JPH02147415A - Pneumatic radial tire - Google Patents

Pneumatic radial tire

Info

Publication number
JPH02147415A
JPH02147415A JP63302984A JP30298488A JPH02147415A JP H02147415 A JPH02147415 A JP H02147415A JP 63302984 A JP63302984 A JP 63302984A JP 30298488 A JP30298488 A JP 30298488A JP H02147415 A JPH02147415 A JP H02147415A
Authority
JP
Japan
Prior art keywords
belt
belt cord
tire
tread portion
tire equator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63302984A
Other languages
Japanese (ja)
Inventor
Shinzo Kajiwara
梶原 信三
Yoshio Konii
児新 善夫
Minao Yanase
未南夫 梁瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP63302984A priority Critical patent/JPH02147415A/en
Priority to EP93200584A priority patent/EP0547040B1/en
Priority to DE68918674T priority patent/DE68918674T2/en
Priority to DE1989624432 priority patent/DE68924432T2/en
Priority to DE68926578T priority patent/DE68926578T2/en
Priority to EP93200585A priority patent/EP0547041B1/en
Priority to EP89312436A priority patent/EP0371788B1/en
Priority to EP19930200583 priority patent/EP0547039A3/en
Publication of JPH02147415A publication Critical patent/JPH02147415A/en
Priority to US07/825,787 priority patent/US5353855A/en
Priority to US07/871,333 priority patent/US5385187A/en
Priority to US08/054,828 priority patent/US5482099A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain both driving stability and the prevention of one-side flow in the captioned tire for a car by quartering a tread on which longitudinal grooves are formed into left/right inside/outside zones in the width direction and forming inner lateral grooves which are inclined at a defined angle in the direction of outer cords on the inside zones while forming outer lateral grooves which are oppositely inclined while opening on tread ends on the outside zones. CONSTITUTION:A tread portion is divided into left/right inside zones CL, CR and left/right outside zones SL, SR while forming longitudinal grooves G1, G2 on each boundary. Inner lateral grooves Gc having an inclination angle of below 40 deg. to a tire axis in the same direction as that of outer belt cords 7a are formed on the inside zones CL, CR while being connected to the longitudinal grooves G1, G2. Outer lateral grooves Gs having an inclination angle of below 40 deg. in the direction opposite to the outer belt cords 7a are formed on the outside zones SL, SR while being opened to the longitudinal grooves G2 and tread end edges (a). By this structure, both driving stability and the prevention of one-side flow can be obtained.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、空気入りラジアルタイヤ、特に操縦安定性を
維持しつつ乗用車用として好適に用いうる空気入りラジ
アルタイヤに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pneumatic radial tire, and particularly to a pneumatic radial tire that can be suitably used for passenger cars while maintaining handling stability.

〔従来の技術〕[Conventional technology]

操縦安定性能、乗心地性能を向上しうるラジアルタイヤ
が多用されつつある一方、車両走行の安全件を高めるべ
く、車両の片流れを防止し直進走行性能に優れるタイヤ
が求められている。
Radial tires, which can improve handling stability and ride comfort, are increasingly being used, but in order to improve the safety of vehicle driving, there is a need for tires that prevent vehicles from drifting in one direction and are excellent in straight-line driving performance.

従来、車両の片流れは、トレンド部のタイヤ軸方向左右
において、特にベルト層の周長が異なることによりコー
ン状となるいわゆるコニシティに起因するものとされ、
従って、タイヤ軸方向左右の均等性を高めるべく、種々
の対策がとられてぃ他方、近年のタイヤ測定技術の進歩
によって、第9図に啓示するごとく、タイヤ進行方向X
に対して微小のスリップ角αを付与したときの、タイヤ
横方向Yに生じるコーナリングフォース、即ち横力Fと
、タイヤ中心を通る垂直軸Zまわりでスリップ角αの方
向に回転するセルファライニングトルクSATとを高精
度で計測することが可能となった。
Conventionally, the one-sided flow of a vehicle is thought to be caused by so-called conicity, which occurs when the circumferential length of the belt layer differs between the left and right sides of the tire axial direction in the trend section, resulting in a cone shape.
Therefore, various measures have been taken to improve the left and right uniformity of tires in the axial direction.On the other hand, with the progress of tire measurement technology in recent years, as revealed in Fig. 9, the tire traveling direction
When a minute slip angle α is applied to the tire, the cornering force generated in the tire lateral direction Y, that is, the lateral force F, and the self-lining torque SAT that rotates in the direction of the slip angle α around the vertical axis Z passing through the center of the tire. It became possible to measure with high precision.

二のような計測結果は、例えば第10図に示すように、
横軸にセルファライニングトルクSATを、縦軸に横力
Fをとり曲線Kを用いて示される。
Measurement results like 2 are, for example, as shown in Figure 10.
The self-lining torque SAT is plotted on the horizontal axis and the lateral force F is plotted on the vertical axis, which is shown using a curve K.

又曲&!ilKにおいて、スリップ角αが0度、+0.
1度、−0,1度の場合を・で示している。
Another song &! In ilK, the slip angle α is 0 degree, +0.
The cases of 1 degree, -0, and 1 degree are indicated by .

このようなセルファライニングトルクSAT。Such self-lining torque SAT.

横力Fとの関係において、前記曲線Kが縦軸と交わる交
点に1の横力F、即ちセルファライニングトルクSAT
が生じないときの横力Fを残余CFと名付けるとともに
、この残余CFが車両の片流れに2百を及ぼすタイヤ特
性となることが判明した。郡ちこの残余CFがプラス方
向即ち右向きであるとき車両が右方向に片流れすること
を意味するように、残余CFの向き、大きさによって車
両の片流れ性を評価しうること、又車両の片流れを防止
するには、この残余CFを低下することが必要となるの
である。
In relation to the lateral force F, there is a lateral force F of 1 at the intersection point where the curve K intersects with the vertical axis, that is, a self-lining torque SAT.
The lateral force F when no lateral force F is generated is called the residual CF, and it has been found that this residual CF is a tire characteristic that exerts 200% on the one-sided drift of the vehicle. If the residual CF of the vehicle is positive, that is, to the right, it means that the vehicle drifts to the right. To prevent this, it is necessary to reduce this residual CF.

又この残余CFは、接地部内におけるベルトの伸縮によ
り生じるものであって、クロスプライに配されるラジア
ルタイヤへのベルトは、伸縮によってコードが平行移動
するような面内剪断変形をうけ、これによってトレッド
ゴムは最外層のベルトブライの変形とともに生じる面内
の剪断変形によってステアトルクを発生し、このステア
トルクによって前記横力Fが生じるものと考えられる。
This residual CF is caused by the expansion and contraction of the belt within the ground contact area, and the belt to the radial tire arranged in the cross ply undergoes in-plane shear deformation such that the cord moves in parallel due to expansion and contraction. It is thought that the tread rubber generates steer torque due to in-plane shearing deformation that occurs along with the deformation of the outermost belt bridle, and that the lateral force F is generated by this steer torque.

このように、残余CFは、ベルトに起因し、しがもベル
トのスチールコード量とベルトコードの角度に依存して
いるのが判った。
In this way, it was found that the residual CF is caused by the belt and depends on the amount of steel cord in the belt and the angle of the belt cord.

従って、残余CFの改善には、コード量を減じるととも
にベルトコードのタイヤ赤道方向に対する傾斜角度を大
とし、タガ効果を減少することにより、抑制しうるのが
推定しうる。
Therefore, it can be assumed that the residual CF can be suppressed by reducing the amount of cord and increasing the angle of inclination of the belt cord with respect to the tire equator direction to reduce the hoop effect.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このようなベルトコード量を減じかつタ
イヤ赤道方向に対する傾斜角度を大とするときには、タ
ガ効果を減じ、特に旋回時におシするコーナリング力を
低下することにより操縦安定性を阻害することとなる。
However, when reducing the amount of belt cord and increasing the angle of inclination with respect to the tire equator direction, the hoop effect is reduced and, in particular, the cornering force exerted when turning is reduced, which impairs steering stability. .

本発明は、操縦安定性を損なうことなく、残余CFを低
下でき、操縦安定性能と車両の片流れ性能とを両立させ
うる空気入りラジアルタイヤの提(共を目的としている
An object of the present invention is to provide a pneumatic radial tire that can reduce residual CF without impairing handling stability and can achieve both handling stability performance and one-sided vehicle flow performance.

;課題を解決するための手段〕 本発明は、トレッド部からサイドウオール部をへてビー
ド部のビードコアで折返すカーカスと、カーカスの半径
方向外側かつ前記トレッド部の内方に配されるとともに
、スチール製のベルトコードをタイヤ赤道に対して傾け
た2層以上のベルトプライからなるベルトとを具え、か
つ前記トレッド部に少なくとも2本のタイヤ赤道方向に
連続する縦溝を設けるとともに、トレッド部をタイヤ軸
方向に、タイヤ赤道の両側の左右の内側域と、左右の内
側域の両側でトレッド部の端縁に至る左右の外側域とに
略4等分した前記左右の外側域に、タイヤ軸方向に対し
て40度以下の(頃斜角度でかつ最外側の前記ベルトブ
ライのベルトコードである外ベルトコードと逆向きに傾
きしかも少なくとも一端が前記トレッド部の端縁又は前
記縦溝で開口する外の横溝をタイヤ赤道方向に隔設する
一方、前記左右の内側域に、タイヤ軸方向に対して40
度以下の傾斜角度でしかも前記外ベルトコードと同じ向
きで傾きしかも少なくとも一端が前記縦溝で開口する内
の横溝をタイヤ赤道方向に並設してなる空気入りラジア
ルタイヤであって、特に前記ベルトプライが、ベルトコ
ード一本の総断面積S(IIIm2)と、該ベルトコー
ドに直角な方向の10口当たりの該ベルトコードの打込
み本数Nとの積であるベルトコード打込み積Nxsが1
8.0以上しかもベルトコードのタイヤ赤道に対する傾
斜角度が18度以下である空気入りラジアルタイヤに好
適に使用しうる。
Means for Solving the Problems] The present invention provides a carcass that passes from a tread portion through a sidewall portion and is folded back at a bead core of a bead portion, and a carcass disposed outside the carcass in the radial direction and inside the tread portion, a belt consisting of two or more belt plies with a steel belt cord tilted with respect to the tire equator, and at least two vertical grooves continuous in the tire equator direction are provided in the tread portion; In the tire axial direction, the left and right outer regions are divided into approximately four equal parts, the left and right inner regions on both sides of the tire equator, and the left and right outer regions reaching the edge of the tread portion on both sides of the left and right inner regions. The belt cord is inclined at an oblique angle of 40 degrees or less with respect to the direction, and is tilted in the opposite direction to the outer belt cord that is the belt cord of the outermost belt blazer, and at least one end thereof is opened at the edge of the tread portion or at the longitudinal groove. While the outer lateral grooves are spaced apart in the tire equator direction, the left and right inner regions are provided with 40 mm grooves in the tire axial direction.
A pneumatic radial tire having inner lateral grooves arranged in parallel in the tire equator direction, the inner lateral grooves having an inclination angle of less than 1.5 degrees and in the same direction as the outer belt cord, and opening at least one end in the longitudinal groove. In the ply, the belt cord driving product Nxs, which is the product of the total cross-sectional area S (IIIm2) of one belt cord and the number N of belt cords driven per 10 belt cords in the direction perpendicular to the belt cord, is 1.
It can be suitably used for pneumatic radial tires in which the angle of inclination of the belt cord with respect to the tire equator is 8.0 or more and 18 degrees or less with respect to the tire equator.

〔作用〕[Effect]

操縦安定性能と、車両の片流れ性能とを両立させるべ(
、本発明者らは種々研究を重ねた結果、タイヤのトレッ
ドパターンが車両の片流れにliFすることを見出した
It is necessary to achieve both steering stability and one-sided vehicle flow performance (
As a result of various studies, the inventors of the present invention have found that the tread pattern of a tire causes a unidirectional flow of the vehicle.

乗用車用の空気入りラジアルタイヤにおいては、円周方
向にのびる直線又はジグザグ状の複数の縦溝を設けたい
わゆるリブパターンを用いるとともに、リブにはタイヤ
赤道方向に対して交差する横溝を設シすることによって
、ブロック列を形成している。
In pneumatic radial tires for passenger cars, a so-called rib pattern is used in which a plurality of straight or zigzag vertical grooves extending in the circumferential direction are provided, and the ribs are provided with lateral grooves that intersect with the tire equator direction. This forms a block row.

この横溝の方向と傾斜角度とが、前記残余CFに太き(
影響するとともに、この横溝は、タイヤのコーナリング
性能への寄与率は小であり、従って操縦安定性能には大
して影響しないことが判明した。
The direction and inclination angle of this lateral groove are larger than the residual CF (
However, it has been found that the lateral grooves have a small contribution to the cornering performance of the tire, and therefore do not significantly affect the steering stability performance.

しかも、トレッド部を、タイヤ赤道を挟む左の内側域C
L、右の内側域CRと、その外側の左の外側域SL、右
の外側域SRとに略4等分した場合において、左右の外
側域S(左の外側域SL、右の外側域SRをあわせて外
側域Sという)に設ける外の横溝を、最外層のベルトブ
ライのベルトコードである外ベルトコードと逆向きにか
つタイヤ軸方向に対して0〜40度の傾斜角度で配する
ことにより、残余CFが低下することをテストにより見
出した。
Moreover, the tread part is located in the left inner area C across the tire equator.
L, in the case where the right inner region CR, the left outer region SL outside of it, and the right outer region SR are divided into four equal parts, the left and right outer regions S (left outer region SL, right outer region SR (collectively referred to as the outer region S), the outer lateral grooves are arranged in the opposite direction to the outer belt cord, which is the belt cord of the outermost belt bridle, and at an inclination angle of 0 to 40 degrees with respect to the tire axial direction. Through tests, it was found that the residual CF was reduced.

このテストのために、第11図(a)〜(C)に示す外
側域Sにおける外の横溝Gsの向きを違えるタイヤを試
作した。同図に、最外側の外ベルトコード7aを一点鎖
線で示す。第11図(a)は、前記外の横溝Gsを、該
外ベルトコード7aと同方向に傾けている。又第11図
(b)はタイヤ軸方向に設け、又第11図(C)は逆向
きに設けている。このようなパターンSA、5BSSC
における残余CFを測定した結果を第13図に示すよう
に、パターンSA、SB、SCでは、残余CFが、夫々
−14,4kg、−7,8kg、 −3,6kgであっ
て、外ベルトコード7aと向きが異なる外の横溝Gsを
設けたパターンSCの残余CFが低下しているのがわか
る。従って、本発明では、外側域Sに設ける外の横溝G
sを、外ベルトコード7aの向きと異ならせ、かつタイ
ヤ軸方向に対して、0〜40度の範囲で傾けている。
For this test, tires with different directions of the outer lateral grooves Gs in the outer region S shown in FIGS. 11(a) to 11(C) were manufactured as prototypes. In the figure, the outermost outer belt cord 7a is shown by a chain line. In FIG. 11(a), the outer lateral groove Gs is inclined in the same direction as the outer belt cord 7a. Further, in FIG. 11(b), the tire is provided in the axial direction of the tire, and in FIG. 11(C), it is provided in the opposite direction. Such a pattern SA, 5BSSC
As shown in FIG. 13, the residual CF in patterns SA, SB, and SC is -14.4 kg, -7.8 kg, and -3.6 kg, respectively, and the outer belt cord It can be seen that the residual CF of the pattern SC in which the outer lateral groove Gs having a different direction from 7a is provided is reduced. Therefore, in the present invention, the outer lateral groove G provided in the outer region S
s is different from the direction of the outer belt cord 7a, and is tilted within a range of 0 to 40 degrees with respect to the tire axial direction.

さらに内側域C(左の内側域CL、右の内側域CRをあ
わせて内側域Cという)においては、前記外ベルトコー
ド7aと同じ向きにかつタイヤ軸方向に対して40度以
下の傾斜角度で回けるのであり、これは第12図(a)
〜(C)に示す、外ベルトコード7aと同向きに内の横
溝Gcが傾くパターンCA、タイヤ軸方向に傾くパター
ンCB、逆向きに傾くパターン比の場合の残余CFを、
第13図に示すように、夫々−5,9kg、−8,1k
g、−12,1kgであって、外ベルトコード7aと同
じ向きに傾けることにより、残余CFの絶対値を減じえ
たことによる。
Further, in the inner region C (the left inner region CL and the right inner region CR are collectively referred to as the inner region C), the belt cord 7a is oriented in the same direction as the outer belt cord 7a and at an inclination angle of 40 degrees or less with respect to the tire axis direction. This is shown in Figure 12 (a).
~(C) shows the pattern CA in which the inner lateral groove Gc is inclined in the same direction as the outer belt cord 7a, the pattern CB in which it is inclined in the tire axial direction, and the residual CF in the case of a pattern ratio in which it is inclined in the opposite direction.
As shown in Figure 13, -5,9kg, -8,1k, respectively.
This is because the absolute value of the residual CF can be reduced by tilting it in the same direction as the outer belt cord 7a.

このように外側域Sでは外ベルトコード7aと逆向きに
、内側域Cでは同じ向きに傾けることによって、残余C
Fを低減でき、車両の片流れ性能を改善できるのである
In this way, by tilting the outer belt cord 7a in the opposite direction in the outer region S and in the same direction as the outer belt cord 7a in the inner region C, the remaining C
F can be reduced and the one-sided flow performance of the vehicle can be improved.

さらにこのような横溝Gs、Gcの配置は、ベルトコー
ドの総断面積S(mm2)と、ベルトコードに直角な方
向の10cm当たりの打込み本数Sとの積であるベルト
コード打込み積NXSが18.。
Furthermore, such arrangement of the lateral grooves Gs and Gc results in a belt cord driving product NXS of 18. .

以上かつベルトコードのタイヤ赤道に対する1頃斜角度
が18度以下であって、ベルトが強いタガ効果を発揮で
き操縦安定性を高めうるベルトを有するタイヤに好適に
採用できる。
In addition, the oblique angle of the belt cord with respect to the tire equator is 18 degrees or less, and the belt can exhibit a strong hoop effect and can be suitably employed in a tire having a belt that can improve steering stability.

〔実施例〕〔Example〕

以下本発明の一実施例を図面に基づき説明する。 An embodiment of the present invention will be described below based on the drawings.

第1.2図において、空気入りラジアルタイヤl:よ、
トレッド部2からサイドウオール部3をへてと一ド部4
のビードコア5で折返すカーカス6と、該カーカス6の
半径方向外側かつ前記トレッド部2の内方に配されるベ
ルト7とを具える。
In Figure 1.2, pneumatic radial tire l:yo,
From the tread part 2 to the sidewall part 3 and the door part 4
A carcass 6 folded back at a bead core 5, and a belt 7 disposed radially outside the carcass 6 and inside the tread portion 2.

前記ベルト7は、内外2層のベルトブライ7A。The belt 7 is a belt braai 7A with two layers: inner and outer layers.

7Bからなり、又そのベルトコードのタイヤ赤道COに
対して18度以下の傾斜角度βで互いに逆に傾く、また
最外側、本例では外のベルトブライ7Bのベルトコード
である外ベルトコード7aは、本例では、第2図におい
て、タイヤ赤道coに対して右上の方向に傾<、又ベル
トコードは、第8図に例示するごとく、スチールの素線
7bを撚り合わせた、例えば2+7X0.22、lX5
X0.23、I X 4 x 0.22などのものが利
用され又その素線7bの断面積の総和であるコード一本
当たりの総断面積Sと、第7図に示す10c+nの距離
2当たりのコード本数Nとの積であるベルトコード打込
み積N X Sを18.0以上とすることにより、ベル
ト7によるタガ効果を高め、操縦安定性を向上している
The outer belt cords 7a, which are the belt cords of the outermost, in this example, outer belt blazer 7B, are tilted oppositely to each other at an inclination angle β of 18 degrees or less with respect to the tire equator CO. In this example, in FIG. 2, the belt cord is tilted in the upper right direction with respect to the tire equator CO, and the belt cord is made of steel wires 7b twisted together, for example, 2+7X0.22, as illustrated in FIG. , lX5
X 0.23, I By setting the belt cord driving product N x S, which is the product of the number N of cords, to 18.0 or more, the hoop effect of the belt 7 is enhanced and the steering stability is improved.

ストレッド部2は、タイヤ軸方向に、仮想的に、タイヤ
赤道方向00両側の左の内側域CL、右の内側域CR及
びその外側でトレッド部の端Iiaに至る左の外側域S
L、右の外側域SRとに区分するとともに、左右の外側
域Sには、タイヤ軸方向に対して傾斜角度θSが40度
以下でしかも前記外ベルトコード7aと逆向きに傾く外
の横溝Gs・−・がタイヤ赤道方向に隔設され、又左右
の内側域Cには、タイヤ軸方向に対して傾斜角度θCが
40度以下で外ベルトコード7aと同じ右上に傾く内の
横溝G Cが設げられる。なお、外の横溝Gsの傾斜角
度θSをこえて1頃きを大とするとパターンノイズが生
じやす(、又内の横溝Gcの(頃斜角度θCが40度を
こえるときには、旋回に伴うコーナリング力を減じやす
く、操継安定性を損ないがちとなり、従って前記範囲と
する。又本例で1よ、左右の内側域C1左右の外側域S
を区分するタイヤ軸方向CO及び該タイヤ赤道COとト
レッド部2の端縁aとの間の中間位置に、タイヤ赤道方
向に連続する縦溝G1、G2を設けている。なおiα溝
G(総称するとき縦溝Gという)は直線溝であっても、
又ジグザグ溝であってもよい。
The tread portion 2 virtually includes, in the tire axial direction, a left inner region CL, a right inner region CR, and a left outer region S on both sides in the tire equator direction 00, which reaches the end Iia of the tread portion outside of the left inner region CL.
L and right outer region SR, and the left and right outer regions S have an outer lateral groove Gs having an inclination angle θS of 40 degrees or less with respect to the tire axial direction and inclining in the opposite direction to the outer belt cord 7a. . Established. In addition, if the inclination angle θS of the outer lateral groove Gs is increased and the inclination angle θC is greater than 40 degrees, pattern noise is likely to occur. Therefore, the range is set as above.In this example, the left and right inner areas C1 and the left and right outer areas S
Vertical grooves G1 and G2 that are continuous in the tire equator direction are provided at intermediate positions between the tire axial direction CO that divides the tire axial direction CO and the tire equator CO and the edge a of the tread portion 2. Note that even if the iα groove G (generally referred to as longitudinal groove G) is a straight groove,
Alternatively, it may be a zigzag groove.

又前記外、内の横溝Gs、Gcのタイヤ赤道方向の開田
である円周ピッチPs、Pcは、ともに40mm以下、
好ましくは20mm以下に設定している。
Further, the circumferential pitches Ps and Pc of the outer and inner lateral grooves Gs and Gc in the tire equator direction are both 40 mm or less,
Preferably, it is set to 20 mm or less.

左右の外側域Sで外ベルトコード7aと逆向きに傾(外
の横溝Gsを設け、左右の内側域Cに、同向きに内の横
溝Gcを設シすることによって、残余CFを改許しうろ
ことは、前記した通りである。
The scales are tilted in the opposite direction to the outer belt cord 7a in the left and right outer regions S (by providing outer lateral grooves Gs and providing inner lateral grooves Gc in the same direction in the left and right inner regions C, the remaining CF is changed). is as described above.

なお円周とソテPc、Psを好ましくは20口以下とす
ることにより、残余CFがさらに低下することが確認さ
れている。
It has been confirmed that the residual CF is further reduced by preferably setting the circumference and sauté Pc, Ps to 20 holes or less.

第3図は外の横溝Gsの(頃斜角度θSをOとした池の
実施例を示している。
FIG. 3 shows an example of a pond in which the outer lateral groove Gs has an oblique angle θS of O.

ス第2.3図は内側域C5外側域Sを区分する部分に夫
り縦溝G1、G2を設シする場合を示したが、第4図に
示すように、2本のri!溝02、G2を用いるとき、
又第5図に示すように、等間隔な・1本の縦溝G2A、
02B、又第6図に示すごとく5本の庭溝C1、G 2
 A、2Bを設〉するときには、前記内側域C1外側域
Sは、a溝Gから離れたリブ上の仮想線Fにより区分さ
れることとなり、又内の横溝Gcは、少なくとも一端部
は継溝Gで開口し、文殊の横溝Osでは、少なくとも一
端がトレッド部の端縁a又は継溝Gで開口させる。
Fig. 2.3 shows the case where vertical grooves G1 and G2 are provided in the portion that divides the inner region C5 and the outer region S, but as shown in Fig. 4, two ri! When using groove 02, G2,
Also, as shown in Fig. 5, one vertical groove G2A at equal intervals,
02B, and five garden grooves C1 and G2 as shown in Figure 6.
A, 2B>, the inner region C1 and the outer region S are divided by an imaginary line F on the rib apart from the a groove G, and at least one end of the inner lateral groove Gc is a joint groove. At least one end of the Manjushri lateral groove Os is opened at the edge a of the tread portion or at the joint groove G.

〔具体例〕〔Concrete example〕

タイヤサイズi75/70R13のタイヤを、第2.3
図、第1表に示す仕様により試作し、操縦安定性能と残
余CFとを測定した。又比較例として第14図に示すパ
ターンのものを同様に試作し、比較した。その結果を第
1表に併示している。
Tire size i75/70R13, 2.3
A prototype was manufactured according to the specifications shown in Figure 1 and Table 1, and the steering stability performance and residual CF were measured. As a comparative example, a sample having the pattern shown in FIG. 14 was similarly produced and compared. The results are also shown in Table 1.

なおテストは、リム5JX13に取付けかつ内圧2.0
kg/c4、荷重3’00kgとして、米国MTS社の
フラットトランクマシンを用いて残余CFを、111定
した。なお、残余CFは、比較例1を100とする残余
CF指数により表示している。指数が小なる程、残余C
Fが小であり好ましいことを示す。
The test was carried out with the rim 5JX13 installed and with an internal pressure of 2.0.
The residual CF was determined to be 111 using a flat trunk machine manufactured by MTS, USA, with kg/c4 and a load of 3'00 kg. Note that the residual CF is expressed by a residual CF index, with Comparative Example 1 being 100. The smaller the index, the residual C
This shows that F is small and preferable.

又操縦安定性能は、2000 ccの乗用車に取付け、
運転音によるフィーリングテストを行ない、比較りIX
を100として評価した8点数が大なるものほどよいこ
とを示す。
In addition, the handling stability performance is improved by installing it in a 2000 cc passenger car.
We conducted a feeling test using driving sounds and compared IX.
The higher the score is, the higher the score is, the better the score.

いずれも実施測高が比較別品に侵れており、又操縦安定
性能については、片流れ傾向が減じたため、運転者のフ
ィーリング結果が向上したものと思われる。
In both cases, the height measurements performed were superior to those of the comparative products, and in terms of steering stability performance, the tendency for one-sided drift was reduced, which seems to have improved the driver's feeling.

〔発明の効果〕〔Effect of the invention〕

このように本発明は、操縦安定性能を損なうことなく、
車両の片流れ性能を改善できる。
In this way, the present invention can be achieved without impairing steering stability.
The vehicle's one-sided flow performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図2よそ
のパターンを示す平面図、第3図は池のパターンを例示
する平面図、第4〜6図は夫々他のパターンを示す平面
図、第7図はベルトプライの断面図、第8図はベルトコ
ードを例示する断面図、第9図は残余CFについて説明
する斜視図、第10図はその線図、第11図(a)〜(
C)、第12図(a)〜(C)は、夫々実験で用いたパ
ターンを示す平面図、第13図は実験結果を示す線図、
第14図は、比較別品のパターンを示す平面図である。 2・−・トレンド部、  3・−サイドウオール部、4
・・・ビード部、   5・・・ビードコア、6・・−
カーカス、   7・・−ベルト、7A、7B・−・ベ
ルトプライ、 7a・・−外ベルトコード、   C・−・内側域、C
L・−・左の内側域、  CR・・・右の内側域、G−
・・横溝、 Gc−・内の横溝、 Gs−・・外の横溝
、S・・・外側域、  SL・・・左の外側域、SR−
・−右の外側域。 第1 図 特許出願人    住友ゴム工業株式会社代理人 弁理
士  苗  村     正第2 図 第3 図 ′、、4j1乙 図 丁 第10図 ;9 図 奉 sAT 秀冷CF 第13 rA
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a plan view showing other patterns in 2, FIG. 3 is a plan view illustrating a pond pattern, and FIGS. 4 to 6 are respectively showing other patterns. 7 is a sectional view of the belt ply, FIG. 8 is a sectional view illustrating the belt cord, FIG. 9 is a perspective view illustrating the residual CF, FIG. 10 is a line diagram thereof, and FIG. 11 (a)~(
C), Figures 12 (a) to (C) are plan views showing the patterns used in the experiments, Figure 13 is a diagram showing the experimental results,
FIG. 14 is a plan view showing a pattern of a comparative product. 2--Trend part, 3--Side wall part, 4
...Bead part, 5...Bead core, 6...-
Carcass, 7...-belt, 7A, 7B...-belt ply, 7a...-outer belt cord, C...-inner area, C
L...Left inner area, CR...Right inner area, G-
... Lateral groove, Gc--Inner lateral groove, Gs--Outer lateral groove, S...Outer area, SL...Left outer area, SR-
-Right outer area. Figure 1 Patent Applicant Sumitomo Rubber Industries Co., Ltd. Agent Patent Attorney Tadashi Naemura Figure 3 Figure ', 4j1 Otsu Figure Figure 10; 9 Zuho sAT Hiderei CF Figure 13 rA

Claims (1)

【特許請求の範囲】 1 トレッド部からサイドウォール部をへてビード部の
ビードコアで折返すカーカスと、カーカスの半径方向外
側かつ前記トレッド部の内方に配されるとともに、スチ
ール製のベルトコードをタイヤ赤道に対して傾けた2層
以上のベルトプライからなるベルトとを具え、かつ前記
トレッド部に少なくとも2本のタイヤ赤道方向に連続す
る縦溝を設けるとともに、トレッド部をタイヤ軸方向に
、タイヤ赤道の両側の左右の内側域と、左右の内側域の
両側でトレッド部の端縁に至る左右の外側域とに略4等
分した前記左右の外側域に、タイヤ軸方向に対して40
度以下の傾斜角度でしかも最外側の前記ベルトプライの
ベルトコードである外ベルトコードと逆向きに傾きしか
も少なくとも一端が前記トレッド部の端縁又は前記縦溝
で開口する外の横溝をタイヤ赤道方向に隔設する一方、
前記左右の内側域に、タイヤ軸方向に対して40度以下
の傾斜角度でかつ前記外ベルトコードと同じ向きで傾き
しかも少なくとも一端が前記縦溝で開口する内の横溝を
タイヤ赤道方向に並設してなる空気入りラジアルタイヤ
。 2 前記ベルトプライは、ベルトコード一本の総断面積
S(mm^2)と、該ベルトコードに直角な方向の10
cm当たりの該ベルトコードの打込み本数Nとの積であ
るベルトコード打込み積N×Sが18.0以上しかもベ
ルトコードのタイヤ赤道に対する傾斜角度が18度以下
であることを特徴とする請求項1記載の空気入りラジア
ルタイヤ。
[Scope of Claims] 1. A carcass that passes from the tread portion through the sidewall portion and is folded back at the bead core of the bead portion, and a steel belt cord disposed on the outside of the carcass in the radial direction and inside of the tread portion. a belt consisting of two or more layers of belt plies tilted with respect to the tire equator, and at least two vertical grooves continuous in the tire equator direction are provided in the tread portion, and the tread portion is arranged in the tire axial direction. In the left and right outer regions, which are divided approximately into four, into left and right inner regions on both sides of the equator, and left and right outer regions reaching the edges of the tread portion on both sides of the left and right inner regions,
An outer lateral groove that is inclined in the opposite direction to the outer belt cord that is the belt cord of the outermost belt ply and has at least one end opening at the edge of the tread portion or the longitudinal groove in the tire equator direction. While the
Inner lateral grooves are provided in the left and right inner regions in parallel in the tire equator direction at an inclination angle of 40 degrees or less with respect to the tire axial direction, inclined in the same direction as the outer belt cord, and having at least one end opened with the longitudinal groove. A pneumatic radial tire. 2 The belt ply has a total cross-sectional area S (mm^2) of one belt cord and 10 mm in the direction perpendicular to the belt cord.
Claim 1 characterized in that the belt cord driving product N×S, which is the product of the belt cord driving number N per cm, is 18.0 or more, and the inclination angle of the belt cord with respect to the tire equator is 18 degrees or less. Pneumatic radial tires listed.
JP63302984A 1988-11-30 1988-11-30 Pneumatic radial tire Pending JPH02147415A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP63302984A JPH02147415A (en) 1988-11-30 1988-11-30 Pneumatic radial tire
EP93200585A EP0547041B1 (en) 1988-11-30 1989-11-29 Pneumatic radial tyre
DE68918674T DE68918674T2 (en) 1988-11-30 1989-11-29 Radial pneumatic tire.
DE1989624432 DE68924432T2 (en) 1988-11-30 1989-11-29 Radial pneumatic tire.
DE68926578T DE68926578T2 (en) 1988-11-30 1989-11-29 Radial pneumatic tire
EP93200584A EP0547040B1 (en) 1988-11-30 1989-11-29 Pneumatic radial tyre
EP89312436A EP0371788B1 (en) 1988-11-30 1989-11-29 Pneumatic radial tyre
EP19930200583 EP0547039A3 (en) 1988-11-30 1989-11-29 Pneumatic radial tyre
US07/825,787 US5353855A (en) 1988-11-30 1992-01-21 Pneumatic radial tire
US07/871,333 US5385187A (en) 1988-11-30 1992-04-21 Pneumatic radial tire with tread of three equal portions
US08/054,828 US5482099A (en) 1988-11-30 1993-04-30 Pneumatic radial tire including a tread portion divided into four circumferential regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63302984A JPH02147415A (en) 1988-11-30 1988-11-30 Pneumatic radial tire

Publications (1)

Publication Number Publication Date
JPH02147415A true JPH02147415A (en) 1990-06-06

Family

ID=17915533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63302984A Pending JPH02147415A (en) 1988-11-30 1988-11-30 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JPH02147415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112228A (en) * 2005-10-19 2007-05-10 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2016150709A (en) * 2015-02-19 2016-08-22 住友ゴム工業株式会社 Pneumatic tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136204A (en) * 1977-04-28 1978-11-28 Michelin & Cie Radial tire
JPS5777203A (en) * 1980-10-30 1982-05-14 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JPS5963204A (en) * 1982-10-04 1984-04-10 Sumitomo Rubber Ind Ltd Pneumatic radial tire
JPS6015204A (en) * 1983-07-08 1985-01-25 Yokohama Rubber Co Ltd:The Flat tire for travelling at high speed
JPS6313802A (en) * 1986-07-04 1988-01-21 Yokohama Rubber Co Ltd:The Radial tire
JPS63275405A (en) * 1987-05-07 1988-11-14 Yokohama Rubber Co Ltd:The Radial tire for car

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136204A (en) * 1977-04-28 1978-11-28 Michelin & Cie Radial tire
JPS5777203A (en) * 1980-10-30 1982-05-14 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JPS5963204A (en) * 1982-10-04 1984-04-10 Sumitomo Rubber Ind Ltd Pneumatic radial tire
JPS6015204A (en) * 1983-07-08 1985-01-25 Yokohama Rubber Co Ltd:The Flat tire for travelling at high speed
JPS6313802A (en) * 1986-07-04 1988-01-21 Yokohama Rubber Co Ltd:The Radial tire
JPS63275405A (en) * 1987-05-07 1988-11-14 Yokohama Rubber Co Ltd:The Radial tire for car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112228A (en) * 2005-10-19 2007-05-10 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2016150709A (en) * 2015-02-19 2016-08-22 住友ゴム工業株式会社 Pneumatic tire

Similar Documents

Publication Publication Date Title
EP0371788B1 (en) Pneumatic radial tyre
US6488064B1 (en) Sacrificial ribs for improved tire wear
US7172001B2 (en) Pneumatic tire with short fibers and sipes having zigzag part and producing method thereof
WO2008050545A1 (en) Pneumatic tire
US5010936A (en) Radial tire including a narrow groove in the tread shoulder
US11872848B2 (en) Pneumatic tire
US5605589A (en) Pneumatic tire with specified spacing between cords of inner and outer belts
JPH02147415A (en) Pneumatic radial tire
JPH0958212A (en) Pneumatic tire
JPH02151506A (en) Pneumatic radial tire
JPH092016A (en) Pneumatic radial tire for heavy load
JPH02147416A (en) Pneumatic radial tire
JP3034947B2 (en) Pneumatic tire
JPH02151507A (en) Pneumatic radial tire
EP0547041B1 (en) Pneumatic radial tyre
JPH09175114A (en) Pneumatic tire
JPH02147412A (en) Pneumatic radial tire
WO2023188542A1 (en) Tire
JPH02151508A (en) Pneumatic radial tire
US11633988B2 (en) Pneumatic tire
WO2024009964A1 (en) Motorcycle tire
JP2000071723A (en) Pneumatic tire
WO2020179169A1 (en) Pneumatic tire
JP2023150618A (en) tire
JPH0478701A (en) Pneumatic radial tire suitable for high speed running