JPH02149652A - Method for surface finishing of titanium difficult to flow and having prolonged service life of gloss - Google Patents

Method for surface finishing of titanium difficult to flow and having prolonged service life of gloss

Info

Publication number
JPH02149652A
JPH02149652A JP30302788A JP30302788A JPH02149652A JP H02149652 A JPH02149652 A JP H02149652A JP 30302788 A JP30302788 A JP 30302788A JP 30302788 A JP30302788 A JP 30302788A JP H02149652 A JPH02149652 A JP H02149652A
Authority
JP
Japan
Prior art keywords
titanium
layer
thickness
phase
gloss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30302788A
Other languages
Japanese (ja)
Other versions
JPH0692631B2 (en
Inventor
Shinichi Arai
信一 新井
Yasuo Tsukahara
塚原 靖夫
Masato Nakazawa
眞人 仲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30302788A priority Critical patent/JPH0692631B2/en
Publication of JPH02149652A publication Critical patent/JPH02149652A/en
Publication of JPH0692631B2 publication Critical patent/JPH0692631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To permit the surface finishing of titanium having excellent surface uniformity and corrosion resistance by coating titanium with nickel having specific thickness, holding it by heating at a specific temp. for specific time, thereafter cooling it at a specific speed, removing the surface part and regulating the layer of a beta-Ti phase having specific thickness to the utmost surface. CONSTITUTION:The surface of titanium is applied with nickel coating having 3 to 30mm thickness. The titanium is held by heating at 850 to 950 deg.C for 0.5 to 30min and is thereafter cooled to <=200 deg.C at >=40 deg.C/sec cooling speed. Then, residual Ni on the surface layer and an intermetallic compound layer are removed to regulate a layer constituted of a beta-Ti layer having 20 to 150mum thickness to the utmost surface. In this way, surface finishing of titanium having excellent surface uniformity and corrosion resistance can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチタンの表面硬化方法に関し、特に疵が付き難
く、耐食性が優れ、光沢寿命の長いチタンの表面仕上方
法に係わる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for hardening the surface of titanium, and particularly to a method for finishing the surface of titanium, which is hard to scratch, has excellent corrosion resistance, and has a long gloss life.

(従来の技術) チタン、特に純チタンはステンレス鋼板等に比べて軽量
で耐食性が優れ、また熱膨張率も小さい等種々の利点お
よび特徴を有するが、反面比較的軟質であるため疵が付
き易く、耐摩耗性および表面の光沢等が他の金属素材に
比べて見劣りする等の欠点も併せ持つ。従って、日用雑
貨品、電気製品、装身具あるいはカーブミラー等の各種
鏡面加工部材2等多様な用途が潜在しているにも拘らず
広く使用に供されるに至っていない。
(Prior art) Titanium, especially pure titanium, has various advantages and characteristics such as being lighter and having better corrosion resistance than stainless steel sheets, and has a lower coefficient of thermal expansion. However, on the other hand, it is relatively soft and is easily scratched. However, it also has disadvantages such as inferior abrasion resistance and surface gloss compared to other metal materials. Therefore, although it has potential for a variety of applications such as daily necessities, electrical appliances, accessories, and various mirror-finished members 2 such as curved mirrors, it has not been widely used.

これを改善するための一つの方策として従来よりチタン
の表面の硬質化を図る方法が種々検討。
As a way to improve this problem, various methods have been investigated to make the surface of titanium harder.

提案されてきた。このようなチタンの表面硬化方法とし
ては大別して窒化法、ホウ化法あるいは被覆金属の拡散
法等が知られているが、前二者は硬化層の形成に高温で
の長時間加熱処理を要し、また硬化層も数μm程度と薄
く、均質に形成し難い等の種々の欠点を有する。後者の
被覆金属の拡散法は、予めニッケル、コバルト、錫ある
いはクロム等の金属をメツキ等の方法でチタンに被覆し
た後、加熱処理して、これらの被覆金属をチタン中に拡
散させてチタンの表面を硬化するものであり、この種の
表面硬化方法としては、例えば特開昭56−81665
号公報あるいは特開昭58−91165号公報等による
提案がある。これら拡散法における従来の提案は表面硬
化の主たる要因が金属間化合物にあるという点で共通し
ている。
It has been proposed. There are three known methods for hardening the surface of titanium, including the nitriding method, the boriding method, and the coating metal diffusion method, but the former two require long-term heat treatment at high temperatures to form a hardened layer. However, the cured layer is also thin, on the order of several μm, and has various drawbacks, such as being difficult to form uniformly. The latter coating metal diffusion method involves coating titanium with metals such as nickel, cobalt, tin, or chromium in advance by plating or other methods, and then heat-treating the titanium to diffuse these coated metals into the titanium. This type of surface hardening method is, for example, disclosed in Japanese Patent Application Laid-Open No. 56-81665.
There are proposals in Japanese Patent Laid-Open No. 58-91165, etc. These conventional proposals for diffusion methods have in common that the main factor for surface hardening is intermetallic compounds.

こうした金属間化合物は、被覆金属がニッケルの場合、
通常最表面からTiN1x、 T1Ni、 TiJiの
順に形成される。これらの金属間化合物は層別して形成
され、つまり界面を有し、脆く、耐食性等の特性もそれ
ぞれ異なる。また成長速度も遅く、例えば900℃で1
時間保持程度の拡散焼鈍においてこれらの化合物は高々
数μmしか成長せず、所要の厚さとするには高温での長
時間加熱を要する。
These intermetallic compounds, when the coating metal is nickel,
Usually, TiN1x, T1Ni, and TiJi are formed in this order from the outermost surface. These intermetallic compounds are formed in layers, that is, have interfaces, are brittle, and have different properties such as corrosion resistance. The growth rate is also slow, for example, 1 at 900°C.
During diffusion annealing for a certain period of time, these compounds grow only a few μm at most, and heating at a high temperature for a long time is required to obtain the required thickness.

従って、金属間化合物の界面での剥離、耐食性の劣化あ
るいは異なる組織が部分的に表面に現われることによる
表面粗度および色調の乱れ、光沢むら、更には鏡面加工
を施して使用する場合の反射率の低下等、従来の技術は
製造面および実用面で様々な問題を包含している。
Therefore, peeling at the interface of intermetallic compounds, deterioration of corrosion resistance, disturbance of surface roughness and color tone due to partial appearance of different structures on the surface, uneven gloss, and reflectance when used with mirror finishing. The conventional technology includes various problems in manufacturing and practical aspects, such as a decrease in

(発明が解決しようとする課題) 本発明は従来のチタンの表面硬化方法における上述の如
き種々の問題点を解決せんとするもので、疵が付き難く
、硬化層が剥離することなく、光沢が優れ、光沢寿命が
長く、且つ品質の均質性が高く量産化が容易である等の
特徴を有し、チタンの多用途化が可能となる新しい表面
仕上方法を確立することにある。
(Problems to be Solved by the Invention) The present invention aims to solve the various problems mentioned above in the conventional titanium surface hardening method. The object of the present invention is to establish a new surface finishing method that enables versatile use of titanium, which has characteristics such as excellent quality, long gloss life, high uniformity of quality, and ease of mass production.

(課題を解決するための手段および作用)本発明者らは
これらの問題を解決するため熱処理条件、金属組織およ
び耐食性等の関係について詳細に検討し、NiTi等の
金属間化合物に表面硬化の役割を期待する立場からは本
問題の抜本的解決は望み得す、むしろ金属間化合物の成
長を抑えてこの下部に形成されるβ−Ti相の組織硬化
を図ることが有効であるとの知見を得ることによって本
発明を構成するに至った。
(Means and effects for solving the problems) In order to solve these problems, the present inventors investigated in detail the relationship among heat treatment conditions, metal structure, corrosion resistance, etc., and found that intermetallic compounds such as NiTi play a role in surface hardening. From the standpoint of expecting this, we can hope for a fundamental solution to this problem.In fact, we have learned that it is effective to suppress the growth of intermetallic compounds and to harden the structure of the β-Ti phase formed below. By obtaining this, the present invention was constructed.

即ち、本発明の要旨はチタンの表面に3〜30μmの厚
さのニッケル被覆を施し、850〜950℃の温度で0
.5〜30分加熱保持した後、40℃/sec以上の冷
却速度で200℃以下の温度まで冷却し、次いで表層の
残留Ni、および金属間化合物層を除去し、厚さを20
〜150μmとしたβTi相からなる層を最表面とする
ことを特徴とする疵が付き難く、光沢寿命の長いチタン
の表面仕上方法にある。
That is, the gist of the present invention is to provide a nickel coating with a thickness of 3 to 30 μm on the surface of titanium, and to coat the surface of titanium with a nickel coating of 3 to 30 μm in thickness at a temperature of 850 to 950°C.
.. After heating and holding for 5 to 30 minutes, it was cooled to a temperature of 200°C or less at a cooling rate of 40°C/sec or more, and then the residual Ni on the surface layer and the intermetallic compound layer were removed, and the thickness was reduced to 20°C.
A method for finishing the surface of titanium, which is resistant to scratches and has a long luster life, is characterized by forming a layer consisting of a βTi phase with a thickness of ~150 μm on the outermost surface.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明に供するチタンの種類およびその金属組織は純チ
タンあるいは合金チタン、換言するとα相あるいはβ−
相もしくはこれらの混合組織を有するチタンのいずれで
あっても良い。また形状および熱処理等の前履歴として
も板状、棒状あるいは塊状等および冷延材、温・熱間加
工材、鋳造材、鍛造材等、いずれも供することができる
The type of titanium used in the present invention and its metal structure are pure titanium or alloyed titanium, in other words, α phase or β-phase.
It may be titanium having either a phase or a mixed structure of these. In addition, as for the shape and the history of heat treatment, etc., it is possible to provide a plate shape, a bar shape, a block shape, etc., a cold rolled material, a warm/hot processed material, a cast material, a forged material, etc.

これらの素材へのニッケル被覆は、有機溶剤等による入
念な脱脂処理および必要に応じて硝弗酸混合水溶液ある
いは、弗酸過酸化水素溶液等に浸漬処理した後、電気メ
ツキ法、無電解メツキ法。
Nickel coating on these materials is carried out by electroplating or electroless plating after careful degreasing using an organic solvent or the like and, if necessary, immersion in a nitric-fluoric acid mixed aqueous solution or a hydrofluoric acid-hydrogen peroxide solution. .

溶射法、圧着法等によって施せば良いが、電気メツキ法
が被覆の均一性が良く、硬化層の均質化が図り易く、ま
た大気中での加熱処理が可能である等の点から好ましい
。この場合、一般にチタンへのメツキは極めて難しいも
のとされているが、本発明者らがメツキ前処理方法につ
いて種々検討した結果によると、N a OHとH20
□の混合水溶液中への10分前後の熱漬(60〜70℃
)処理がメツキ密着性の向上に有効であり、一つの方策
として推奨できる。
The coating may be applied by a thermal spraying method, a pressure bonding method, or the like, but an electroplating method is preferable because it provides good coating uniformity, makes it easy to homogenize the cured layer, and allows heat treatment in the atmosphere. In this case, it is generally considered that plating titanium is extremely difficult, but according to the results of various studies conducted by the present inventors regarding plating pretreatment methods, it was found that N a OH and H20
Heat immersion in the mixed aqueous solution of □ for around 10 minutes (60 to 70℃)
) treatment is effective in improving plating adhesion and can be recommended as one measure.

ニッケルの被覆厚は所望する硬化層の厚さによって異な
るが、本発明の場合は従来の方法と異なり、金属間化合
物層による硬化を意図したものでないため、Niを多量
に必要とするものでなく、被覆厚が厚すぎると加熱処理
後に最表層に多量のNiが残存してこの除去に余分な手
間を要することとなり、一方、被覆厚が余りに薄すぎる
と硬化層を形成し難くなる。このような観点から本発明
においてはニッケル被覆層の厚さを3〜30−とするも
のである。
The coating thickness of nickel varies depending on the desired thickness of the hardened layer, but in the case of the present invention, unlike conventional methods, hardening by an intermetallic compound layer is not intended, so a large amount of Ni is not required. If the coating thickness is too thick, a large amount of Ni will remain in the outermost layer after heat treatment, requiring extra effort to remove it, while if the coating thickness is too thin, it will be difficult to form a hardened layer. From this point of view, in the present invention, the thickness of the nickel coating layer is set to 3 to 30 mm.

ニッケル被覆後の加熱処理は金属間化合物の形成をでき
るだけ抑制し、該金属間化合物層の直下のβ−Ti相の
発達および硬質化を図る観点から処理条件を選定する。
In the heat treatment after nickel coating, the treatment conditions are selected from the viewpoint of suppressing the formation of intermetallic compounds as much as possible and promoting the development and hardening of the β-Ti phase directly under the intermetallic compound layer.

加熱保持温度が850℃未満ではチタン内部へのNiの
拡散に時間を要し、またNi拡散層のβ変態も生じ難い
場合もあり硬化層とするβ−Ti相の厚さが不十分とな
り、一方、加熱温度が950“Cを越えると逆にNiが
チタン内部に拡散・浸透し過ぎて中央層の粒界に沿って
初析α相を生成する等のため延性が劣化し、また表層か
ら内部にかけてのNiの濃度勾配も緩かとなり硬度の高
い良質な硬化層を表層に形成し難くなる。加熱保持時間
は本発明においては金属間化合物を硬化の要因とするも
のでないため従来の方法における如く数十時間という長
時間加熱を要しないが、加熱保持時間が0.5分未満で
はNiの拡散が不十分で硬化が図れず、30分を越える
と逆にチタン内部にNiが拡散・浸透し過ぎて初析α相
を生成し易くなり、あるいは内部の結晶粒が粗大化する
等のため延性が低下する。
If the heating holding temperature is less than 850°C, it takes time for Ni to diffuse into the titanium, and β-transformation of the Ni diffusion layer may also be difficult to occur, resulting in an insufficient thickness of the β-Ti phase that forms the hardened layer. On the other hand, if the heating temperature exceeds 950"C, Ni will diffuse and permeate into the titanium too much, forming a pro-eutectoid α phase along the grain boundaries in the central layer, resulting in a decrease in ductility. The concentration gradient of Ni toward the inside becomes gentle, making it difficult to form a hard and high-quality hardened layer on the surface.The heating retention time is longer than that of the conventional method because the present invention does not use intermetallic compounds as a curing factor. However, if the heating time is less than 0.5 minutes, the diffusion of Ni will be insufficient and hardening will not be achieved, and if it is held for more than 30 minutes, Ni will diffuse and penetrate into the titanium. If it is too much, the pro-eutectoid α phase is likely to be formed, or the internal crystal grains become coarse, resulting in a decrease in ductility.

このような理由から、本発明においては、加熱保持温度
を850〜950℃1加熱保持時間を0.5〜30分と
するものである。
For these reasons, in the present invention, the heating and holding temperature is set to 850 to 950°C, and the heating and holding time is set to 0.5 to 30 minutes.

ここで、本発明は加熱保持後40℃/sec以上の冷却
速度で200℃以下の温度まで冷却することを特徴の一
つとするものである。
Here, one of the features of the present invention is that after heating and holding, the material is cooled to a temperature of 200° C. or less at a cooling rate of 40° C./sec or more.

この理由は主としてβ−Ti相の直下に生成する針状α
相の発達を抑えることによって均質なβ−Ti相の形成
を促進することにある。冷却速度が40”C/sec未
満あるいは、冷却終了温度が200℃よりも高温である
と針状α相がβ−Ti相を侵食し成長するため、β−T
i相は不均質となり、またβ−Ti相の層の厚さも減少
し、最終製品とした場合に表面の色調等の乱れ、あるい
は硬化不足による疵発生等の問題を生ずる。ここで本発
明においてはβ−Ti相の層の厚さを20〜150μm
とするものであるが、これは厚さが20μm未満では上
層の金属間化合物等を除去してかかる硬化層のみを表面
とする加工が困難で、かつ砂塵等による疵が付き易く、
更に耐摩耗性等が十分でなく、一方厚さが150nを越
えるとNiのチタン内部への拡散が進み過ぎ、また内部
の結晶粒が粗大化して脆くなり易いことによる。ここで
、β−Ti相の層の厚さを20〜150μmとすること
は前述の熱処理諸条件によって容易に達せられるもので
あり、またこのように形成されたβ−Ti相の硬さはT
izNi等の超微細析出物による析出分散強化等の効果
が相乗される結果、450〜600のピンカース硬度を
有する。なお、−層の硬質化を必要とする場合には、β
−Ti相の硬化手段として良く知られている300〜6
00 ”Cの温度での時効処理を施すこともできる。ま
た熱処理の際の雰囲気および冷却にはヘリウムガス等の
非酸化性ガスを用いることが望ましいが1.熱処理後に
ニッケルメッキ層が残存する条件を選定すれば大気雰囲
気および水冷等の処理が可能である。
The reason for this is mainly due to the acicular α formed directly under the β-Ti phase.
The purpose is to promote the formation of a homogeneous β-Ti phase by suppressing phase development. If the cooling rate is less than 40"C/sec or the cooling end temperature is higher than 200°C, the acicular α phase will erode the β-Ti phase and grow.
The i-phase becomes inhomogeneous, and the thickness of the β-Ti phase layer decreases, resulting in problems such as disturbance of surface color tone or the occurrence of defects due to insufficient curing when used as a final product. Here, in the present invention, the thickness of the β-Ti phase layer is 20 to 150 μm.
However, if the thickness is less than 20 μm, it is difficult to remove the upper layer of intermetallic compounds etc. so that only the hardened layer is on the surface, and it is easily scratched by sand and dust.
Furthermore, wear resistance is not sufficient, and if the thickness exceeds 150 nm, Ni will diffuse into the titanium too much, and the crystal grains inside will become coarse and brittle. Here, the thickness of the β-Ti phase layer of 20 to 150 μm can be easily achieved by the heat treatment conditions described above, and the hardness of the β-Ti phase formed in this way is 20 to 150 μm.
As a result of synergistic effects such as precipitation dispersion strengthening by ultrafine precipitates such as izNi, it has a Pinkers hardness of 450 to 600. In addition, if it is necessary to harden the − layer, β
- 300-6, which is well known as a means of curing the Ti phase.
It is also possible to perform aging treatment at a temperature of 0.00"C.Also, it is desirable to use a non-oxidizing gas such as helium gas for the atmosphere and cooling during heat treatment, but 1. Conditions for the nickel plating layer to remain after heat treatment. By selecting , it is possible to perform treatments such as atmospheric conditions and water cooling.

熱処理後は、残存Ni層および金属間化合物層を化学研
摩、電気研摩あるいはパフ等の機械研摩等の方法によっ
て除去してβ−Ti相を表面に現出し、用途に応じて表
面粗さ等所望の表面状態に調整し使用に供する。
After heat treatment, the remaining Ni layer and intermetallic compound layer are removed by chemical polishing, electric polishing, mechanical polishing such as puffing, etc. to expose the β-Ti phase on the surface, and the desired surface roughness is achieved depending on the application. Adjust the surface condition and use it.

以下、実施例によって本発明の効果を詳述する。Hereinafter, the effects of the present invention will be explained in detail with reference to Examples.

〔実施例] 板厚0.8肛の純チタン(JISI種)冷延板を有機溶
剤で脱脂した後、NaOHを20g/lおよびHz(h
を7 g/42含む混合水溶液中に65℃で10分間浸
漬してメツキ前処理を行ない、引き続き順次公知のワッ
ト浴による2A/dm”の電流密度でのニッケルメッキ
処理、アルゴン雰囲気中での加熱処理、冷却処理および
鏡面パフ研摩仕上げ面を特定組織とするための機械研摩
を施した。表1に、このようにして作成した各種試料の
処理条件を示す。
[Example] After degreasing a pure titanium (JISI type) cold-rolled plate with a thickness of 0.8 mm with an organic solvent, NaOH was added at 20 g/l and Hz (h
Pre-plating treatment was carried out by immersing the sample in a mixed aqueous solution containing 7 g/42% at 65°C for 10 minutes, followed by nickel plating treatment using a known Watt bath at a current density of 2A/dm'', followed by heating in an argon atmosphere. Treatment, cooling treatment, and mechanical polishing to give the finished surface a specific texture are performed. Table 1 shows the processing conditions for the various samples thus prepared.

かかる試料の表面疵の付き難さおよび光沢劣化等の特性
を調べるため表面マイクロビッカース硬度(荷重20g
r)を測定し、またパフ研摩ままの試料と5mmのエリ
クセン張出し加工を施した試料を50 ℃の5%食塩水
中に10日間浸漬処理して、光沢等の表面状態を5段階
評価(評点の多いほど良好)した。表2に、これらの結
果を総合評点を含めて示す。
In order to investigate the characteristics such as the difficulty of surface scratches and gloss deterioration of such samples, the surface micro-Vickers hardness (load of 20 g) was measured.
In addition, the as-puffed sample and the sample with 5 mm Erichsen overhang were immersed in 5% saline solution at 50°C for 10 days, and the surface condition such as gloss was evaluated on a 5-grade scale (rating (The more the better) Table 2 shows these results including the overall score.

これらの結果、本発明方法によれば少量のニッケルメッ
キ付着量および短時間加熱処理で、疵が付き難く、耐食
性および表面光沢が優れ、且つ腐食環境下でも光沢劣化
の生じ難いチタンの表面仕上げを施しうることか明らか
である。
As a result, according to the method of the present invention, with a small amount of nickel plating and a short heat treatment, it is possible to create a titanium surface finish that is resistant to scratches, has excellent corrosion resistance and surface gloss, and is resistant to gloss deterioration even in a corrosive environment. It is clear that it can be done.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば硬化層の剥離が生じ難く、表面の均
質性、耐摩耗性および耐食性が優れ、且つ光沢劣化が生
じ難いチタンの表面仕上げを容易に施すことが可能とな
り、関連産業分野に及ぼす利点は極めて大きい。
According to the method of the present invention, it is possible to easily apply a titanium surface finish that does not easily cause peeling of the hardened layer, has excellent surface homogeneity, wear resistance, and corrosion resistance, and does not easily cause gloss deterioration, and is useful in related industrial fields. The benefits are extremely large.

Claims (1)

【特許請求の範囲】[Claims] チタンの表面に3〜30μmの厚さのニッケル被覆を施
し、850〜950℃の温度で0.5〜30分加熱保持
した後、40℃/sec以上の冷却速度で200℃以下
の温度まで冷却し、次いで表層の残留Ni、および金属
間化合物層を除去し、厚さを20〜150μmとしたβ
−Ti相からなる層を最表面とすることを特徴とする疵
が付き難く、光沢寿命の長いチタンの表面仕上方法。
A nickel coating with a thickness of 3 to 30 μm is applied to the surface of titanium, heated and held at a temperature of 850 to 950°C for 0.5 to 30 minutes, and then cooled to a temperature of 200°C or less at a cooling rate of 40°C/sec or more. Then, the residual Ni on the surface layer and the intermetallic compound layer were removed, and the thickness was reduced to 20 to 150 μm.
- A method for finishing the surface of titanium, which is resistant to scratches and has a long luster life, characterized by using a layer consisting of a Ti phase as the outermost surface.
JP30302788A 1988-11-30 1988-11-30 Titanium surface finishing method that does not easily scratch and has a long gloss life Expired - Fee Related JPH0692631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30302788A JPH0692631B2 (en) 1988-11-30 1988-11-30 Titanium surface finishing method that does not easily scratch and has a long gloss life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30302788A JPH0692631B2 (en) 1988-11-30 1988-11-30 Titanium surface finishing method that does not easily scratch and has a long gloss life

Publications (2)

Publication Number Publication Date
JPH02149652A true JPH02149652A (en) 1990-06-08
JPH0692631B2 JPH0692631B2 (en) 1994-11-16

Family

ID=17916052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30302788A Expired - Fee Related JPH0692631B2 (en) 1988-11-30 1988-11-30 Titanium surface finishing method that does not easily scratch and has a long gloss life

Country Status (1)

Country Link
JP (1) JPH0692631B2 (en)

Also Published As

Publication number Publication date
JPH0692631B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4013488A (en) Process for improving the anti-corrosion properties of steel coated with nickel or cobalt
JP3225263B2 (en) Titanium decorative member and its curing method
US3294498A (en) Cr-fe diffusion coating ferrous metal substrate
US2618578A (en) Blackening stainless steel
US3691029A (en) Chrome plating of titanium
JPS6117912B2 (en)
JPH02149652A (en) Method for surface finishing of titanium difficult to flow and having prolonged service life of gloss
JPH03229846A (en) Galvanized material and galvanizing method
JPH04346644A (en) Production of high tensile strength galvanized steel sheet and galannealed steel sheet
JPH04147955A (en) Production of hot-dip zn-mg-al coated steel sheet
US3177088A (en) Galvanized steel material and process for producing same
JP2769350B2 (en) Manufacturing method of hot-dip coated steel sheet
JPH02125833A (en) Immersing member in galvanizing bath and its manufacture
JPS6013094A (en) Production of band for wristwatch
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
US3726705A (en) Process for galvanizing a ferrous metal article
JPS583031B2 (en) Method for manufacturing boride coated metal
JP2554792B2 (en) Method for producing hot-rolled galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH01259153A (en) Manufacture of hot dipped steel sheet
US3046205A (en) Nickel-aluminum alloy coatings
JPH01159358A (en) Surface treatment of titanium member
JPH06299307A (en) Method for modifying surface of precipitation hardening type alloy
CA1093498A (en) Process for the production of coin blanks
JPH02118087A (en) Hot-dip galvanizing alloyed steel sheet excellent in workability and coating property and production thereof
JPS63230898A (en) Production of hot dipped steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees