JPH0214659B2 - - Google Patents

Info

Publication number
JPH0214659B2
JPH0214659B2 JP56059019A JP5901981A JPH0214659B2 JP H0214659 B2 JPH0214659 B2 JP H0214659B2 JP 56059019 A JP56059019 A JP 56059019A JP 5901981 A JP5901981 A JP 5901981A JP H0214659 B2 JPH0214659 B2 JP H0214659B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen peroxide
upper space
gas introduction
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56059019A
Other languages
Japanese (ja)
Other versions
JPS57173744A (en
Inventor
Masahiro Keida
Yoshio Ito
Masatake Toyoda
Yoshio Utsuki
Minoru Oohashi
Osamu Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
Original Assignee
Oriental Yeast Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd filed Critical Oriental Yeast Co Ltd
Priority to JP56059019A priority Critical patent/JPS57173744A/en
Publication of JPS57173744A publication Critical patent/JPS57173744A/en
Publication of JPH0214659B2 publication Critical patent/JPH0214659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明はきわめて微量(1ppm以下)の過酸化
水素(H2O2と略記)を迅速かつ簡便に定量でき
る定量方法及び装置に関する。 従来、H2O2の定量方法として一般的にはヨウ
素法が用いられているが、その検出限界は5ppm
(mg/Kg)にすぎなかつた。 また、酸素電極を用いる定量法も知られている
が、その検出限界は1ppmである。 更に、最近改良4−アミノアンチピリン比色法
(4−AA法)が開発された。しかしその方法は
高感度で正確かつ再現性も優れているが、分析行
程が長いこと(約3時間)、熟練を要することな
どの弱点を有する。 本発明の目的は上記従来の諸方法の欠点を解決
し、1ppm以下の微量のH2O2を迅速かつ簡便に定
量できる方法及び装置を提供することにある。 本発明は酸素検出素子の装着された反応容器
に、KBrO3で過酸化水素の分解を抑制処理した
過酸化水素含有検液を入れ、反応容器を密閉した
のち、該検液中及び検液の上部空間に不活性ガス
を導入することで検液の溶存酸素と空間内の酸素
を除去し、次いで上部空間にのみ不活性ガスを導
入しながら、溶存酸素を含まない過酸化水素分解
剤溶液を注入して、過酸化水素の分解により発生
る酸素量を、前記検出素子の出力変化で測定する
ことからなる過酸化水素の定量方法を提供する。 KBrO3(酸化剤)は0.05〜0.5%の水溶液として
用いるのが好ましい。更にH2O2分解抑制処理液
としては、酸化剤を0.05〜0.5%含有するPH約7
の0.2モル/リン酸緩衝液が好ましい。更に上
記の水溶液又はリン酸緩衝液を、予めN2等の不
活性ガスで酸素除去して用いるのが好ましい。 反応容器に導入する不活性ガスとしてはN2
アルゴン等があるが、N2が実用上特に好ましい。 本法においては、反応容器を密閉したのち、検
液中及びその上部空間に不活性ガスを、導入し、
上部空間の適当な出口からガスを排気管を経て排
出することにより、検液及びその上部空間内の酸
素がすべて除去される。次いで上部空間にのみ不
活性ガスを導入することにより、外部からの酸素
の侵入が防止される。この際、検液中に不活性ガ
スを導入しないのは、もしそれを導入すると測定
すべき分解酸素を追い出し、正確な測定が出来な
いからである。 H2O2分解剤としては通常H2O2分解カタラーゼ
が用いられる。カタラーゼの使用量としては検液
2mlあたり30単位以上が好ましい。なおカタラー
ゼ1単位とは1分間に1μMのH2O2を分解する酵
素活性である。 本発明においては、H2O2含有検液に、予め酸
化剤を添加することにより、その理由はまだ明ら
かではないが検液中のH2O2の分解が、極度に抑
制され微量のH2O2の定量が正確に出来る。 本発明によれば、下記のような効果がが得られ
る。 (1) 検量線:H2O2量0.01〜10mg/の間で良好
な直線性が得られる。 (2) 抽出用液:しらすぼしにH2O21ppmを添加し
た場合、水、0.5%KBrO3水溶液、0.5%KBrO3
含有りん酸緩衝液、N2ガス置換0.5%KBrO3
有りん酸緩衝液の4種について比較した結果、
夫々34.5、65.9、72.9及び87.4%の回収率を得
た。 (3) 数種食品についての回収率:生めん(うど
ん、そば)、はんぺん、かまぼこ、ちくわ、し
らすぼし、かずのこ、チーズ、牛乳及びヨーグ
ルトに1ppm添加した場合の回収率はいずれも
80%以上であつた。 (4) 検出限界:固形食品、0.1ppm、液体食品、
0.01ppm (5) 4−AA法との比較:生めん、はんぺん、か
まぼこ、ちくわ、しらすぼし及びかずのこでは
両法による測定はよく一致した。 (6) 所要時間:液体試料で約10分、固体試料では
約20分で測定できる。 本発明はまたH2O2定量装置として、酸素検出
素子の装着された密閉可能な撹拌機付反応容器
に、該反応容器の底部に不活性ガスを導入する等
ガス導入管と、該反応容器の上部空間に不活性ガ
スを導入する第二ガス導入管と、該反応容器の上
部空間から反応容器中のガスを排出する排気管と
を設け、而かも、前記第一ガス導入管による不活
性ガス導入と第二ガス導入管による不活性ガス導
入とを同時に切換えるための切換コツクを前記二
本のガス導入管とガス供給源との間に設け、更
に、前記排気管の大気中への放出部にガス逆流防
止手段を設けた過酸化水素の定量装置を提供す
る。 本装置によれば、本発明の前記定量方法を好適
に実施でき、優れた効果が得られる。 以下、第1図に従つて本発明の方法及び装置の
一具体例を説明する。第1図は本発明を実施する
のに適した装置の一例である。第1図において1
は酸素検出素子としての酸素電極である。2は1
を装着した反応容器であつて、2′は検液、2″は
上部空間を示す。2には電磁撹拌機(マグネテツ
クスターラー)6によつて作動される撹拌子5が
含まれている。3は反応容器2を恒温にするため
のジヤケツトであり、4は反応容器2を密閉する
ための蓋である。7はN2ガス切換用の四方コツ
クであり、8はN2ガス流量制御管である。9は
N2ガスを検液中に導入する第一ガス導入管であ
り、10はN2ガスを上部空間に導入する第二ガ
ス導入管である。11はニードルバルブであり、
12はN2ガスを反応容器2の上部空間2″から排
出する排気管である。13はガス逆流防止手段で
あつて、実施例ではトラツプである。14は
H2O2分解用カタラーゼ溶液の貯槽を兼ねた脱酸
素容器である。15は前記反応容器2の密閉用の
蓋4を貫通し得る注射針15′を具えた過酸化水
素分解剤液注入用シリンジ、実施例ではカタラー
ゼ溶液注入用シリンジである。16は酸素電極の
出力の増巾器であり、17は記録計である。 第2図は分析径過を示すチヤートである。第1
図及び第2図を参照して本発明の操作を説明す
る。 まず、固体試料から検液を調製あるいは抽出す
る方法を述べるに、細切した試料一定重量を正確
にとり、ホモジナイザーカツプに入れる。これに
N2ガス置換し酸化剤を含む処理液を約8倍重量
加え、ホモジナイザーで約2〜3分間均質化す
る。カツプ及びブレンダーは少量の処理液で洗浄
し、全量を試料の10倍容量とする。次いでNo.5A
のロ紙にてロ過する。最初のロ液の数mlは捨て、
次のロ液を検液とする。 この検液一定容量を反応容器2の中に入れ、蓋
4で密閉する。N2ガス切替用四方コツク7を実
線の流路が得られるように調節する。ニードルバ
ルブ11を開き、同時に撹拌子5を作動させる。
これによりN2ガスが反応容器2の検液2′内及び
その上部空間2″内に管9及び10を介して導入
され、反応容器内の酸素をすべて管12を介して
排出する。この経過を酸素電極1でとらえ、増巾
器16で増巾した後、記録計17に記録すると第
2図の下降曲線Aが得られる。次にB1点で増巾
器の感度をあげ、溶存酸素量がほぼB2点に達し
た時点(脱酸素が確認された時点)で、四方コツ
ク7を破線の流路が得られるように切替える。こ
れにより検液中に導入されるN2ガスは、検液の
液圧とN2ガス流量制御管8の抵抗との和とN2
ス送出圧力とがバランスして、N2ガスは検液中
には導入されず、上部空間にのみ導入されるよう
になる。そして記録計の指示がほぼC点に達した
時点(ほぼ点常状態に達した時点)でゼロ点調整
を行なう(D点参照)。 次に予め脱酸素したカタラーゼ溶液を貯槽14
から、シリンジ15に定量とり、シリンジを蓋4
にさし込んで、反応容器内の検液にカタラーゼ溶
液を注入する。直ちに下記の反応がおこり検液中
に溶存酸素が発生して、第2図の上昇曲線Eが得
られる。 H2O2カタラーゼ ――――――→ H2O+1/2O2 この上昇曲線Eのピークの高さhから、検液の
H2O2濃度が求められる。即ち、H2O2標準液につ
いて同様に操作して得たピークの高さh0と比較
し、計算式あるいは検量線によつて検液のH2O2
濃度が求められる。 次に本発明装置の作用効果を記述する。 本発明装置に於ては、反応容器2の底部に不活
性ガスを導入する第一ガス導入管9と、該反応容
器2の上部空間2″に不活性ガスを導入する第二
ガス導入管10と、該反応容器2の上部空間2″
から反応容器中のガスを排出する排気管12とを
設け、而かも、前記第一ガス導入管9による不活
性ガス導入と第二ガス導入管10による不活性ガ
ス導入とを同時に切換えるための切換クツク7を
前記二本のガス導入管9,10とガス供給源との
間に設け、且つ、反応容器2内の上部空間2″に
連通する排気管12の大気中への放出部にガス逆
流防止手段13が設けられ該ガス逆流防止手段1
3を経て大気中に放出せられるものであるので、
この個所に於て流体抵抗がある結果として排気管
12及び前記上部空間2″内の圧力は大気の圧力
(外気圧)よりも少許高くなり、上部空間2″内へ
は(計測中は)第二ガス導入管10により絶えず
不活性ガスが導入されることにより上部空間2″
内の高圧は維持せられ、外気中より酸素含有の空
気が浸入することは完全に防止されるのである。
このことは測定誤差を小さくすることに著しい効
果がある。 試験例 (H2O2標準液の調製) 0.5%KBrO3含有処理液(PH7.0、0.2Mリン酸緩
衝液)で、31%濃度のH2O2水溶液を100mg/に
希釈した液を、更に各種濃度に希釈して用いた。 (測定条件) H2O2標準液採取量: 2ml カタラーゼ溶液: 0.1ml(45単位) 反応温度: 30℃ 上記の条件で試験した結果、第3図の検量線が
得られた。 実施例 1 しらす5gに、下表の処理液40mlを加えホモジ
ナイザーで均質化したのち、更に処理液を加えて
50mlとし、ロ過したのち、ロ液の2mlを反応容器
に入れて、H2O2濃度を検出した。その結果を表
−1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quantitative method and apparatus that can quickly and easily quantify extremely small amounts (1 ppm or less) of hydrogen peroxide (abbreviated as H 2 O 2 ). Traditionally, the iodine method has been commonly used to quantify H 2 O 2 , but its detection limit is 5 ppm.
(mg/Kg). A quantitative method using an oxygen electrode is also known, but its detection limit is 1 ppm. Additionally, an improved 4-aminoantipyrine colorimetric method (4-AA method) has recently been developed. However, although this method is highly sensitive, accurate, and has excellent reproducibility, it has drawbacks such as a long analysis process (about 3 hours) and the need for skill. An object of the present invention is to solve the drawbacks of the conventional methods described above and to provide a method and apparatus that can quickly and easily quantify trace amounts of H 2 O 2 of 1 ppm or less. In the present invention, a hydrogen peroxide-containing test solution treated with KBrO 3 to suppress the decomposition of hydrogen peroxide is placed in a reaction container equipped with an oxygen detection element, and after the reaction container is sealed, the contents of the test solution and the test solution are By introducing an inert gas into the upper space, dissolved oxygen in the test solution and oxygen in the space are removed. Then, while introducing an inert gas only into the upper space, a hydrogen peroxide decomposer solution that does not contain dissolved oxygen is added. A method for quantifying hydrogen peroxide is provided, which comprises injecting hydrogen peroxide and measuring the amount of oxygen generated by decomposition of hydrogen peroxide based on a change in the output of the detection element. KBrO 3 (oxidizing agent) is preferably used as a 0.05-0.5% aqueous solution. Furthermore, the H 2 O 2 decomposition suppressing treatment liquid contains 0.05 to 0.5% oxidizing agent and has a pH of about 7.
0.2 mol/phosphate buffer is preferred. Furthermore, it is preferable to use the above aqueous solution or phosphate buffer after previously removing oxygen with an inert gas such as N 2 . Examples of the inert gas introduced into the reaction vessel include N 2 and argon, but N 2 is particularly preferred from a practical standpoint. In this method, after sealing the reaction container, an inert gas is introduced into the test solution and the space above it.
The test liquid and any oxygen in the headspace are removed by venting the gas through a suitable outlet in the headspace. Next, by introducing an inert gas only into the upper space, intrusion of oxygen from the outside is prevented. At this time, the reason why an inert gas is not introduced into the test liquid is because if it were introduced, the decomposed oxygen to be measured would be driven out, making accurate measurement impossible. H 2 O 2 decomposing catalase is usually used as the H 2 O 2 decomposing agent. The amount of catalase used is preferably 30 units or more per 2 ml of test solution. Note that one unit of catalase is the enzyme activity that decomposes 1 μM of H 2 O 2 in 1 minute. In the present invention, by adding an oxidizing agent to the H 2 O 2- containing test solution in advance, the decomposition of H 2 O 2 in the test solution is extremely suppressed, although the reason is not yet clear. 2 O 2 can be quantitatively determined accurately. According to the present invention, the following effects can be obtained. (1) Calibration curve: Good linearity is obtained when the amount of H 2 O 2 is between 0.01 and 10 mg/. (2) Extraction liquid: When 1 ppm of H 2 O 2 is added to Shirasuboshi, water, 0.5% KBrO 3 aqueous solution, 0.5% KBrO 3
As a result of comparing four types of phosphate buffer solution containing phosphate buffer and phosphate buffer solution containing 0.5% KBrO 3 with N 2 gas replacement,
Recovery rates of 34.5, 65.9, 72.9 and 87.4% were obtained, respectively. (3) Recovery rates for several types of foods: Recovery rates when 1 ppm was added to raw noodles (udon, soba), hanpen, kamaboko, chikuwa, shirasuboshi, kazunoko, cheese, milk, and yogurt
It was over 80%. (4) Detection limit: solid food, 0.1ppm, liquid food,
0.01ppm (5) 4-Comparison with AA method: Measurements by both methods were in good agreement for raw noodles, hanpen, kamaboko, chikuwa, shirasuboshi, and kazunoko. (6) Time required: Measurement can be performed in approximately 10 minutes for liquid samples and approximately 20 minutes for solid samples. The present invention also provides a H 2 O 2 quantitative device including a gas inlet tube for introducing an inert gas into the bottom of the reaction container, a sealable reaction container equipped with an oxygen detection element and equipped with a stirrer, and a gas introduction pipe for introducing an inert gas into the bottom of the reaction container. a second gas introduction pipe for introducing an inert gas into the upper space of the reaction vessel; and an exhaust pipe for discharging the gas in the reaction vessel from the upper space of the reaction vessel; A switch is provided between the two gas introduction pipes and the gas supply source for simultaneously switching the gas introduction and the inert gas introduction through the second gas introduction pipe, and further, the exhaust pipe is discharged into the atmosphere. To provide a hydrogen peroxide metering device that is equipped with a gas backflow prevention means. According to this apparatus, the quantitative method of the present invention can be carried out suitably, and excellent effects can be obtained. A specific example of the method and apparatus of the present invention will be described below with reference to FIG. FIG. 1 is an example of an apparatus suitable for carrying out the invention. In Figure 1, 1
is an oxygen electrode as an oxygen detection element. 2 is 1
2' is a test liquid, and 2'' is an upper space. 2 contains a stirring bar 5 operated by a magnetic stirrer 6. 3 is a jacket for keeping the reaction vessel 2 at a constant temperature, 4 is a lid for sealing the reaction vessel 2, 7 is a four-way socket for switching N 2 gas, and 8 is an N 2 gas flow rate control tube. 9 is
A first gas introduction pipe is for introducing N 2 gas into the test liquid, and 10 is a second gas introduction pipe for introducing N 2 gas into the upper space. 11 is a needle valve;
12 is an exhaust pipe for discharging N 2 gas from the upper space 2'' of the reaction vessel 2. 13 is a gas backflow prevention means, which is a trap in the embodiment.
This is a deoxidizing container that also serves as a storage tank for catalase solution for H 2 O 2 decomposition. Reference numeral 15 designates a syringe for injecting a hydrogen peroxide decomposition agent solution, which is equipped with an injection needle 15' capable of penetrating the sealing lid 4 of the reaction container 2, and is a syringe for injecting a catalase solution in the example. 16 is an amplifier for the output of the oxygen electrode, and 17 is a recorder. FIG. 2 is a chart showing the analytical trajectories. 1st
The operation of the present invention will now be described with reference to the figures and FIG. First, to describe the method for preparing or extracting a test solution from a solid sample, accurately take a certain weight of a finely chopped sample and place it into a homogenizer cup. to this
After purging with N 2 gas, add about 8 times the weight of the treatment solution containing an oxidizing agent, and homogenize for about 2 to 3 minutes using a homogenizer. Wash the cup and blender with a small amount of processing solution, making the total volume 10 times that of the sample. Next No.5A
Filter through paper. Discard the first few ml of liquid,
Use the next filtrate as the test solution. A certain volume of this test solution is put into reaction container 2 and sealed with lid 4. Adjust the four-way N2 gas switching knob 7 so that a solid line flow path is obtained. Open the needle valve 11 and operate the stirrer 5 at the same time.
As a result, N 2 gas is introduced into the test liquid 2' of the reaction vessel 2 and its upper space 2'' via the tubes 9 and 10, and all the oxygen in the reaction vessel is exhausted via the tube 12. is captured by the oxygen electrode 1, amplified by the amplification device 16, and then recorded on the recorder 17 to obtain the descending curve A shown in Fig. 2.Next, the sensitivity of the amplification device is increased at point B , and the dissolved When the amount reaches approximately B2 point (when deoxidation is confirmed), switch the four-way knob 7 so that the flow path shown by the broken line is obtained.As a result, the N 2 gas introduced into the test solution is The sum of the liquid pressure of the test liquid and the resistance of the N2 gas flow control pipe 8 and the N2 gas delivery pressure are balanced, and N2 gas is not introduced into the test liquid but only into the upper space. Then, when the reading on the recorder reaches approximately point C (when the point has almost reached a steady state), zero point adjustment is performed (see point D).
Take a certain amount into syringe 15, and put the syringe into lid 4.
Inject the catalase solution into the test solution in the reaction container. Immediately, the following reaction occurs and dissolved oxygen is generated in the test solution, resulting in the rise curve E shown in FIG. H 2 O 2 Catalase――――――→ H 2 O + 1/2 O 2 From the height h of the peak of this rising curve E, the
The H 2 O 2 concentration is determined. In other words, the H 2 O 2 of the test solution is compared with the peak height h 0 obtained by the same procedure for the H 2 O 2 standard solution, and calculated using a calculation formula or calibration curve .
Concentration is required. Next, the effects of the device of the present invention will be described. The apparatus of the present invention includes a first gas introduction pipe 9 for introducing an inert gas into the bottom of the reaction vessel 2, and a second gas introduction pipe 10 for introducing an inert gas into the upper space 2'' of the reaction vessel 2. and an upper space 2'' of the reaction vessel 2.
and an exhaust pipe 12 for discharging the gas in the reaction vessel, and a switch for simultaneously switching between inert gas introduction through the first gas introduction pipe 9 and inert gas introduction through the second gas introduction pipe 10. A hook 7 is provided between the two gas introduction pipes 9 and 10 and the gas supply source, and gas backflows to the atmosphere discharge part of the exhaust pipe 12 that communicates with the upper space 2'' in the reaction vessel 2. A prevention means 13 is provided, and the gas backflow prevention means 1
3 and is released into the atmosphere,
As a result of the fluid resistance at this point, the pressure within the exhaust pipe 12 and the upper space 2'' is slightly higher than the atmospheric pressure (external pressure), and no airflow (during measurements) into the upper space 2'' occurs. By constantly introducing inert gas through the two gas introduction pipes 10, the upper space 2''
The high pressure inside is maintained, and the infiltration of oxygen-containing air from outside is completely prevented.
This has a significant effect on reducing measurement errors. Test example (Preparation of H 2 O 2 standard solution) A 31% H 2 O 2 aqueous solution was diluted to 100 mg/dil with a treatment solution containing 0.5% KBrO 3 (PH7.0, 0.2M phosphate buffer). It was further diluted to various concentrations and used. (Measurement conditions) Amount of H 2 O 2 standard solution collected: 2 ml Catalase solution: 0.1 ml (45 units) Reaction temperature: 30°C As a result of testing under the above conditions, the calibration curve shown in Figure 3 was obtained. Example 1 Add 40 ml of the treatment liquid shown in the table below to 5 g of whitebait, homogenize with a homogenizer, and then add the treatment liquid.
The volume was reduced to 50 ml, and after filtration, 2 ml of the filtrate was placed in a reaction vessel, and the H 2 O 2 concentration was detected. The results are shown in Table-1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の定量装置の一例を示す概要
図である。第2図は、本発明の分析経過を示すチ
ヤートである。第3図は、前記の試験例で得られ
た検量線を示すグラフである。 1……酸素電極、2……反応容器、2′……検
液、2″……上部空間、4……蓋、7……N2ガス
切換用四方コツク(切換コツク)、8……N2ガス
流量制御管、9……N2ガスを検液中に導入する
第一ガス導入管、10……N2ガスを上部空間に
導入する第二ガス導入管、12……N2ガスを反
応容器から排出する排気管、13……ガス逆流防
止手段(トラツプ)、14……貯槽を兼ねた脱酸
素容器、15……過酸化水素分解剤液注入用シリ
ンジ、15′……蓋4を貫通し得る注射針。
FIG. 1 is a schematic diagram showing an example of the quantitative device of the present invention. FIG. 2 is a chart showing the analysis progress of the present invention. FIG. 3 is a graph showing the calibration curve obtained in the above test example. 1...Oxygen electrode, 2...Reaction container, 2'...Test liquid, 2''...Upper space, 4...Lid, 7...N 2 gas switching four-way pot (switching pot), 8...N 2 Gas flow rate control tube, 9...First gas introduction tube for introducing N2 gas into the test liquid, 10...Second gas introduction tube for introducing N2 gas into the upper space, 12... N2 gas Exhaust pipe for discharging from the reaction container, 13...Gas backflow prevention means (trap), 14...Oxygen removal container that also serves as a storage tank, 15...Syringe for injecting hydrogen peroxide decomposer liquid, 15'...Lid 4. A needle that can be penetrated.

Claims (1)

【特許請求の範囲】 1 酸素検出素子の装着された反応容器に、
KBrO3で過酸化水素の分解を抑制処理した過酸
化水素含有検液を入れ、反応容器を密閉した後、
該検液中及び検液の上部空間に不活性ガスを導入
することで検液の溶存酸素と上部空間内の酸素を
除去し、次いで上部空間にのみ不活性ガスを導入
しながら、溶存酸素を含まない過酸化水素分解剤
溶液を注入して、過酸化水素の分解により発生す
る酸素量を、前記検出素子の出力変化で測定する
ことからなる過酸化水素の定量方法。 2 酸素検出素子の装着された密閉可能な撹拌機
付反応容器に、該反応容器の底部に不活性ガスを
導入する第一ガス導入管と、該反応容器の上部空
間に不活性ガスを導入する第二ガス導入管と、該
反応容器の上部空間から反応容器中のガスを排出
する排気管とを設け、而かも、前記第一ガス導入
管による不活性ガス導入と第二ガス導入管による
不活性ガス導入とを同時に切換えるための切換コ
ツクを前記二本のガス導入管とをガス供給源との
間に設けると共に、前記排気管の大気中への放出
部にガス逆流防止手段を設け、更に、過酸化水素
測定のための過酸化水素分解剤の前記反応容器内
への導入手段として、該反応容器の密閉用の蓋を
貫通し得る注射針を具えた過酸化水素分解剤液注
入用シリンジを、前記反応容器などとは別個に具
備することを特徴とする過酸化水素の定量装置。
[Claims] 1. A reaction vessel equipped with an oxygen detection element,
After adding the hydrogen peroxide-containing test solution treated with KBrO 3 to suppress the decomposition of hydrogen peroxide and sealing the reaction vessel,
Dissolved oxygen in the test solution and oxygen in the upper space are removed by introducing an inert gas into the test solution and into the upper space of the test solution, and then, while introducing an inert gas only into the upper space, dissolved oxygen is removed. A method for quantifying hydrogen peroxide, which comprises injecting a hydrogen peroxide decomposer solution that does not contain hydrogen peroxide and measuring the amount of oxygen generated by decomposition of hydrogen peroxide based on a change in the output of the detection element. 2. A first gas introduction pipe for introducing an inert gas into the bottom of the reaction container and an inert gas into the upper space of the reaction container are introduced into a sealable stirrer-equipped reaction container equipped with an oxygen detection element. A second gas introduction pipe and an exhaust pipe for discharging the gas in the reaction vessel from the upper space of the reaction vessel are provided, and inert gas is introduced by the first gas introduction pipe and inert gas is introduced by the second gas introduction pipe. A switching device for simultaneously switching the active gas introduction and the active gas introduction is provided between the two gas introduction pipes and the gas supply source, and a gas backflow prevention means is provided at the discharge part of the exhaust pipe to the atmosphere, and further , a syringe for injecting a hydrogen peroxide decomposition agent solution, which is equipped with an injection needle capable of penetrating the sealing lid of the reaction container, as a means for introducing a hydrogen peroxide decomposition agent into the reaction container for hydrogen peroxide measurement; An apparatus for quantifying hydrogen peroxide, characterized in that it is provided separately from the reaction vessel and the like.
JP56059019A 1981-04-18 1981-04-18 Method and device for determinations hydrogen peroxide Granted JPS57173744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56059019A JPS57173744A (en) 1981-04-18 1981-04-18 Method and device for determinations hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56059019A JPS57173744A (en) 1981-04-18 1981-04-18 Method and device for determinations hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS57173744A JPS57173744A (en) 1982-10-26
JPH0214659B2 true JPH0214659B2 (en) 1990-04-09

Family

ID=13101150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56059019A Granted JPS57173744A (en) 1981-04-18 1981-04-18 Method and device for determinations hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS57173744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458954U (en) * 1990-09-25 1992-05-20

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228498A (en) * 1988-03-10 1989-09-12 Shokuhin Sangyo Center Rapid determination of concentration of microorganism and apparatus therefor
DE19924906C2 (en) * 1999-05-31 2001-05-31 Daimler Chrysler Ag Semiconductor gas sensor, gas sensor system and method for gas analysis
CN106086157A (en) * 2016-06-21 2016-11-09 俞率成 Catalase activity analyzer and using method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109793A (en) * 1974-02-05 1975-08-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109793A (en) * 1974-02-05 1975-08-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458954U (en) * 1990-09-25 1992-05-20

Also Published As

Publication number Publication date
JPS57173744A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
Coburn et al. Carbon monoxide in blood: analytical method and sources of error
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
US6443908B2 (en) Method and apparatus for in vivo measurement of carbon monoxide production rate
JPH0214659B2 (en)
US4376681A (en) Method of measuring carbon dioxide in a liquid or gas
CA1081099A (en) Method and apparatus for analysis of water
JPH09206064A (en) Device for restoring dried bacteria
ES2227218T3 (en) PROCEDURE FOR MEASURING SO2 CONTENT IN WINE.
JP3668575B2 (en) Histamine quantitative method and quantitative apparatus
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
US5514594A (en) Method for measurement of no contents
JP3577391B2 (en) Negative pressure can headspace gas analysis method
Williams et al. Determination of trace oxygen in gases
Lukas et al. Determination of blood oxygen content by gas chromatography
JPH01228498A (en) Rapid determination of concentration of microorganism and apparatus therefor
Kenten Gasometric Analysis in Plant Investigation: Warburg, van Slyke, Microdiffusion Methods and Ethylene
Peterson et al. Evaluation of Inert Gas Fusion Method for Rapid Determination of Oxygen in Steel
US4018651A (en) Method for regenerating glucose oxidase reagent
SU862901A1 (en) Method of measuring concentration of ozone in gas mixture
JP2012167976A (en) Method for quantitatively determining trace of carbonic acid contained in metal powder
JPS5838851A (en) Electrochemical measurement of oxygen concentration
Gill et al. Advances in gas control technology in the brewery
JPH07333153A (en) Measuring method for peroxodisulfuric acid in waste water
CN206192891U (en) Online real -time detection device of oxide always remains
Christensen et al. Determination of the Carbon Content of Organic Materials