JPH02148002A - Optical parts - Google Patents

Optical parts

Info

Publication number
JPH02148002A
JPH02148002A JP63302600A JP30260088A JPH02148002A JP H02148002 A JPH02148002 A JP H02148002A JP 63302600 A JP63302600 A JP 63302600A JP 30260088 A JP30260088 A JP 30260088A JP H02148002 A JPH02148002 A JP H02148002A
Authority
JP
Japan
Prior art keywords
film
optical component
metal
optical parts
fill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63302600A
Other languages
Japanese (ja)
Inventor
Atsunori Matsuda
厚範 松田
Yoshihiro Matsuno
好洋 松野
Shinya Katayama
慎也 片山
Toshio Sumi
俊雄 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63302600A priority Critical patent/JPH02148002A/en
Publication of JPH02148002A publication Critical patent/JPH02148002A/en
Priority to US07/810,347 priority patent/US5638479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To eliminate the need for a polishing stage and to drastically reduce the fabrication cost by smoothing the rough surfaces of the optical parts by using solid transparent bodies consisting of the polymn. product of the compd. expressed by the specific formula. CONSTITUTION:The light incident and exit surfaces of a base material 2 for the optical parts consisting of glass, ceramics, etc., are smoothed by using the solid transparent film bodies 1 to fill the ruggedness of the rough surfaces. The polymn. product formed by the hydrolysis of the metallic org. compd. expressed by R1M1(OR2)m (M1: metal, R1, R2: 1 to 6C org. group; m is a natural number) is used as the film bodies 1. Such film bodies 1 fill the ruggedness of the rough surfaces of the base body 2 and exhibit the function of smoothing the surfaces of the parts and, therefore, the need for the polishing stage which is heretofore needed is eliminated and the fabrication cost is drastically reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、研磨工程を簡略化し得る光学部品の構造に関
し、特に耐候性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of an optical component that can simplify the polishing process, and particularly to improving weather resistance.

〔従来の技術〕[Conventional technology]

従来、レンズ、プリズム等の光学部品を製作する場合、
研削、ラッピング、研磨の各工程を経て、最終的に表面
を鏡面仕上げするのが一般的である。
Conventionally, when manufacturing optical parts such as lenses and prisms,
Generally, the surface is finished to a mirror finish through grinding, lapping, and polishing steps.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の光学部品においては、研磨工
程に多くの時間と高価な設備が必要なため、安価に製造
できない、また高温高湿度で保持すると表面が劣化する
などの重大な問題点があった。
However, the above-mentioned conventional optical components have serious problems such as not being able to be manufactured at low cost because the polishing process requires a lot of time and expensive equipment, and the surface deteriorates when kept at high temperature and high humidity. .

〔問題点を解決するための手段〕[Means for solving problems]

切断、研削等によって得られた粗面状態の光学部品の光
入出射面を、粗面の凹凸を埋めて平滑化するように固体
透明膜体で被覆した構造とするとともに、この膜体とし
て、R+M+(ORz)mの式で表わされる金属有機化
合物の730水分解縮重合生成物を用いる。上記式にお
いて、R1及びR2は炭素数1〜6の有機基、M、は金
属、mは自然数である。
The light input/output surface of the optical component, which has a rough surface obtained by cutting, grinding, etc., is coated with a solid transparent film so as to fill in the unevenness of the rough surface and smooth it, and as this film, A 730 water decomposition condensation product of a metal organic compound represented by the formula R+M+(ORz)m is used. In the above formula, R1 and R2 are organic groups having 1 to 6 carbon atoms, M is a metal, and m is a natural number.

本発明に使用できる光学部品の母材としては、プラス千
ツク、ガラス、透光性セラミックスなど任意の固体材料
が使用できるが、特にガラス、セラミックスなどの無機
材料に対して効果が大きい。
As the base material of the optical component that can be used in the present invention, any solid material such as plastic, glass, and translucent ceramics can be used, but the present invention is particularly effective for inorganic materials such as glass and ceramics.

本発明において、膜体を設りる研磨前の粗面は、最大粗
さRmax2μm以下、中心線平均粗さRaで0.2μ
m以下が梁ましい。面粗さが上記数値を越える場合、膜
体を設けても完全な平滑面は得られにくい。
In the present invention, the rough surface before polishing on which the film body is provided has a maximum roughness Rmax of 2 μm or less and a center line average roughness Ra of 0.2 μm.
The beam is less than m. If the surface roughness exceeds the above value, it is difficult to obtain a completely smooth surface even if a membrane is provided.

設ける膜体の厚みは0.5〜10/7mの範囲が望まし
い。膜体の厚みが0.5μm未満の場合、この膜体を設
けることによる平滑化の程度が低く、また10μmを越
えると、膜体を1回の膜形成操作で設りることか難しく
、数回の膜形成操作が必要となり、プロセスの工程が増
大する。
The thickness of the membrane provided is preferably in the range of 0.5 to 10/7 m. If the thickness of the film is less than 0.5 μm, the level of smoothing achieved by providing the film is low, and if it exceeds 10 μm, it is difficult to provide the film in one film forming operation, and it may take several times. This requires multiple film forming operations, increasing the number of process steps.

R+M+(ORz)mを原料として選択した理由は、M
 I (o R2)、、l (通常金属アルコキシドと
呼ばれ、ブルーゲル薄膜製造方法の原料として一般に用
いられている)のアルコキシド基:(oR2,I)の1
つを、加水分解・縮重合反応に対1.て不活性な有機基
:R1に置換したものを原料として用いる事により、こ
の原料から得られる加水分解・縮合体の構造的自由度が
増1〜、研磨前の粗面を、透明膜体を設けることにより
平滑化するに足る厚膜形成がはじめて可能となるためで
ある。
The reason why R+M+(ORz)m was selected as the raw material is that M
I (o R2),, alkoxide group of l (usually called metal alkoxide and generally used as a raw material for the Bluegel thin film manufacturing method): 1 of (oR2, I)
1 for the hydrolysis/condensation reaction. By using R1 substituted with an inert organic group as a raw material, the degree of structural freedom of the hydrolysis/condensation product obtained from this raw material is increased. This is because by providing this, it becomes possible to form a film thick enough to smooth the surface.

L述した金属有機化合物の金属M、としては、S i 
XT 1、′I″a、、Nb、、Zr、Δβ、Sn。
The metal M of the metal-organic compound mentioned above is S i
XT 1,'I''a,, Nb,, Zr, Δβ, Sn.

sb、B等が挙げられる。また有機基R1、R2として
は、アルキル基、アンル基、フェニル基等が挙げられる
Examples include sb, B, etc. Examples of the organic groups R1 and R2 include alkyl groups, anlu groups, and phenyl groups.

本発明で使用する金属有機化合物の加水分解・縮重合膜
体は、光学部品の母体同様透光性材料であることが必要
である。該複合焼成膜の屈折率は、光学部品母体の屈折
率に対して±0.1以内で−・敗することが、光学部品
母体と膜体の界面におりる光の反射を減少させることに
なり、光学的特性に変化を与えないので好ましい。
The hydrolysis/condensation film of a metal-organic compound used in the present invention needs to be a light-transmitting material like the matrix of the optical component. The refractive index of the composite fired film is within ±0.1 of the refractive index of the optical component matrix, which reduces the reflection of light that falls on the interface between the optical component matrix and the film body. This is preferable because it does not change the optical properties.

従って、膜の屈折率、硬度等を制御するためには、R,
M、(OR2)m一種類の加水分解・縮重合物よりも、
さらにもう一種類板−LのR1M2(OR4) 1゜あ
るいはM:+(OR5)nを加えた複合縮重合物である
ことが好ましい。
Therefore, in order to control the refractive index, hardness, etc. of the film, R,
M, (OR2)m than one type of hydrolysis/condensation product,
Furthermore, it is preferable to use a composite condensation product in which R1M2(OR4) 1° or M:+(OR5)n of plate-L is added.

1一記式で、R3、R,、R9はいずれも炭素数6以F
の有機基、M2、M、ば金属、ff、nは自然数である
In the formula 1, R3, R, and R9 each have 6 or more carbon atoms.
The organic group, M2, M, metal, ff, and n are natural numbers.

本発明に係る膜体ば、縮重合反応を促進し、溶媒等の揮
発成分を蒸発させるために、焼成することが好まし2い
The film body according to the present invention is preferably fired in order to promote the polycondensation reaction and evaporate volatile components such as solvents.

膜体の焼成温度は、光学部品母体の特性を低下させない
程度の温度以下で任意に設定できるが、焼成によって得
られる膜体の硬度および光学部品母体との付着力などの
特性を考慮すると、70℃〜400℃の範囲内が望まj
−い。
The firing temperature of the film body can be set arbitrarily below a temperature that does not reduce the characteristics of the optical component matrix, but considering the properties such as the hardness of the film body obtained by firing and the adhesive force with the optical component matrix, it is 70%. Desirably within the range of ℃ to 400℃
- Yes.

焼成温度が70℃未満である場合、膜体中に水分が残留
し易く、充分な硬度も得られにくい。また焼成温度が4
00℃を越えると、膜体の光学部品母体からの剥離が起
りやすくなる。
When the firing temperature is less than 70°C, moisture tends to remain in the film and it is difficult to obtain sufficient hardness. Also, the firing temperature is 4
If the temperature exceeds 00°C, the film tends to peel off from the optical component matrix.

〔作 用〕[For production]

本発明によれば、表面を被覆する膜体が研磨前の光学部
品母体の粗い表面凹凸を埋め、光学部品表面を平滑にす
る機能を果し、従って表面平滑化のために従来は必要で
あった研磨工程を省略化ないし大幅に簡略化することが
できる。
According to the present invention, the film body covering the surface fills in the rough surface irregularities of the optical component matrix before polishing, and fulfills the function of smoothing the optical component surface, which is not necessary in the past for surface smoothing. The polishing process can be omitted or greatly simplified.

また本発明では、上記膜体の原料として、金属アルコキ
シドのアルコキシド基(OR基)の1つを、加水分解・
縮重合反応に対して不活性な有機基(R基)に置換した
ものを用いているため、得られる膜体の構造的自由度が
増し、研磨前の光学部品母体の粗い表面の凹凸を埋める
に足る厚膜形成がはじめて可能となり、鏡面研磨に代替
し得る表面平滑化を実現することができる。
Furthermore, in the present invention, one of the alkoxide groups (OR group) of the metal alkoxide is hydrolyzed and
Because it is substituted with an organic group (R group) that is inert to polycondensation reactions, the structural freedom of the resulting film increases, and it fills in the rough surface irregularities of the optical component matrix before polishing. For the first time, it becomes possible to form a film thick enough to achieve a smooth surface that can replace mirror polishing.

また該膜体は、光学部品母体の保護膜の役割を果たし、
光学部品母体の耐候1吋を向上させる。
In addition, the film body plays the role of a protective film for the optical component matrix,
Improves the weather resistance of the optical component matrix by 1 inch.

〔実施例〕〔Example〕

実施例1 メチルI・リエトキシシラン:CHaS 1(OCzH
s)sをモル比で2倍のエタノールに加えて均一溶液に
した。これに希塩酸(3wt%)を加え、室温で20分
間撹拌することにより加水分解を行った。
Example 1 Methyl I-ethoxysilane: CHaS 1 (OCzH
s) s was added to twice the molar ratio of ethanol to make a homogeneous solution. Dilute hydrochloric acid (3 wt%) was added to this, and hydrolysis was performed by stirring at room temperature for 20 minutes.

ここで加える水の量は、メチルトリエトキシシランに対
してモル比で1倍とした。
The amount of water added here was 1 times the molar ratio of methyltriethoxysilane.

次に、チタニウムテトラn−ブトキシド二Ti(Q n
 B uLを加え、さらに20分間攪拌を続iJ、最後
に再び希塩酸を、加える水の量がメチルトリエトキシシ
ランに対し7てモル比で1倍(先に加えた量と合わせる
と2倍)となるように加え、20分間攪拌してml−テ
ィング溶液とした。
Next, titanium tetra n-butoxide diTi (Q n
Add BuL and continue stirring for another 20 minutes.Finally, add dilute hydrochloric acid again so that the amount of water added is 1 times the molar ratio of 7 to methyltriethoxysilane (2 times when combined with the amount added earlier). and stirred for 20 minutes to obtain a ml-ting solution.

溶液の組成は、最終焼成酸化物の81と’l’ i (
7)比が4対1 (モル比)となるようにした。最初、
メチJし1−リコーI・キシシランに対してわずか1モ
ルしか水を加えなかった理由は、メチルトリエト4−ジ
シランをモル比で2倍のエタノールに加えて均一溶液と
したものに、最初の段階でメチルトリエト水を加えると
、溶液中に微粒子の生成による白濁を生じたためである
The composition of the solution is 81 of the final calcined oxide and 'l' i (
7) The ratio was set to 4:1 (molar ratio). first,
The reason why only 1 mole of water was added to MethiJ and 1-Ricoh I xysilane was because methyltrieth-4-disilane was added to twice the molar ratio of ethanol to make a homogeneous solution. This is because when methyl triethate water was added, the solution became cloudy due to the formation of fine particles.

次に、チタニウムテトラn−ブトキシドを加えた後、さ
らにメチルトリエトキシシランに対して1モル倍(先に
加えた量と合せると2モル倍)となるよう水を加えた理
由は、コーティング溶液中のゾルの、光学部品母体との
ぬれ性を良くするためである。実際、このような操作を
行わないコテインク溶液を用いた場合、光学部品母体が
塗布液をばしいてしまい、均一な膜は得られない。チタ
ニウムテ1うn−フ用−キシトを加えた後、さらに先に
加えた量と合せると2モルとなるように水を加えても微
粒子生成a=よる白濁を生じないのは、少ない水の存在
下で、メチルトリエトキシシランとチタニウムテトうn
−ブトキシドを反応させることにより、’T’ i −
 0−S i結合を持った鎮状無機高分子がある程度の
大きさまで熟成されているため、急激な微粒子生成を起
さないためであると考えられる。
Next, after adding titanium tetra-n-butoxide, water was added so that the amount was 1 times the mole of methyltriethoxysilane (2 times the amount added earlier). This is to improve the wettability of the sol with the optical component matrix. In fact, if a coating solution without such an operation is used, the coating solution will be agitated by the optical component matrix, making it impossible to obtain a uniform film. After adding titanium oxide, water is added so that the total amount is 2 moles when combined with the amount added earlier. In the presence of methyltriethoxysilane and titanium
- By reacting with butoxide, 'T' i -
This is thought to be due to the fact that the quenched inorganic polymer having 0-S i bonds has been matured to a certain size, so that rapid generation of fine particles does not occur.

こうして調製した該コーティング溶液を用いて、第1図
のように光学部品母体2表面−・の膜体1の形成を行な
った。
Using the coating solution thus prepared, a film body 1 was formed on the surface of the optical component matrix 2 as shown in FIG.

母体2としては、屈折率分布型ガラスレンズを使用し、
その光入出射端面を研磨仕−Lげする前の、最大粗さR
maxが約0.5μmの粗面に対して適用した。
As the matrix 2, a gradient index glass lens is used,
Maximum roughness R before polishing the light input/output end face
It was applied to a rough surface with a max of about 0.5 μm.

膜形成に当っては、レンズをコーティング溶液に浸漬し
た後一定速度で引きLげるいわゆるデイツプコーティン
グ法を用いた。
In forming the film, a so-called dip coating method was used in which the lens was immersed in a coating solution and then pulled out at a constant speed.

コーティングの後、膜体を形成したレンズを室?m+で
乾燥し7た後毎分1℃の速度で140℃まで胃温し、最
終的に140℃で30分保持する事により熱処理を行っ
た。
After coating, is the lens with a film formed inside the chamber? After drying with m+ for 7 days, the stomach was warmed to 140°C at a rate of 1°C per minute, and finally heat-treated by holding at 140°C for 30 minutes.

」―記の操作1回により、レンズ面」二に膜厚2.21
1mで屈折率1.47の膜体1を形成することができ、
この膜体1の形成により、レンズ面の最大組さRmax
は0.1μm以下に減少して鏡面平滑状態となり、膜体
1を形成する前には解像しなかったものが解像するよう
になった。
By performing the above operation once, the film thickness on the lens surface is 2.21 mm.
A film body 1 with a refractive index of 1.47 can be formed in 1 m,
By forming this film body 1, the maximum combination of lens surfaces Rmax
has decreased to 0.1 μm or less, resulting in a mirror-like smooth state, and what was not resolved before forming the film body 1 is now resolved.

また膜体1は、鉛筆試験硬度が411以上と良好な接着
性を示した。
Further, the film body 1 exhibited good adhesion with a pencil test hardness of 411 or more.

次に上記のように1,て製作1〜た膜体付きガラスレン
ズについて耐候性試験を行った。
Next, a weather resistance test was conducted on the film-equipped glass lenses manufactured as described above.

比較のために、膜体1を形成していないガラスし・ンズ
についても同時に耐候性試験を行った。耐候性試験は、
70℃で相対湿度90%の雰囲気下で100時間保持す
ることにより行った。
For comparison, a weather resistance test was also conducted on glass lenses without the membrane 1 formed thereon. The weather resistance test is
The test was carried out by holding the test at 70°C for 100 hours in an atmosphere with a relative humidity of 90%.

耐候性試験の後、膜体を形成していないレンズには、い
わゆるヤケと呼ばれる劣化が表面乙こ認められた。一方
、膜体を形成した光学部品の表面は耐候性試験前と同様
に均一・で、劣化や析出物の発生は認められなかった。
After the weather resistance test, some deterioration known as discoloration was observed on the surface of the lens without the film formed thereon. On the other hand, the surface of the optical component on which the film was formed was as uniform as before the weather resistance test, and no deterioration or precipitation was observed.

従って、膜体1は、未研磨光学部品母体2の表面を平滑
化すると同時に、、表面の保護層として機能しているこ
とがわかる。
Therefore, it can be seen that the film 1 smoothes the surface of the unpolished optical component matrix 2 and at the same time functions as a protective layer for the surface.

本実施例と同一の作製方法により、最終熱処理温度のみ
を100℃、200℃、350℃と変えて、膜体1を形
成したガラスレンズQこついて同様の評価を行った。
Similar evaluations were performed on glass lenses Q with film bodies 1 formed thereon using the same manufacturing method as in this example, with only the final heat treatment temperature being changed to 100°C, 200°C, and 350°C.

その結果、熱処理温度が100°C、2 0 0 ’C
、及び350°Cのいずれの場合でも同様の光学特性、
耐候性を持ったものが得られることがわかった。
As a result, the heat treatment temperature was 100°C, 200'C
, and similar optical properties at 350°C,
It was found that a material with weather resistance could be obtained.

本実施例における′T” i 0□−Si02系膜体に
おいて、′1゛iとSiの比は、前述した20対80に
限られるものではなく、光学部品母体の光学的性質に合
せて任意の比に変えることができる。
In the 'T'' i 0□-Si02 system film body in this example, the ratio of '1゛i to Si is not limited to the above-mentioned 20:80, but can be set arbitrarily according to the optical properties of the optical component matrix. can be changed to the ratio of

本実施例においては、金属アルコキシド二M(OR”)
、、。1のアルコキシド基:OR’基の1つを、加水分
解・縮重合反応に対して不活性な有機基:Rに置換した
ものとして、メチルトリエトキシシラン:Cl13Si
 (O]zHs) 4を用いているが、代りに、フェニ
ルトリメトキシシラン: あるいは、ヘキシルトリメトキシシラン:C611+:
+Si(OCIIa)sなどを用いることもできる。
In this example, metal alkoxide diM(OR”)
,,. Methyltriethoxysilane: Cl13Si, in which one of the alkoxide groups: OR' groups in No. 1 is replaced with an organic group: R that is inert to hydrolysis and polycondensation reactions.
(O]zHs) 4 is used, but instead, phenyltrimethoxysilane: Or hexyltrimethoxysilane: C611+:
+Si(OCIIa)s etc. can also be used.

また屈折率制御を目的として、チタニウムテトラn−ブ
トキシド:′l″i(OnBu)4を用いたが、代りに
ヂタニウムテI・ライソプロボキシト=]゛i(OCI
H7)4 、チタニウムアセデルアセトナート錯体: 
T i (OC4Hq)z (CsH70z)zなどを
用いることができる。
In addition, for the purpose of controlling the refractive index, titanium tetra-n-butoxide:'l''i (OnBu)4 was used, but titanium tetra-n-butoxide: 'l''i (OnBu)4 was used instead.
H7)4, titanium acedelacetonate complex:
T i (OC4Hz)z (CsH70z)z, etc. can be used.

さらに、′「iの代りに、Zr,Snなどの金属有機化
合物を用いても良好な膜体を光学部品共Hに形成するこ
とができた。
Furthermore, even if a metal organic compound such as Zr or Sn was used in place of 'i', a good film body could be formed on both the optical parts H.

本実施例で示した原理は、屈折率分布型ガラスレンズの
みに限らず、球面レンズ、プリズム等にも当然適用でき
る。
The principle shown in this embodiment is naturally applicable not only to gradient index glass lenses but also to spherical lenses, prisms, and the like.

比較例−1 シリコンテトラエトキシド: S l (O CzHs
)n一種類のみの金属アルコキシドを原料に用いた場合
について検討した。
Comparative Example-1 Silicon tetraethoxide: S l (O CzHs
) n A case was investigated in which only one type of metal alkoxide was used as a raw material.

まずシリコンテトラエ1−4−シトのエタノールン容液
に、希塩酸(1wt%)を加えて一時間攪拌した。ここ
で加えた希塩酸の量は、ソリコンテトラエトキシドに対
して希塩酸中の水がモル比で6倍となるようにした。ま
た加えるエタノールの量は膜厚を変えるために変化させ
た。こうして得られた溶液は無色透明であり、該溶液を
コーティング溶液とした。
First, dilute hydrochloric acid (1 wt %) was added to an ethanolone solution of silicon tetraene 1-4-cyto and stirred for one hour. The amount of diluted hydrochloric acid added here was such that the molar ratio of water in the diluted hydrochloric acid was six times that of solicontetraethoxide. The amount of ethanol added was also varied in order to change the film thickness. The solution thus obtained was colorless and transparent, and was used as a coating solution.

上記溶液を用いて、実施例−1と同様に屈折率分布型レ
ンズの未研磨面(最大粗さR max− 0. 5μm
)への膜形成を行った。
Using the above solution, the unpolished surface (maximum roughness R max - 0.5 μm) of a gradient index lens was prepared in the same manner as in Example-1.
) was formed into a film.

本比較例においては、1回のコーティング操作で形成で
きる膜厚は最大0.4μmと薄く、第2図に示すように
レンズ表面凹凸に沿った凹凸が残って平滑面には至らず
、また屈折率制御ができないため、膜体1と光学部品母
体(レンズ)2との界面の反射率が増大した。
In this comparative example, the film thickness that can be formed in one coating operation is as thin as 0.4 μm at maximum, and as shown in Figure 2, the unevenness along the lens surface remains, making it impossible to achieve a smooth surface. Since the ratio cannot be controlled, the reflectance at the interface between the film body 1 and the optical component matrix (lens) 2 increased.

さらに、これ以上の膜厚の膜体を形成しようとすると、
第3図に示すように膜体1にひび割れを生じた。
Furthermore, if you try to form a film body with a thickness greater than this,
As shown in FIG. 3, cracks were generated in the membrane 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、前述実施例及び比較例からも明らかな
通り、研磨仕上げ前の粗い表面状態の光学部品母体を平
滑化するのに十分な膜厚の膜体形成が可能となる。
According to the present invention, as is clear from the above-mentioned Examples and Comparative Examples, it is possible to form a film having a thickness sufficient to smooth the rough surface of the optical component base before polishing.

従って研磨加工工程、または研削加工と研磨加工の両工
程を省略することができ、加工費の大幅な節減を図るこ
とができる。
Therefore, the polishing process or both the grinding and polishing processes can be omitted, and processing costs can be significantly reduced.

さらに本発明に係る膜体は光学部品母体の保護層として
働くため、該膜体を設けることにより表面平滑化した光
学部品は、高い信輔性で使用することができる。
Furthermore, since the film according to the present invention acts as a protective layer for the optical component matrix, optical components whose surfaces have been smoothed by providing the film can be used with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で得られる光学部品の要部を拡大して示
す断面図、第2図及び第3図は本発明外の膜体を用いた
場合に生じる問題を示す拡大断面図である。
FIG. 1 is an enlarged cross-sectional view showing the main part of an optical component obtained by the present invention, and FIGS. 2 and 3 are enlarged cross-sectional views showing problems that occur when using a film body other than the present invention. .

Claims (1)

【特許請求の範囲】 1)切断、研削等によって得られた粗面状態の光学部品
の光入出射面を、粗面の凹凸を埋めて平滑化するように
固体透明膜体を設けた光学部品であって、該膜体が、R
_1M_1(OR_2)m(M_1:金属、R_1、R
_2:炭素数1〜6の有機基)で表わされる金属有機化
合物の加水分解縮重合生成物を含むものであることを特
徴とする光学部品。 2)請求項1において、前記膜体が、R_1M_1(O
R_2)mと、下記式で表わされる1種以上の金属有機
化合物との複合縮重合生成物である光学部品。 R_3M_2(OR_4)m又はM_3(OR_5)n
ただしM_2、M_3:金属、R_3、R_4、R_5
:炭素数1〜6の有機基、m、n:自然数。
[Scope of Claims] 1) An optical component provided with a solid transparent film so as to fill in the unevenness of the rough surface and smooth the light input/output surface of the optical component, which has a rough surface obtained by cutting, grinding, etc. and the membrane body is R
_1M_1(OR_2)m(M_1: metal, R_1, R
_2: An optical component characterized by containing a hydrolytic condensation product of a metal organic compound represented by (C1-C6 organic group). 2) In claim 1, the film body is R_1M_1(O
An optical component that is a composite condensation product of R_2)m and one or more metal organic compounds represented by the following formula. R_3M_2(OR_4)m or M_3(OR_5)n
However, M_2, M_3: metal, R_3, R_4, R_5
: Organic group having 1 to 6 carbon atoms, m, n: Natural number.
JP63302600A 1988-07-19 1988-11-30 Optical parts Pending JPH02148002A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63302600A JPH02148002A (en) 1988-11-30 1988-11-30 Optical parts
US07/810,347 US5638479A (en) 1988-07-19 1991-12-17 Optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63302600A JPH02148002A (en) 1988-11-30 1988-11-30 Optical parts

Publications (1)

Publication Number Publication Date
JPH02148002A true JPH02148002A (en) 1990-06-06

Family

ID=17910931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63302600A Pending JPH02148002A (en) 1988-07-19 1988-11-30 Optical parts

Country Status (1)

Country Link
JP (1) JPH02148002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054913A1 (en) * 2003-12-03 2005-06-16 Tdk Corporation Optical parts, optical recording medium and method for manufacture thereof
JP2009508149A (en) * 2005-08-31 2009-02-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for structuring the surface of a substrate
EP2177942A1 (en) * 2007-07-27 2010-04-21 Hoya Corporation Process for producing spectacle lens
JP2015532729A (en) * 2012-08-22 2015-11-12 スリーエム イノベイティブ プロパティズ カンパニー Polarizing beam splitter and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911946A (en) * 1972-01-10 1974-02-01
JPS521926A (en) * 1975-06-23 1977-01-08 Marugo Kk Method of and apparatus for introducing prestress into prestressed concrete pile production
JPS56164301A (en) * 1980-04-16 1981-12-17 Zeiss Stiftung Method of varying reflecting characteristics of surface of optical member and optical member
JPS5823001A (en) * 1981-08-04 1983-02-10 Nippon Sheet Glass Co Ltd Reflection preventing optical parts of plastic with enhanced heat resistance
JPS60108801A (en) * 1983-11-18 1985-06-14 Matsushita Electric Ind Co Ltd Optical parts
JPS60190473A (en) * 1984-02-27 1985-09-27 フラウンホーフアー‐ゲゼルシヤフト・ツール・フエルデルンク・デア・アンゲヴアントテン・フオルシユンク・エー・フアウ Manufacture of friction-resistant coating and lacquer
JPS63159801A (en) * 1986-12-24 1988-07-02 Nippon Soda Co Ltd Antireflection glass and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911946A (en) * 1972-01-10 1974-02-01
JPS521926A (en) * 1975-06-23 1977-01-08 Marugo Kk Method of and apparatus for introducing prestress into prestressed concrete pile production
JPS56164301A (en) * 1980-04-16 1981-12-17 Zeiss Stiftung Method of varying reflecting characteristics of surface of optical member and optical member
JPS5823001A (en) * 1981-08-04 1983-02-10 Nippon Sheet Glass Co Ltd Reflection preventing optical parts of plastic with enhanced heat resistance
JPS60108801A (en) * 1983-11-18 1985-06-14 Matsushita Electric Ind Co Ltd Optical parts
JPS60190473A (en) * 1984-02-27 1985-09-27 フラウンホーフアー‐ゲゼルシヤフト・ツール・フエルデルンク・デア・アンゲヴアントテン・フオルシユンク・エー・フアウ Manufacture of friction-resistant coating and lacquer
JPS63159801A (en) * 1986-12-24 1988-07-02 Nippon Soda Co Ltd Antireflection glass and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054913A1 (en) * 2003-12-03 2005-06-16 Tdk Corporation Optical parts, optical recording medium and method for manufacture thereof
JP2009508149A (en) * 2005-08-31 2009-02-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for structuring the surface of a substrate
EP2177942A1 (en) * 2007-07-27 2010-04-21 Hoya Corporation Process for producing spectacle lens
EP2177942A4 (en) * 2007-07-27 2011-03-30 Hoya Corp Process for producing spectacle lens
JP2015532729A (en) * 2012-08-22 2015-11-12 スリーエム イノベイティブ プロパティズ カンパニー Polarizing beam splitter and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4224646B2 (en) Method for producing multilayer optical material using cross-linking / densification by exposure to ultraviolet light and optical material produced by said method
EP1211524B9 (en) Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film
JPH05503372A (en) D. C. Reactive sputtered anti-reflective coating
CN106348579A (en) Asymmetrically structured thin glass sheet that is chemically strengthened on both surface sides, method for its manufacture as well as use of same
US5638479A (en) Optical part
WO2002068183A1 (en) Article having predetermined surface shape and method for preparation thereof
CA3009603C (en) Hard-coat-layer-forming composition and optical member
JPH02148002A (en) Optical parts
JPH07119843B2 (en) Anti-reflection high refractive index plastic lens
JPS6135521B2 (en)
EP1283432B1 (en) Windowpane for head up display
JP3415183B2 (en) Manufacturing method of optical element assembly and optical element assembly
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
EP2216303A1 (en) Heat Treatable Magnesium Fluoride Inclusive Coatings, Coated Articles Including Heat Treatable Magnesium Fluoride Inclusive Coatings, and Methods of Making the Same
JP2983237B2 (en) High refractive index plastic lens
JPH0611601A (en) Antireflection plastic lens
JPH03218821A (en) Heat ray reflective glass
EP0390218B1 (en) Anti-reflection optical element
JPH0474568A (en) Low reflection antistatic film and preparation and use thereof
JPS6296901A (en) Synthetic resin lens
JPH05249306A (en) Mirror for automobile
JP2628589B2 (en) Anti-reflection coating for polyurethane lens
JPS62297369A (en) Production of optical element
JPH091046A (en) Manufacture of laminate
JP2862597B2 (en) Anti-reflection coating for plastic lenses