レーザ光等の波長を短波長に選べば、従来のCODでは
到達できない高密度の記録が可能となる.さらに、CO
Dのように読出しのために高密度な配線が必要でなく、
そのため、!I!遺上においての歩留まりがよく、大面
積の固体撮像素子を備えたものが得られる.
In FIG. 3, when light is received, switch 17 is ON and switch 16 is OFF, and when the signal is held, switch 16.1 is turned on.
7 are both OFF, and when erasing, switch 16 is ON,
Turn switch l7 off. In FIG. 2, the solid-state image sensor 21 is arranged in the X direction of each of the electrodes. Y direction drawer T
h-poles 22, 23, these electrodes are connected to the switch 16. This switch 16 uses a shift register or the like that operates in matrix scan mode. Here, materials used in storage batteries that have different light absorption characteristics depending on the charged state and the discharged state will be explained with reference to FIGS. 5(a) and 5(b). The figure shows the infrared spectrum of LixV205《
The horizontal axis shows the frequency and the vertical axis shows the transmittance). Now, if the anode 7 of the sheet storage battery 2 is of a vanadium oxide type and the cathode 5 is of a lithium (Li) type, deinterlation of lithium ions will occur from the vanadium oxide upon charging. If the anode material is V 20 s, the infrared absorption spectrum of lithium is as shown in Figure 5<a). The absorption maximum due to force interaction is at a frequency of 1,00
It changes around 0 to 1,020. Also, V201■
If so, as shown in the same figure (b), the absorption maximum or the frequency is 80.
It changes around 0-900. By monitoring such changes in absorption characteristics, the amount of light received by each element can be detected, allowing it to function as a solid-state imaging device. FIG. 4 shows an example of a solid-state imaging device using a solid-state TAIA element 21. The device is
A light source 31 that emits light for reading out the charges accumulated in the solid-state image sensor 21 , a light deflector 32 that performs surface scanning of the light from the light source 31 , and a light deflector 1132 that directs the light from the light source 31 to the solid-state image sensor 21 It is composed of a polygon mirror 33 that projects the light onto the solid-state image sensor 21, a condensing lens 34 that collects the reflected light from the solid-state image sensor 21, and a detector 1135 that detects the reflected light. When V205 is selected as the anode material for the light source 31, a laser beam having a wavelength of 11.0 to 12.5 um is preferable. In the above structure, the solid-state image sensor 21 is irradiated with light from the object, and charges corresponding to the image of the object are accumulated in each element to form an optical latent image. Thereafter, the anode material of the solid-state image pickup device 21 is irradiated with light from the light source 31 while being scanned by the polygon mirror 33, and the reflected light at that time is detected by the detector 35. Then, since the amount of lithium ions in the vanadium oxide of the anode material changes depending on the amount of charge of each element, the spectral intensity of the reflected light changes accordingly. Therefore, the detection 1135 can detect a signal corresponding to the optical image of the object. [Effects of the Invention] As described above, according to the solid-state imaging device of the present invention, the storage battery of the optical memory element, which accumulates charge according to the amount of light received from the subject, has different light absorption characteristics between charging and discharging. The signal is read out by detecting the reflected light from the irradiation of light onto the element using an optical system. Therefore, the amount of accumulated charge in the element can be read out using changes in the light absorption characteristics, and compared to the case of using a conventional COD, the accumulated charge can be read out more accurately and the dynamic range is larger. Image reproducibility accuracy is high. Furthermore, if the wavelength of the laser beam used as the irradiation light is selected to be short, high-density recording that cannot be achieved with conventional COD becomes possible. Furthermore, CO
Unlike D, high-density wiring is not required for reading,
Therefore,! I! It has a high yield rate and can be equipped with a large-area solid-state image sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による画像形成装置に用いた
固体撮像素子を横成する光メモリ素子の構成図、第2図
は同光メモリ素子を配列した固体撮像素子の平面図、第
3図は光メモリ素子の電気回路を含んだ構成図、第4図
は固体撮像装置の構成図、第5図(a)(b)は光メモ
リ素子における蓄電池陽極材の赤外線スペクトルの特性
図である. l・・・光メモリ素子、2・・・シート状蓄電池、3・
・・光電変換素子、4・・・陰極集電体、8・・・陽極
集電体、16゜,17・・・スイッチ、21・・・固体
撮像素子、31・・・光源、35・・・検出機.
FIG. 1 is a block diagram of an optical memory element forming a solid-state image sensor used in an image forming apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of a solid-state image sensor in which the same optical memory elements are arranged, and FIG. 4 is a configuration diagram including an electric circuit of an optical memory element, FIG. 4 is a configuration diagram of a solid-state imaging device, and FIGS. 5(a) and 5(b) are infrared spectrum characteristic diagrams of a storage battery anode material in an optical memory element. l... Optical memory element, 2... Sheet storage battery, 3...
... Photoelectric conversion element, 4... Cathode current collector, 8... Anode current collector, 16°, 17... Switch, 21... Solid-state image sensor, 31... Light source, 35...・Detector.

Claims (1)

【特許請求の範囲】[Claims] (1)充電時と放電時の光吸収特性が異なる陽極材を持
つシート状蓄電池セルの陰極上に光電変換素子を搭載す
ることにより形成した光メモリ素子を複数個配列した固
体撮像素子と、 前記光電変換素子が受光した時に生じる電気エネルギー
を前記蓄電池へ充電する充電回路と、充電された蓄電池
を放電する放電回路と、 前記の充電によって固体撮像素子に蓄積された電荷の読
出時に前記陽極材へ光を照射する光照射手段と、 この光照射手段からの照射光の陽極材による反射光を検
出する検出手段とを具備したことを特徴とする固体撮像
装置。
(1) A solid-state image sensor in which a plurality of optical memory elements are arranged, which are formed by mounting a photoelectric conversion element on the cathode of a sheet-shaped storage battery cell having an anode material with different light absorption characteristics during charging and discharging; a charging circuit that charges the storage battery with electrical energy generated when the conversion element receives light; a discharge circuit that discharges the charged storage battery; and a discharge circuit that charges the storage battery with electrical energy generated when the conversion element receives light; What is claimed is: 1. A solid-state imaging device comprising: a light irradiation means for irradiating light; and a detection means for detecting light reflected by an anode material of the irradiation light from the light irradiation means.
JP1158015A 1989-06-19 1989-06-19 Solid-state image pickup device Pending JPH0322682A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1158015A JPH0322682A (en) 1989-06-19 1989-06-19 Solid-state image pickup device
US07/537,797 US5036396A (en) 1989-06-19 1990-06-14 Solid image-pickup device having storage cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158015A JPH0322682A (en) 1989-06-19 1989-06-19 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH0322682A true JPH0322682A (en) 1991-01-31

Family

ID=15662410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158015A Pending JPH0322682A (en) 1989-06-19 1989-06-19 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH0322682A (en)

Similar Documents

Publication Publication Date Title
US3808435A (en) Infra-red quantum differential detector system
EP3333609B1 (en) Image pickup apparatus, solid-state image pickup device, and image pickup method
JPS5958306A (en) Range finder
US5483068A (en) Use of IR (thermal) imaging for determining cell diagnostics
EP0263759A1 (en) Electrostatic image detector
US11871132B2 (en) Devices and methods for obtaining three-dimensional shape information using polarization and time-of-flight detection pixel cells
CA1279127C (en) Integrated radiation sensing array
US3865975A (en) Deep trap, laser activated image converting system
JPH0322682A (en) Solid-state image pickup device
EP0414793A1 (en) Electronic still camera tube
JPH0322681A (en) Solid-state image pickup device
JPH0727763B2 (en) Streak tube target
US7485867B2 (en) Exposure system and hole array
JP2591120B2 (en) Imaging device
US4051370A (en) Optical system for thermal imager
Takayanagi et al. Amplified MOS imager for soft X-ray imaging
US5036396A (en) Solid image-pickup device having storage cell unit
JPS6329788B2 (en)
JP2737972B2 (en) Image forming device
JPH0322683A (en) Solid-state image pickup device
EP0252820A1 (en) Photoconductor image detector with a memory
JPH0795825B2 (en) Solid-state imaging device
JPS6386472A (en) Solid-state image sensing element
JPH01121816A (en) Solid-state image pickup device
KR100425379B1 (en) digital radiography detecting equipment and radiography detecting method