JPH02150074A - Pb2cro5 thin film lateral photodetector - Google Patents
Pb2cro5 thin film lateral photodetectorInfo
- Publication number
- JPH02150074A JPH02150074A JP63302309A JP30230988A JPH02150074A JP H02150074 A JPH02150074 A JP H02150074A JP 63302309 A JP63302309 A JP 63302309A JP 30230988 A JP30230988 A JP 30230988A JP H02150074 A JPH02150074 A JP H02150074A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- dark
- pb2cro5
- depositing
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 11
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 4
- 238000009413 insulation Methods 0.000 abstract description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000609 electron-beam lithography Methods 0.000 abstract description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000005297 pyrex Substances 0.000 abstract description 2
- 238000001039 wet etching Methods 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 4
- 239000010408 film Substances 0.000 abstract 4
- 238000010894 electron beam technology Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半絶縁性Pb2CrO5薄膜基板上に作製した
横形受光素子に、関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a horizontal photodetector fabricated on a semi-insulating Pb2CrO5 thin film substrate.
(従来の技術)
光電素子の集積化の問題において、半絶縁性基板の使用
と素子の横形構造の採用は有効である。(Prior Art) In the problem of integrating photoelectric elements, it is effective to use a semi-insulating substrate and adopt a horizontal structure of the element.
現在、半絶縁性基板上の横形p−1−n構造と横形金属
−半導体−金属(MSM)構造の2種類が提案されてい
る。特に、MSM構造ホトダイオードは製作工程が少な
(、また、高温工程を含まないために信頼性も高いこと
から注目されている。一方、Pb2CrO5は誘電体の
一種として1968年に発見された非常に高い抵抗率を
有する材料である。Currently, two types of structures have been proposed: lateral p-1-n structures on semi-insulating substrates and lateral metal-semiconductor-metal (MSM) structures. In particular, MSM structure photodiodes are attracting attention because they require fewer manufacturing steps (and are highly reliable because they do not involve high-temperature processes.On the other hand, Pb2CrO5, which was discovered in 1968 as a type of dielectric material, has a very high It is a material with resistivity.
(発明が解決しようとする課題)
しかしながら、従来から可視光から近紫外光に感度を有
する光センサにおいて素子の集積化に問題があった。そ
こで、本発明ではPb2CrO5と金属との接触がショ
ットキーバリアを形成することを利用し、素子の集積化
に都合のよい大きな結晶性と配向性、並びに優れた絶縁
性を示すPb2CrO5薄膜を用いた横形受光素子を提
供することを目的とする。(Problems to be Solved by the Invention) However, conventional optical sensors sensitive to visible light to near-ultraviolet light have had problems in integrating elements. Therefore, in the present invention, we utilize the fact that contact between Pb2CrO5 and metal forms a Schottky barrier, and use a Pb2CrO5 thin film that exhibits large crystallinity and orientation, which are convenient for device integration, as well as excellent insulation properties. The object of the present invention is to provide a horizontal light-receiving element.
(課題を解決するための手段)
本発明は前記問題点を解決するために、基板と、この基
板上にPb2CrO5を蒸着形成した薄膜層と、この薄
膜層上に金属を蒸着形成した電極層とからなる構造を有
することに特徴がある。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a substrate, a thin film layer formed by vapor deposition of Pb2CrO5 on this substrate, and an electrode layer formed by vapor deposition of metal on this thin film layer. It is characterized by having a structure consisting of.
(作用)
以上のような構造を有する本発明によれば、素子の集積
化に都合のよい大きな結晶性と配向性、並びに優れた絶
縁性を示すPb2CrO5薄膜を用いたことで、早い応
答速度、低暗電流特性、高い光電流/暗電流比が得られ
、かつ本素子が光電素子の集積化に有用である。(Function) According to the present invention having the above-described structure, by using a Pb2CrO5 thin film that exhibits large crystallinity and orientation that are convenient for device integration as well as excellent insulation properties, a fast response speed, This device has low dark current characteristics and a high photocurrent/dark current ratio, and is useful for integrating photoelectric devices.
(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図は本発明の一実施例の構造を示す平面図、第2図
は第1図の断面図である。両図において、パイレックス
のガラス基板1上には厚さが5100人の配向Pb2C
rO5薄膜2が磁場偏向型電子ビーム蒸着法によって蒸
着形成されている。薄膜2は、大気中で425℃−1,
5時間の熱処理を施された後、4 X 10−’tor
rの高真空中で表面全体に厚さが600人の金の電極3
が抵抗加熱法によって蒸着される。第1図に示された電
極形状は電子ビーム描画装置(ELS−3300:エリ
オニクス社)とウェットエツチング法を用いて作製した
。FIG. 1 is a plan view showing the structure of an embodiment of the present invention, and FIG. 2 is a sectional view of FIG. 1. In both figures, the Pyrex glass substrate 1 has an oriented Pb2C layer with a thickness of 5100 mm.
An rO5 thin film 2 is deposited by magnetically deflected electron beam evaporation. The thin film 2 was heated at 425°C-1 in the atmosphere.
After being heat treated for 5 hours, 4 X 10-'tor
Gold electrodes with a thickness of 600 mm over the entire surface in a high vacuum at r
is deposited by resistance heating. The electrode shape shown in FIG. 1 was produced using an electron beam lithography system (ELS-3300: Elionix Co., Ltd.) and a wet etching method.
光電特性の測定は、He−Neレーザ(0,6mW、λ
=543.5nm )を光源に用い、ガラス基板側から
光を照射する状態で行った。第3図は暗電流及び光電流
の検出回路を示す回路図である。本実施例の素子の一方
の電極にバイアス電圧を加え、素子に流れる電流をオペ
アンプを用いた電流−電圧変換回路で検出している。The photoelectric characteristics were measured using a He-Ne laser (0.6 mW, λ
= 543.5 nm) as a light source, and light was irradiated from the glass substrate side. FIG. 3 is a circuit diagram showing a dark current and photocurrent detection circuit. A bias voltage is applied to one electrode of the element of this example, and the current flowing through the element is detected by a current-voltage conversion circuit using an operational amplifier.
第4図は光強度変調光に対する受光素子の応答例で、電
極間隙が4μm、バイアス電圧が一40Vにおける結果
である。変調光はOFF状態で完全に消灯させるよりも
ON状態の数10パーセント程度の光強度とする方が素
子の応答が早い。ここでは0N10FF状態の光強度が
50/29mW/cm2である。無変調光のON及びO
FF状態の光電流をそれぞれ100%および0%として
規格化した信号電流を変調周波数に対してプロットした
ものが第5図である。信号電流の変化が低周波時の半分
になる周波数をカットオフ周波数fcと定義すると、素
子は120k)(zまで応答することがわかる。FIG. 4 shows an example of the response of the light receiving element to light intensity modulated light, and shows the results when the electrode gap is 4 μm and the bias voltage is 140V. The response of the element is faster when the modulated light is set at a light intensity of several tens of percent of that in the ON state than when it is completely turned off in the OFF state. Here, the light intensity in the 0N10FF state is 50/29 mW/cm2. ON and O of unmodulated light
FIG. 5 is a plot of the signal current, which is normalized by setting the photocurrent in the FF state as 100% and 0%, respectively, against the modulation frequency. If the cutoff frequency fc is defined as the frequency at which the change in signal current is half that of the low frequency, it can be seen that the element responds up to 120k)(z).
また、光を照射しない状態で素子に流れる電流(暗電流
)は他の半導体材料を用いた受光素子と比べて極めて小
さな値である。電極間隙幅が4.8.24μmの素子に
ついてバイアス電圧を変えて暗電流を測定した結果が第
6図に示されている。Furthermore, the current (dark current) that flows through the element when no light is irradiated is extremely small compared to light receiving elements using other semiconductor materials. FIG. 6 shows the results of measuring the dark current while varying the bias voltage for a device with an electrode gap width of 4.8.24 μm.
暗電流が電界強度に比例した量であることがわかる。電
界強度が20kV/mmを超える付近から暗電流は加速
度的に増加し、素子の安定な動作が損なわれるが、4μ
mの素子でバイアス電圧が一40Vにおいて安定な動作
と僅か2pAの小さな暗電流特性が得られている。It can be seen that the dark current is proportional to the electric field strength. The dark current increases at an accelerating rate when the electric field strength exceeds 20 kV/mm, impairing the stable operation of the device.
Stable operation and a small dark current characteristic of only 2 pA were obtained with a bias voltage of 140 V using a device of m.
第7図は4μmの素子、バイアス電圧が一40Vの場合
の光電流の光強度依存性を示している。両対数プロット
で傾きが0.6の直線となる。光電流は光強度が90m
W/cm2の時に5nAに達し、光電流/暗電流比は2
500が得られた。FIG. 7 shows the dependence of photocurrent on light intensity for a 4 μm element and a bias voltage of 140 V. A log-log plot shows a straight line with a slope of 0.6. The photocurrent has a light intensity of 90m.
It reaches 5 nA at W/cm2, and the photocurrent/dark current ratio is 2.
500 was obtained.
(発明の効果)
以上説明したように、本発明によれば、大きな配向性を
示す半絶縁性Pb2CrO5薄膜基板上に作製した横形
受光素子の応答速度(120kHz ) 、低暗電流特
性(−40V時に暗電流2pA)、高い光電流/暗電流
比(90mW/cm2時に光電流/暗電流比2500)
を確認し、本素子が光電素子の集積化に有用である。(Effects of the Invention) As explained above, according to the present invention, the response speed (120 kHz) and low dark current characteristics (at -40 V) of the horizontal light receiving element fabricated on the semi-insulating Pb2CrO5 thin film substrate exhibiting large orientation are improved. dark current 2pA), high photocurrent/dark current ratio (photocurrent/dark current ratio 2500 at 90mW/cm2)
It was confirmed that this device is useful for integrating photoelectric devices.
第1図は本発明の一実施例のPb2CrO5薄膜横型受
光素子を示す図、第2図は第1図の平面図、第3図は本
実施例の素子の暗電流及び光電流の検出回路を示す回路
図、第4図は本実施例の光強度変調光に対する応答特性
を示す図、第5図は本実施例の信号電流−周波数特性を
示す図、第6図は本実施例の光強度−充電流特性を示す
図、第7図は4μmの素子、バイアス電圧が一40Vの
場合の光電流の光強度依存性を示す図である。
1・・・ガラス基板、
2・・・薄膜、
3・・・電極。FIG. 1 is a diagram showing a Pb2CrO5 thin film horizontal photodetector according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. FIG. 4 is a diagram showing the response characteristics of this embodiment to light intensity modulated light, FIG. 5 is a diagram showing the signal current-frequency characteristics of this embodiment, and FIG. 6 is a diagram showing the response characteristics of this embodiment to light intensity modulated light. - A diagram showing charging current characteristics. FIG. 7 is a diagram showing the dependence of photocurrent on light intensity in a case of a 4 μm element and a bias voltage of 140 V. 1... Glass substrate, 2... Thin film, 3... Electrode.
Claims (1)
、該薄膜層上に金属を蒸着形成した電極層とからなるP
b_2CrO_5薄膜横形受光素子。[Scope of Claims] P comprising a substrate, a thin film layer formed by vapor deposition of Pb_2CrO_5 on the substrate, and an electrode layer formed by vapor deposition of metal on the thin film layer.
b_2CrO_5 thin film horizontal photodetector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63302309A JP2748458B2 (en) | 1988-12-01 | 1988-12-01 | Photocurrent generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63302309A JP2748458B2 (en) | 1988-12-01 | 1988-12-01 | Photocurrent generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02150074A true JPH02150074A (en) | 1990-06-08 |
JP2748458B2 JP2748458B2 (en) | 1998-05-06 |
Family
ID=17907408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63302309A Expired - Lifetime JP2748458B2 (en) | 1988-12-01 | 1988-12-01 | Photocurrent generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2748458B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62140473A (en) * | 1985-12-14 | 1987-06-24 | Koji Toda | Manufacture of photoelectric conversion device |
-
1988
- 1988-12-01 JP JP63302309A patent/JP2748458B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62140473A (en) * | 1985-12-14 | 1987-06-24 | Koji Toda | Manufacture of photoelectric conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP2748458B2 (en) | 1998-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2706029B2 (en) | pin diode | |
WO2022126933A1 (en) | Preparation method for photoelectric detector implementing wavelength selective response | |
JPS6258157B2 (en) | ||
CN109920863A (en) | Narrow bandgap semiconductor film, photodiode and preparation method | |
JPS62160776A (en) | Photovoltage detector and manufacture of the same | |
JP2000196134A (en) | Visible-blind uv detector | |
JPH02150074A (en) | Pb2cro5 thin film lateral photodetector | |
US6198100B1 (en) | Method for fabricating an infrared radiation detector | |
JPS58202579A (en) | Semiconductor device and method of producing same | |
CN114373812A (en) | Photoelectric detector and preparation method thereof | |
CN114361289A (en) | Construction method of self-driven ultrafast photoelectric detector based on van der Waals metal electrode | |
JP4280342B2 (en) | Electrical element | |
JPH027576A (en) | Manufacture of thin-film type photoelectric converting element | |
Badila et al. | Lift-off technology for SiC UV detectors | |
JP2001127336A (en) | Electronic avalanche photodiode of absorption/ multiplication separation-type of high gain | |
CN110335900A (en) | A kind of tin indium oxide/vertical graphene photodetector composite construction and preparation method thereof | |
CN107527969A (en) | A kind of electrolyte Gate oxide semiconductor phototransistors for ultraviolet detector | |
CN114883434B (en) | Self-powered MSM type ZnO-based ultraviolet photoelectric detector and preparation method thereof | |
JPS5990966A (en) | Optoelectric conversion element | |
JP2854363B2 (en) | Manufacturing method of light receiving element | |
US10964899B1 (en) | Hybrid junction solar light sensitive device | |
JPH02177480A (en) | Manufacture of optical semiconductor device | |
JPS61116886A (en) | Manufacture of photovoltaic device | |
JPS61226974A (en) | Selenium photodiode | |
CA1281440C (en) | Device including a radiation sensor |