JPH02149398A - Anaerobic water treatment apparatus - Google Patents

Anaerobic water treatment apparatus

Info

Publication number
JPH02149398A
JPH02149398A JP63300667A JP30066788A JPH02149398A JP H02149398 A JPH02149398 A JP H02149398A JP 63300667 A JP63300667 A JP 63300667A JP 30066788 A JP30066788 A JP 30066788A JP H02149398 A JPH02149398 A JP H02149398A
Authority
JP
Japan
Prior art keywords
sludge
amount
water
anaerobic reactor
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300667A
Other languages
Japanese (ja)
Inventor
Masao Kaneko
金子 政雄
Koji Tanaka
孝二 田中
Ryosuke Miura
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63300667A priority Critical patent/JPH02149398A/en
Publication of JPH02149398A publication Critical patent/JPH02149398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To contrive the increasing of the amount of methane generated and the decreasing of the amount of sludge by providing a pretreatment device wherein the sludge produced in an anaerobic reactor and an initial settling basin is dissolved in water and sent back into the anaerobic reactor. CONSTITUTION:By means of a pretreatment device, sludge in a initial settling basin 1 and an excessive sludge in an anaerobic reactor 2 are drawn out for mixing with a high pressured air, such mixture is solubilized at a temperature of 100-350 deg.C in a sludge treating reacting tower 11, the gas-liquid separation thereof is effected by a gas-liquid separator 15 and the liquid so separated is added to a supernatant liquid of the settling basin 1 and sent back together to the anaerobic reactor 2 as a treated water. By means of a control device 19, moreover, the quality of the liquid thus treated is measured and, according to the measured valve, the amount of the sludge and air is controlled. As a result, the amount of a methane generated can be increased and, at the same time, the amount of the sludge can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は下水や産業廃水などの有機性廃水を処理する嫌
気性水処理装置にかかり、特に処理効率を向上させるた
めの前処理装置を有する嫌気性水処理装置に関するもの
である。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an anaerobic water treatment device for treating organic wastewater such as sewage and industrial wastewater, and particularly to an anaerobic water treatment device for improving treatment efficiency. The present invention relates to an anaerobic water treatment device having a pretreatment device.

(従来の技術) 下水や産業廃水などの処理では、好気性微生物を利用し
た好気性水処理がこれまでの主流であったが、近年はメ
タンガスを回収できる上に汚泥の発生量が少ない嫌気性
水処理が注目され、その適用が拡大して来ている。
(Conventional technology) Until now, aerobic water treatment using aerobic microorganisms has been the mainstream in the treatment of sewage and industrial wastewater, but in recent years anaerobic water treatment, which can recover methane gas and generates less sludge, has become mainstream. Water treatment is attracting attention and its applications are expanding.

嫌気性水処理装置の従来の一例を第2図に示す。An example of a conventional anaerobic water treatment device is shown in FIG.

第2図は嫌気性水処理装置のうち、微生物の高濃度化と
処理時間の短縮に有利な流動床形を示したもので、下水
や産業廃水などの有機性廃水は最初沈殿池1に送られ、
固形物を沈降分離した上澄液を嫌気性リアクタ2に流入
させる。
Figure 2 shows a fluidized bed type anaerobic water treatment system, which is advantageous for increasing the concentration of microorganisms and shortening treatment time. Organic wastewater such as sewage and industrial wastewater is first sent to settling tank 1. is,
The supernatant liquid from which the solid matter has been sedimented and separated is made to flow into the anaerobic reactor 2.

嫌気性リアクタ2内には粒径0.1〜1nn+程度の砂
やセラミックなどの担体が充填されており、この担体に
メタン発酵細菌を付着固定させ、メタン発酵細菌が付着
固定された担体を流動状態に保って廃水処理を行ってい
る。
The anaerobic reactor 2 is filled with a carrier such as sand or ceramic with a particle size of about 0.1 to 1 nn+, and methane-fermenting bacteria are attached and fixed to this carrier, and the carrier on which the methane-fermenting bacteria are attached and fixed is fluidized. The wastewater is treated while maintaining the condition.

すなわち、廃水中の有機物は流動状態の担体がら成る流
動層中を移動する間にメタン発酵細菌によって嫌気的に
分解され、炭酸ガスとメタンガスを主成分とする発酵ガ
スを生成する。
That is, organic matter in wastewater is anaerobically decomposed by methane-fermenting bacteria while moving through a fluidized bed made up of carriers in a fluidized state, producing fermentation gas containing carbon dioxide gas and methane gas as main components.

この場合、流動層を形成するには最初沈殿池1から供給
される水量だけでは流量が不足するので、嫌気性リアク
タ2での処理水を一時的に滞留させる循環槽3内の処理
水をポンプ4で昇圧して嫌気性リアクタ2へ返送し、こ
れによって良好な流動層を形成させている。
In this case, the amount of water supplied from the initial settling tank 1 is insufficient to form a fluidized bed, so the treated water in the circulation tank 3 where the treated water in the anaerobic reactor 2 is temporarily retained is pumped. 4 and returned to the anaerobic reactor 2, thereby forming a good fluidized bed.

嫌気性水処理装置は廃水中の有機物を良好に分解処理で
きるだけでなく、発生するメタンガスを利用して例えば
ガス発電を行うことも可能である。
Anaerobic water treatment equipment can not only effectively decompose organic matter in wastewater, but also use the generated methane gas to generate gas power, for example.

嫌気性水処理を継続して行うと、嫌気性リアクタ2内の
メタン発酵細菌が増殖して流動層の層高が徐々に高くに
るので余剰菌体の引抜きを適時実施する必要があり、こ
のため排泥用配管5から余剰菌体を引抜いて系外で汚泥
の処理を行っている。
If anaerobic water treatment is continued, the methane-fermenting bacteria in the anaerobic reactor 2 will multiply and the bed height of the fluidized bed will gradually increase. Therefore, excess bacterial cells are extracted from the sludge drainage pipe 5 and the sludge is treated outside the system.

(発明が解決しようとする課題) 一般に、嫌気性微生物は水中に溶解している有機物は速
やかに分解できるが、固形物となっている有機物の処理
には長時間を要し、あるいは全く分解できないことが知
られている。
(Problem to be solved by the invention) Generally, anaerobic microorganisms can quickly decompose organic matter dissolved in water, but it takes a long time to process solid organic matter, or they cannot decompose it at all. It is known.

従って嫌気性水処理装置では、最初沈殿池上の上澄水す
なわち固形物を沈降分離したものを嫌気性リアクタ2で
処理しており、最初沈殿池1から引抜いた汚泥と嫌気性
リアクタ2から引抜いた汚泥は別途に処理する必要があ
る。
Therefore, in the anaerobic water treatment equipment, the supernatant water on the first settling tank, that is, the solids separated by sedimentation, is treated in the anaerobic reactor 2, and the sludge drawn from the first settling tank 1 and the sludge drawn from the anaerobic reactor 2 must be processed separately.

しかしながら、この汚泥処理はコストが高くつく上に最
終的に発生する廃棄物の処分も問題となるので、汚泥量
の低減が要望されている。
However, this sludge treatment is expensive, and disposal of the ultimately generated waste also poses problems, so there is a desire to reduce the amount of sludge.

すなわち、汚泥も嫌気性リアクタ2で処理することがで
きれば、メタンガスの発生量を増加させるばかりでなく
、汚泥量も低減できるので、この技術の確立が望まれて
いる。
That is, if sludge can also be treated in the anaerobic reactor 2, the amount of methane gas generated can be increased as well as the amount of sludge can be reduced, so the establishment of this technology is desired.

本発明は嫌気性リアクタと最初沈殿池から発生する汚泥
を水中に溶解させてこれを嫌気性リアクタに供給する前
処理装置を設けることによって、メタンガスの発生量を
増大させると共に汚泥量を低減できる合理的な嫌気性水
処理装置を提供することを目的としている。
The present invention provides a rational method for increasing the amount of methane gas generated and reducing the amount of sludge by providing a pretreatment device that dissolves sludge generated from an anaerobic reactor and a primary settling tank in water and supplies it to the anaerobic reactor. The purpose of this project is to provide a anaerobic water treatment device with a high level of functionality.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明は、最初沈殿池と嫌気性リアクタで発生した汚泥
を可溶化させるために、嫌気性リアクタの前段に、汚泥
を100〜350℃の温度で、かっ液相に保つに十分な
圧力下において可溶化する汚泥処理反応塔を設けると共
に、この処理水の水質を測定し、この水質測定値に応じ
て汚泥処理反応塔へ供給する汚泥量と空気量とを制御す
る制御手段を設けた嫌気性水処理装置であり、汚泥処理
反応塔において100〜350℃の高温かつ汚泥が液相
を保つに十分な圧力下で供給されてくる空気中の酸素を
利用して汚泥を分解し溶解性有機物とした後、これを嫌
気性リアクタへ送って嫌気性処理するものである。
(Means and Effects for Solving the Problems) The present invention provides sludge at a temperature of 100 to 350°C before the anaerobic reactor in order to solubilize the sludge generated in the initial settling tank and the anaerobic reactor. In addition to providing a sludge treatment reaction tower that solubilizes under sufficient pressure to maintain the liquid phase, the water quality of this treated water is measured, and the amount of sludge and air supplied to the sludge treatment reaction tower is determined based on the measured water quality. This is an anaerobic water treatment equipment equipped with a control means to control the oxygen in the air supplied to the sludge treatment reaction tower at a high temperature of 100 to 350°C and under sufficient pressure to maintain the liquid phase of the sludge. After the sludge is decomposed into soluble organic matter, it is sent to an anaerobic reactor for anaerobic treatment.

従って、系外へ引抜いて処理すべき汚泥の量を大幅に減
少させることができるばかりでなく、嫌気性リアクタで
発生するメタンガス量も大幅に増加させることができる
Therefore, not only can the amount of sludge to be extracted and treated outside the system be significantly reduced, but also the amount of methane gas generated in the anaerobic reactor can be significantly increased.

また、汚泥処理反応塔で汚泥を分解するとき、滞留時間
が長すぎたり、供給空気量が多すぎると汚泥が炭酸ガス
、窒素ガス、水まで分解されてメタンガスの発生量が少
なくなるので、汚泥処理反応塔の処理水の懸濁物質濃度
と有機物濃度を水質測定器で測定し、供給する汚泥量と
空気量を制御することによって最適処理を可能にしてい
る。
In addition, when decomposing sludge in a sludge treatment reaction tower, if the residence time is too long or the amount of air supplied is too large, the sludge will be decomposed to carbon dioxide, nitrogen gas, and water, and the amount of methane gas generated will decrease. Optimum treatment is possible by measuring the suspended solids concentration and organic matter concentration of the treated water in the treatment reaction tower with a water quality meter and controlling the amount of sludge and air supplied.

(実施例) 本発明の一実施例を第1図に示す。第2図と同一の部分
には同一の符号を付している。
(Example) An example of the present invention is shown in FIG. The same parts as in FIG. 2 are given the same reference numerals.

第1図において、最初沈殿池1からの汚泥と嫌気性リア
クタ2からの余剰汚泥とは汚泥貯留槽6に貯留され、さ
らにポンプ7および自動開閉弁8を介して熱交換器9に
通され、熱交換器9で加熱された後、さらに加熱器10
で加熱されて汚泥処理反応塔11に送られる。
In FIG. 1, sludge from the initial settling tank 1 and excess sludge from the anaerobic reactor 2 are stored in a sludge storage tank 6, and are further passed through a heat exchanger 9 via a pump 7 and an automatic on-off valve 8. After being heated by the heat exchanger 9, the heater 10
is heated and sent to the sludge treatment reaction tower 11.

また空気がポンプ12オよび自動開閉弁13を経て自動
開閉弁8と熱交換器9の間の廃水配管に送られ、上記汚
泥貯留槽6からの汚泥と合流している。
Air is also sent to the waste water pipe between the automatic on-off valve 8 and the heat exchanger 9 via the pump 12 and the automatic on-off valve 13, and joins with the sludge from the sludge storage tank 6.

また汚泥処理反応塔11の出口配管14は気液分離器1
5に接続され、気液分離器15の上方には排ガス配管1
6が設けられると共に、下方には処理水配管17が設け
られ、処理水配管17は熱交換器9に接続され、さらに
水質測定器18を経て嫌気性リアクタ2へ接続されてい
る。
In addition, the outlet pipe 14 of the sludge treatment reaction tower 11 is connected to the gas-liquid separator 1.
5, and above the gas-liquid separator 15 is the exhaust gas pipe 1.
6 is provided, and a treated water pipe 17 is provided below, and the treated water pipe 17 is connected to the heat exchanger 9 and further connected to the anaerobic reactor 2 via a water quality measuring device 18.

また19は水質測定器18の出力に応じて自動開閉弁8
,13の開度を制御する制御装置である。
In addition, 19 is an automatic opening/closing valve 8 according to the output of the water quality measuring device 18.
, 13.

上記の構造により、最初沈殿池1の上澄液は嫌気性リア
クタ2に送られて処理され、その処理原理および操作は
第2図の場合と同様である。
With the above structure, the supernatant liquid of the initial settling tank 1 is sent to the anaerobic reactor 2 for treatment, and the treatment principle and operation are the same as those shown in FIG.

一方、最初沈殿池1で沈降した汚泥は汚泥貯留槽6へ送
られ、さらにこの汚泥貯留槽6へは、嫌気性リアクタ2
で発生した余剰汚泥も排泥用配管5を通って送られてく
る。
On the other hand, the sludge initially settled in the settling tank 1 is sent to a sludge storage tank 6, and further to this sludge storage tank 6 is an anaerobic reactor 2.
Excess sludge generated is also sent through the sludge drainage pipe 5.

汚泥貯留槽6の汚泥はポンプ7により昇圧され、自動開
閉弁8を通って熱交換器9へ送られる。
The sludge in the sludge storage tank 6 is pressurized by the pump 7 and sent to the heat exchanger 9 through the automatic opening/closing valve 8.

この時、ポンプ12により昇圧された空気も自動開閉弁
13を通り、汚泥貯留槽6からの汚泥と混合された状態
で熱交換器9へ流入する。
At this time, the air pressurized by the pump 12 also passes through the automatic on-off valve 13 and flows into the heat exchanger 9 in a state where it is mixed with sludge from the sludge storage tank 6.

熱交換器9へ入った汚泥は処理水配管17から加熱器9
へ流入する高温処理水により昇温される。
The sludge that has entered the heat exchanger 9 is transferred from the treated water pipe 17 to the heater 9.
The temperature is raised by the high-temperature treated water flowing into the tank.

熱交換器9で昇温された汚泥はさらに加熱器14で10
0〜350℃に昇温されて汚泥処理反応塔11へ供給さ
れる。
The sludge heated in the heat exchanger 9 is further heated in the heater 14 to
The temperature is raised to 0 to 350°C and then supplied to the sludge treatment reaction tower 11.

この場合、汚泥処理反応塔11では汚泥を液相に保つ必
要があるので、ポンプ7とポンプ12は必要な圧力まで
昇圧できるように選ばれている。
In this case, since it is necessary to maintain the sludge in the liquid phase in the sludge treatment reaction tower 11, the pumps 7 and 12 are selected so as to be able to increase the pressure to the required pressure.

汚泥処理反応塔11内では100〜350℃の高温下で
液相に保たれた汚泥が、供給された空気中の酸素を用い
て分解され、溶解性有機物となる。
In the sludge treatment reaction tower 11, sludge kept in a liquid phase at a high temperature of 100 to 350°C is decomposed using oxygen in the supplied air and becomes soluble organic matter.

この汚泥の可溶化によって汚泥処理反応塔11の出口配
管14内の処理液の溶解性有機物濃度が増加し、さらに
この処理液は気液分離器17で液体と気体とに分離され
、気体は廃ガスとして排ガス配管16から排出され、液
体は処理水配管17を通って熱交換器9に流入し、汚泥
貯留槽6からの汚泥を昇温すると共に処理水自身は温度
が下降し、水質測定器18を経て嫌気性リアクタ2に流
入する。
By solubilizing this sludge, the concentration of soluble organic matter in the treated liquid in the outlet pipe 14 of the sludge treatment reaction tower 11 increases, and further, this treated liquid is separated into liquid and gas in the gas-liquid separator 17, and the gas is disposed of as waste. The liquid is discharged from the exhaust gas pipe 16 as a gas, flows into the heat exchanger 9 through the treated water pipe 17, raises the temperature of the sludge from the sludge storage tank 6, and lowers the temperature of the treated water itself, causing the water quality measurement device to 18 and flows into the anaerobic reactor 2.

すなわち熱交換器9で温度の下がった処理水は、水質測
定器18で水質をチエツクされた後、嫌気性リアクタ2
で上記最初沈殿池1からの十澄水と同様に嫌気性処理さ
れる。
In other words, the treated water whose temperature has decreased in the heat exchanger 9 is checked for water quality by the water quality measuring device 18, and then transferred to the anaerobic reactor 2.
Then, it is anaerobically treated in the same way as the Jusumi water from the first settling tank 1 mentioned above.

このように、嫌気性リアクタ2で最初沈殿池1からの上
澄水中の有機物と汚泥処理反応塔11で汚泥を可溶化さ
せた溶解性有機物の両者を同時に処理しているので、系
外に引抜いて処理すべき汚泥量を大幅に減少させると共
に、発生するメタンガス量を大幅に増加させることがで
きる。
In this way, since both the organic matter in the supernatant water from the initial settling tank 1 and the soluble organic matter solubilized from the sludge in the sludge treatment reaction tower 11 are treated simultaneously in the anaerobic reactor 2, they can be drawn out of the system. The amount of sludge to be treated can be significantly reduced, and the amount of methane gas generated can be significantly increased.

しかしながら、汚泥処理反応塔11での滞留時間が長過
ぎたり、供給する空気量が多過ぎると、汚泥は可溶化す
るだけでなく、さらに炭酸ガス、窒素ガス、水などに分
解されてしまう。
However, if the residence time in the sludge treatment reaction tower 11 is too long or the amount of air supplied is too large, the sludge will not only be solubilized but also further decomposed into carbon dioxide gas, nitrogen gas, water, and the like.

こうなると、嫌気性リアクタ2でのメタンガス発生量が
低減するので1本発明では水質測定器18で処理水水質
を測定し、自動開閉弁8と9の開度を調節することによ
って、汚泥を可溶化したときの処理水中の溶解性有機物
の量が可能な限り多くなるようにしている。
In this case, the amount of methane gas generated in the anaerobic reactor 2 is reduced, so in the present invention, the quality of the treated water is measured with the water quality meter 18, and the opening degree of the automatic on-off valves 8 and 9 is adjusted to remove the sludge. The amount of soluble organic matter in the treated water upon solubilization is made to be as large as possible.

水質測定器18としては、汚泥が可溶化していることを
確認するための懸濁物質濃度の測定器を用い、懸濁物質
の残留が多い場合には自動開閉弁8の開度を絞って汚泥
処理反応塔11への汚泥の供給量を少なくし、汚泥処理
反応塔11での汚泥の滞留時間を長くして可溶化を促進
させる。
As the water quality measuring device 18, a suspended solids concentration measuring device is used to confirm that the sludge has been solubilized, and if there is a large amount of suspended solids remaining, the opening degree of the automatic on-off valve 8 is reduced. The amount of sludge supplied to the sludge treatment reaction tower 11 is reduced, and the residence time of sludge in the sludge treatment reaction tower 11 is lengthened to promote solubilization.

或いは、開閉弁13の開度を大きくして供給する空気量
を増加させ、これによって可溶化を促進させることも可
能であり、両者の組合せによって可溶化を促進すること
も可能である。
Alternatively, it is possible to increase the opening degree of the on-off valve 13 to increase the amount of air to be supplied, thereby promoting solubilization, or it is also possible to promote solubilization by a combination of the two.

また、水質測定器18としてTOC測定装置、紫外線吸
光度計、COD測定装置などの有機物濃度測定器を用い
、溶解性有機物濃度が低い場合には自動開閉弁8の開度
を大きくして滞留時間を短かくし、あるいは自動開閉弁
13の開度を小さくして空気供給量を少なくし、これに
よって溶解性有機物の量を増大させることが可能である
In addition, an organic matter concentration measuring device such as a TOC measuring device, an ultraviolet absorbance meter, or a COD measuring device is used as the water quality measuring device 18, and when the concentration of soluble organic matter is low, the opening degree of the automatic opening/closing valve 8 is increased to increase the residence time. It is possible to increase the amount of soluble organic matter by shortening the length or by reducing the opening degree of the automatic on-off valve 13 to reduce the amount of air supplied.

さらに汚泥貯留槽6内の汚泥濃度と溶解性有機物濃度を
測定すると共に汚泥処理反応塔ll内の処理水中の有機
物濃度を予測し、実際の測定値と予測値とを比較するこ
とによって、より高度な制御を行うことも可能である。
Furthermore, by measuring the sludge concentration and soluble organic matter concentration in the sludge storage tank 6, and predicting the organic matter concentration in the treated water in the sludge treatment reaction tower 11, and comparing the actual measured values and predicted values, It is also possible to perform various controls.

また水質測定器18として懸濁物質濃度測定器と有機物
濃度測定器の両者を並用し、より最適な汚泥処理装置の
制御を行うことも可能である。
Furthermore, it is also possible to use both a suspended solids concentration meter and an organic matter concentration meter as the water quality meter 18 to achieve more optimal control of the sludge treatment apparatus.

以上の説明は、流動床形の嫌気性リアクタの場合につい
て行ったが、固定床形の嫌気性リアクタの場合にも同様
の効果が得られる。
Although the above explanation has been made in the case of a fluidized bed type anaerobic reactor, similar effects can be obtained in the case of a fixed bed type anaerobic reactor.

また、自動開閉弁8,13を使用する代りに流量可変式
のポンプを用いてもよく、また空気の代りに酸素ガスを
用いることも可能である。
Further, instead of using the automatic on-off valves 8 and 13, a variable flow rate pump may be used, and oxygen gas may be used instead of air.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、最初沈殿池と嫌気
性リアクタで発生した汚泥を汚泥処理反応塔で高温高圧
下で可溶化させて溶解性有機物とし、これを最初沈殿池
の上澄水と一緒に嫌気性リアクタで処理しており、さら
に汚泥処理反応塔の処理水質を測定して汚泥処理反応塔
へ供給される汚泥量と空気量とを最適値に制御している
ので、系外へ排出して処分すべき汚泥量を大幅に減少で
きるだけでなく、嫌気性リアクタによるメタンガスの発
生量も大幅に増大させることができ、これによって処理
エネルギを大幅に低減できる合理的な嫌気性水処理装置
が得られる。
As explained above, according to the present invention, the sludge generated in the primary sedimentation tank and the anaerobic reactor is solubilized under high temperature and pressure in the sludge treatment reaction tower to form soluble organic matter, and this is combined with the supernatant water of the primary sedimentation tank. The sludge is treated in an anaerobic reactor, and the quality of the treated water in the sludge treatment reaction tower is measured to control the amount of sludge and air supplied to the sludge treatment reaction tower to optimal values, so that no sludge is discharged outside the system. Not only can the amount of sludge that must be disposed of by the anaerobic reactor be significantly reduced, but the amount of methane gas generated by the anaerobic reactor can also be significantly increased, resulting in a rational anaerobic water treatment device that can significantly reduce treatment energy. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による嫌気性水処理装置の一実施例を示
す系統図、第2図は従来の嫌気性水処理装置の一例を示
す系統図である。 1・・・最初沈殿池   2・・・嫌気性リアクタ3・
・・循環槽     4・・・ポンプ5・・・排泥用配
管   6・・・汚泥貯留槽7・・・ポンプ     
8,13・・・自動開閉弁9・・・熱交換器    1
0・・・加熱器11・・・汚泥処理反応塔 12・・・
ポンプ14・・・出口配管    15・・・気液分離
器16・・・排ガス配管   17・・・処理水配管1
8・・・水質測定器   19・・・制御装置代理人 
弁理士  則 近 憲 佑 向        山  下
FIG. 1 is a system diagram showing an embodiment of an anaerobic water treatment device according to the present invention, and FIG. 2 is a system diagram showing an example of a conventional anaerobic water treatment device. 1... Initial settling tank 2... Anaerobic reactor 3.
...Circulation tank 4...Pump 5...Sludge drainage pipe 6...Sludge storage tank 7...Pump
8,13... Automatic opening/closing valve 9... Heat exchanger 1
0... Heater 11... Sludge treatment reaction tower 12...
Pump 14... Outlet piping 15... Gas-liquid separator 16... Exhaust gas piping 17... Treated water piping 1
8...Water quality measuring device 19...Control device agent
Patent Attorney Nori Chika Yuki Yamashita

Claims (1)

【特許請求の範囲】[Claims]  下水、産業廃水などの有機性廃水を嫌気性リアクタで
処理する嫌気性水処理装置において、最初沈殿池の汚泥
および上記嫌気性リアクタの余剰汚泥を引出して高圧空
気と混合し、汚泥処理反応塔内で100〜350℃の温
度で可溶化させて気液分離し、処理水として上記最初沈
殿池の上澄水に付加して上記嫌気性リアクタへ送る前処
理装置と、上記処理水の水質を測定し、水質測定値に応
じて上記汚泥量および空気量を制御する制御手段を備え
たことを特徴とする嫌気性水処理装置。
In an anaerobic water treatment system that processes organic wastewater such as sewage and industrial wastewater in an anaerobic reactor, sludge from the initial settling tank and excess sludge from the anaerobic reactor are drawn out and mixed with high-pressure air, and then pumped into the sludge treatment reaction tower. A pretreatment device that solubilizes the water at a temperature of 100 to 350°C to separate gas and liquid, adds it to the supernatant water of the first precipitation tank as treated water, and sends it to the anaerobic reactor, and measures the quality of the treated water. An anaerobic water treatment device comprising a control means for controlling the amount of sludge and the amount of air according to measured values.
JP63300667A 1988-11-30 1988-11-30 Anaerobic water treatment apparatus Pending JPH02149398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300667A JPH02149398A (en) 1988-11-30 1988-11-30 Anaerobic water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300667A JPH02149398A (en) 1988-11-30 1988-11-30 Anaerobic water treatment apparatus

Publications (1)

Publication Number Publication Date
JPH02149398A true JPH02149398A (en) 1990-06-07

Family

ID=17887622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300667A Pending JPH02149398A (en) 1988-11-30 1988-11-30 Anaerobic water treatment apparatus

Country Status (1)

Country Link
JP (1) JPH02149398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2005334886A (en) * 2005-08-23 2005-12-08 Kobelco Eco-Solutions Co Ltd Activated sludge treatment method and activated sludge treatment apparatus therefor
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2005334886A (en) * 2005-08-23 2005-12-08 Kobelco Eco-Solutions Co Ltd Activated sludge treatment method and activated sludge treatment apparatus therefor
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method

Similar Documents

Publication Publication Date Title
JP2004528163A (en) Method and apparatus for biological treatment of wastewater
KR101471053B1 (en) Organic oxidation tank having a manure treatment device
CN104150687B (en) A kind of minimizing N 2the automatic control device for sewage treatment that O produces and working method thereof
JPS63270598A (en) Device for treating sludge
CN112441701B (en) Shale gas flowback fluid efficient treatment, reuse and zero emission method and system
CN205999343U (en) The zero-discharge treatment system of supercritical water gasification method joint Biochemical method high-concentration hardly-degradable organic hazardous garbage
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JPH02149398A (en) Anaerobic water treatment apparatus
KR101286072B1 (en) Two-phase anaerobic digestion apparatus
CN112456631B (en) Ozone dosing automatic control system and method based on ozone indirect oxidation
CN105859031A (en) Advanced treatment system for wastewater generated after preparation of alcohol from cassava
KR101062447B1 (en) Sewage treatment method using solubilization of sludge by cavitation
RU2480521C2 (en) Device for effluent treatment, method of washing of device for effluent treatment and method of effluent treatment using this device
CN105254129B (en) A kind of regeneration of urban sewage processing unit and its processing method
CN205472940U (en) Sewage treatment plant through monitoring N2O automatic control
CN203976589U (en) A kind of automatic control device for sewage treatment that reduces N2O generation
JP2005246346A (en) Method and apparatus for treating sewage
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
CN113382969B (en) Water treatment system and water treatment method
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method
CN104086063B (en) A kind of residual sludge reduction treatment process
JPWO2018021169A1 (en) Method and apparatus for treating organic wastewater
CN111547850B (en) Wastewater denitrification combined device and method for shortcut nitrification-anaerobic ammonia oxidation
JP4230617B2 (en) Wastewater treatment equipment containing organic solids
JP2003053377A (en) Method for treating organic waste water and treating device