JPH02145428A - Production of manganese oxide for dry cell - Google Patents

Production of manganese oxide for dry cell

Info

Publication number
JPH02145428A
JPH02145428A JP63297879A JP29787988A JPH02145428A JP H02145428 A JPH02145428 A JP H02145428A JP 63297879 A JP63297879 A JP 63297879A JP 29787988 A JP29787988 A JP 29787988A JP H02145428 A JPH02145428 A JP H02145428A
Authority
JP
Japan
Prior art keywords
manganese oxide
manganese
aluminum
manganese dioxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63297879A
Other languages
Japanese (ja)
Inventor
Ryohei Ishikawa
石川 遼平
Yutaka Tsukuda
築田 裕
Hiroshi Ochiai
弘 落合
Hiroyuki Miura
三浦 裕行
Takahiro Miyashita
孝洋 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP63297879A priority Critical patent/JPH02145428A/en
Publication of JPH02145428A publication Critical patent/JPH02145428A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain manganese oxide for dry cells having an extremely low rise in internal resistance, especially in low-rate discharge with remarkably higher activity at a markedly lower cost than those of electrolytic manganese dioxide by subjecting manganese oxide to aluminum treatment under specific pH conditions in the course of a production process for chemical converted manganese dioxide. CONSTITUTION:A manganese oxide is roasted at a higher temperature than decomposition temperature thereof to form manganese oxide consisting essentially of Mn2O3 and/or Mn3O4. The resultant product is then treated with a mineral acid to afford manganese oxide consisting essentially of MnO2. The obtained manganese oxide is subsequently treated in an aqueous medium at pH-2.0-4.0 or >=10 containing an aluminum compound to provide manganese oxide containing >=75% MnO2 and the aluminum compound in an amount of 6.0% expressed in terms of Al. Various aluminum compounds, such as aluminum chloride, aluminum sulfate, aluminum hydroxide or sodium aluminate, can be used as the aluminum compound used for the aluminum treatment. The above- mentioned compounds may be alone or a mixture of two or more thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、乾電池用マンガン酸化物の製造方法に関する
。さらに詳しくは、本発明は、電気化学的に高活性であ
り、しかも低率放電時の内部抵抗の上昇が少なく、経済
的にも有利な、特にマンガン乾電池の製造に有用な乾電
池用マンガン酸化物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing manganese oxide for dry batteries. More specifically, the present invention provides a manganese oxide for dry batteries that is electrochemically highly active, has a small increase in internal resistance during low rate discharge, is economically advantageous, and is particularly useful for manufacturing manganese dry batteries. Relating to a manufacturing method.

(従来の技術) 二酸化マンガン−亜鉛系乾電池(マンガン乾電池、塩化
亜鉛乾電池、アルカリマンガン乾電池など)を構成する
主材料の一つは、正極の分極を抑制する減極剤(正極活
物質)として使用されるマンガン酸化物、特に二酸化マ
ンガンであり、これを導電性炭素粉と混合し、′電解液
を含浸させた合剤の形態で乾電池に使用される。
(Conventional technology) One of the main materials constituting manganese dioxide-zinc dry batteries (manganese dry batteries, zinc chloride dry batteries, alkaline manganese dry batteries, etc.) is used as a depolarizer (positive electrode active material) to suppress polarization of the positive electrode. Manganese oxide, especially manganese dioxide, is mixed with conductive carbon powder and used in dry batteries in the form of a mixture impregnated with electrolyte.

マンガン乾電池を例にとると、合剤の他に、亜鉛缶、炭
素棒、セパレータが主な構成要素であるが、これらの材
料の中で乾電池の性能、例えば放電寿命に大きな影響を
及ぼすのは、二酸化マンガンの性状である。そのため、
乾電池の設計において二酸化マンガンの選択は非常に重
要である。
Taking a manganese dry battery as an example, in addition to the mixture, the main components are a zinc can, carbon rods, and a separator. Among these materials, the one that has the greatest effect on the performance of the dry cell, such as the discharge life, is , the properties of manganese dioxide. Therefore,
The selection of manganese dioxide is very important in the design of dry cell batteries.

二酸化マンガンには、天然二酸化マンガン、電解二酸化
マンガンおよび化学合成二酸化マンガンがある。従来は
、天然二酸化マンガン鉱石が安価であることから大量に
乾電池用材料として使用されてきたが、近年は電気化学
的特性が良好な天然二酸化マンガン鉱石を得ることが困
難となったため、電解二酸化マンガンが次第に利用され
るようになってきた。
Manganese dioxide includes natural manganese dioxide, electrolytic manganese dioxide, and chemically synthesized manganese dioxide. Traditionally, natural manganese dioxide ore has been used in large quantities as a material for dry cell batteries because it is cheap, but in recent years it has become difficult to obtain natural manganese dioxide ore with good electrochemical properties, so electrolytic manganese dioxide ore has been used as a material for dry batteries. has gradually come to be used.

電解二酸化マンガンは、通常、硫酸マンガン水溶液を陽
極酸化することにより製造され、結晶相は主として1−
Mn0□からなり、一般に減極剤として最適であるとさ
れている。しかし、電解二酸化マンガンは電解工程に多
大の電力を必要とするため、電力費の高い我が国では必
然的に高コストとなる欠点があった。
Electrolytic manganese dioxide is usually produced by anodizing an aqueous solution of manganese sulfate, and the crystal phase is mainly 1-
It is composed of Mn0□ and is generally considered to be optimal as a depolarizing agent. However, since electrolytic manganese dioxide requires a large amount of electricity for the electrolytic process, it has the drawback of inevitably being expensive in Japan, where electricity costs are high.

従って、マンガン乾電池のうち、高級品には電解二酸化
マンガンのみを使用し、マンガン乾電池のように低級品
には電解二酸化マンガンと天然二酸化マンガンを特定の
比率で混合したものを使用するといった使い分けがなさ
れている。低級品の狙いが乾電池価格の低廉化にあるこ
とはもちろんであるが、性能が一定の基準値以上である
ことも必要とされる。基準値は試験を行う放電抵抗の水
準により変動するが、例えば単1型の40Ω連続放電試
験において0.9 Vの終止電圧を維持しうる時間(以
下、連続放電時間と略記する)は最低200時間、2Ω
の低抵抗(高率)放電での連続放電時間330分以上が
必要とされる。
Therefore, high-quality manganese dry batteries use only electrolytic manganese dioxide, while lower-grade manganese batteries use a mixture of electrolytic manganese dioxide and natural manganese dioxide in a specific ratio. ing. The aim of low-grade products is of course to lower the price of dry cell batteries, but it is also necessary that the performance exceeds a certain standard value. The standard value varies depending on the level of discharge resistance to be tested, but for example, in a 40Ω continuous discharge test of a single type, the time during which a final voltage of 0.9 V can be maintained (hereinafter abbreviated as continuous discharge time) is at least 200 time, 2Ω
A continuous discharge time of 330 minutes or more with low resistance (high rate) discharge is required.

このような基準値を満たすため、低級品においても電解
二酸化マンガンを混合しているが、乾電池のコスト低減
にとっては、電解二酸化マンガンを混合せずに、単独で
少なくとも低級品の二酸化マンガンの性能基準を満たす
電気化学的特性を有する、低コストの二酸化マンガンの
開発が望まれていた。
In order to meet such standard values, electrolytic manganese dioxide is mixed even in low-grade products, but in order to reduce the cost of dry batteries, it is necessary to at least meet the performance standards of low-grade manganese dioxide without mixing electrolytic manganese dioxide. It has been desired to develop low-cost manganese dioxide that has electrochemical properties that meet the requirements.

このような技術的・経済的背景から、最近になって、天
然の二酸化マンガンの化学処理による活性化あるいは化
学的合成により、低コストで安価な二酸化マンガンの製
造法を開発しようとする動向がでてきた。
Against this technical and economical background, there has recently been a trend to develop low-cost and inexpensive manufacturing methods for manganese dioxide by activating natural manganese dioxide through chemical treatment or chemical synthesis. It's here.

例えば、特開昭60−221324号には、マンガン鉱
石もしくはマンガン化合物を400°C以上の温度で焙
焼後、酸処理を施して得た二酸化マンガンを原料とし、
この二酸化マンガンの粉末を1〜10トン/ellの圧
力下にロールプレスにより圧縮成形した後、所望の粒度
に粉砕することを特徴とする二酸化マンガンの製造方法
が開示されている。以下、このような化学合成により得
られた二酸化マンガンを、化成二酸化マンガンと略記す
る。化成二酸化マンガンは、電力を必要としないため、
電解二酸化マンガンに比べて相当に安価である。
For example, Japanese Patent Application Laid-Open No. 60-221324 discloses that manganese ore or manganese compounds are roasted at a temperature of 400°C or higher, and then manganese dioxide obtained by acid treatment is used as a raw material.
A method for manufacturing manganese dioxide is disclosed, which comprises compression molding this manganese dioxide powder using a roll press under a pressure of 1 to 10 tons/ell, and then pulverizing it to a desired particle size. Hereinafter, manganese dioxide obtained by such chemical synthesis will be abbreviated as chemical manganese dioxide. Chemical manganese dioxide does not require electricity, so
It is considerably cheaper than electrolytic manganese dioxide.

乾電池は、周知のようにさまざまの分野で多様な使われ
方をするため、上記以外にも多くの性能評価基準を満た
さなければならない。その中で実用上特に問題となって
いるのが、高外部抵抗(低率)放電と低外部抵抗(高率
)放電を交互に繰り返す用途、例えば、携帯用無線機の
電源としてマンガン乾電池を使用した場合に、低率放電
時に乾電池合剤の内部抵抗が増大することである。無線
機を例にとると、常に外部からの信号を受電するために
300〜600Ω程度の外部抵抗接続に相当する微小電
流を回路に常時流し続ける必要があり、長期の低率放電
(微小電流)により、合剤の内部抵抗は初期の5倍から
10倍にも増大する。一方、無線機が通信相手からの受
電信号を傍受したことを知らせる警告信号を鳴らす場合
には、低外部抵抗(高率)放電に相当する大電流を回路
に供給することが必要となる。しかし、乾電池の内部抵
抗が長期の低率放電により増大していると、高率放電に
際してその内部抵抗が加算され、所望の電流が取り出せ
ないため、信号を鳴らすことができないという障害が起
こりうる。
As is well known, dry batteries are used in a variety of ways in a variety of fields, so they must satisfy many performance evaluation standards in addition to those listed above. Among these, a particular problem in practical use is applications in which high external resistance (low rate) discharge and low external resistance (high rate) discharge are repeated alternately, for example, when manganese dry batteries are used as a power source for portable radio equipment. In this case, the internal resistance of the dry battery mixture increases during low rate discharge. Taking radio equipment as an example, in order to constantly receive signals from the outside, it is necessary to constantly flow a minute current equivalent to an external resistance connection of about 300 to 600 ohms through the circuit, resulting in a long-term low rate discharge (minute current). As a result, the internal resistance of the mixture increases by 5 to 10 times its initial value. On the other hand, when a radio device sounds a warning signal to notify that it has intercepted a power reception signal from a communication partner, it is necessary to supply a large current corresponding to a low external resistance (high rate) discharge to the circuit. However, if the internal resistance of a dry battery increases due to long-term low-rate discharge, that internal resistance will be added during high-rate discharge, making it impossible to extract the desired current and causing a problem in which the signal cannot be emitted.

このような特定の用途における障害は、化成二酸化マン
ガンを用いて乾電池を構成した場合にも大きな問題とな
っている。低率放電における内部抵抗増大の原因・機構
については明確に解明されていないが、化成二酸化マン
ガンの場合、その製造工程において、重質化のためにM
nO□微粉末を加圧成形プレス後に粉砕していることか
ら、電解液の吸液性に富み、電池反応に関与する粒子界
面での液の不足および粒内における反応生成物層の蓄積
が内部抵抗の増大に寄与しているものと推察される。
Such obstacles in specific applications are also a major problem when dry batteries are constructed using chemical manganese dioxide. The cause and mechanism of increase in internal resistance during low-rate discharge are not clearly elucidated, but in the case of chemical manganese dioxide, M
Because the nO□ fine powder is crushed after pressure molding press, it has high electrolyte absorption properties, and the lack of liquid at the particle interface involved in battery reactions and the accumulation of reaction product layers inside the particles are prevented. It is presumed that this contributes to the increase in resistance.

(発明が解決しようとする課題) 従って、乾電池の減極剤として使用する二酸化マンガン
にとって、安価であると同時に、電池性能の観点から、
特に長期の低率放電時に乾電池の内部抵抗が増大しにく
い材料を供給することが重要な課題である。
(Problems to be Solved by the Invention) Therefore, manganese dioxide used as a depolarizer for dry batteries is inexpensive, and at the same time, from the viewpoint of battery performance.
It is particularly important to provide materials that do not increase the internal resistance of dry cells during long-term, low-rate discharge.

本発明の目的は、電解二酸化マンガンに比べて著しく安
価であるが、高活性であり、特に高外部抵抗(低率)放
電時の内部抵抗上昇が極めて少なく、かつ単独で少なく
とも低級品の二酸化マンガンに要求される性能基準を満
たす乾電池用マンガン酸化物の製造方法を提供すること
である。
An object of the present invention is to use manganese dioxide which is significantly cheaper than electrolytic manganese dioxide, has high activity, has extremely low increase in internal resistance especially during high external resistance (low rate) discharge, and which is capable of producing at least a low grade manganese dioxide. An object of the present invention is to provide a method for producing manganese oxide for dry batteries that satisfies the performance standards required for.

(課題を解決するための手段) 本発明者らは、上記課題を解決するべく種々研究を続け
た結果、化成二酸化マンガンの製造工程の途中でアルミ
ニウム処理を特定のpH条件下で施すと、長期の低率放
電中の内部抵抗の上昇が効果的に抑制され、上記目的を
達成できることを知り、本発明を完成した。
(Means for Solving the Problems) As a result of continuing various studies to solve the above problems, the present inventors found that if aluminum treatment is applied under specific pH conditions during the manufacturing process of chemical manganese dioxide, The present invention was completed based on the knowledge that the increase in internal resistance during low rate discharge can be effectively suppressed and the above object can be achieved.

ここに、本発明の要旨とするところは、マンガン化合物
をその分解温度以上の温度で焙焼してMn2O3および
/またはMn3O4を主成分とする酸化マンガンを生成
させ、次いでこの生成物を鉱酸で処理してMnO2を主
成分とする酸化マンガンを得た後、これをアルミニウム
化合物を含有するpH2,0〜4.0または10以上の
水性媒質中で処理して、75%以上のMn01とAQと
して6.0%以下のアルミニウム化合物とを含有するマ
ンガン酸化物を得ることを特徴とする、乾電池用マンガ
ン酸化物の製造方法にある。
Here, the gist of the present invention is to roast a manganese compound at a temperature higher than its decomposition temperature to produce manganese oxide mainly composed of Mn2O3 and/or Mn3O4, and then to process this product with a mineral acid. After processing to obtain manganese oxide mainly composed of MnO2, this is treated in an aqueous medium containing an aluminum compound with a pH of 2.0 to 4.0 or 10 or more to obtain 75% or more Mn01 and AQ. The present invention provides a method for producing a manganese oxide for dry batteries, characterized by obtaining a manganese oxide containing 6.0% or less of an aluminum compound.

なお、二酸化マンガンのアルミニウム処理は、特開昭5
9−175563号に開示されているが、処理対象物が
高価かつ高純度の電解二酸化マンガンに限定され、本発
明のように二酸化マンガン純度が高くない安価な化成二
酸化マンガンを対象としたものではない。
The aluminum treatment of manganese dioxide is described in Japanese Patent Application Laid-open No. 5
Although disclosed in No. 9-175563, the object to be treated is limited to expensive and highly purified electrolytic manganese dioxide, and is not intended for cheap chemically converted manganese dioxide that does not have high purity manganese dioxide as in the present invention. .

(作用) 以下、本発明の詳細な説明する。なお、本明細書におい
て、%は特に指定のない限り重量%である。
(Function) The present invention will be explained in detail below. In addition, in this specification, % is weight % unless otherwise specified.

本発明の方法により製造するマンガン酸化物は、75%
以上のMnO2とAQとして6.0%以下のAQ化合物
を含有するものであり、この条件を満足すると、上述し
た低級品の二酸化マンガンに要求される性能基準を満た
し、しかも長期の高抵抗(低率)放電でも乾電池の内部
抵抗が増大しにくく、乾電池用に適した性能を有するこ
とが判明した。
Manganese oxide produced by the method of the present invention has a content of 75%
It contains an AQ compound of 6.0% or less as MnO2 and AQ above, and if this condition is satisfied, it satisfies the performance standards required for the above-mentioned low-grade manganese dioxide, and also has a long-term high resistance (low resistance). It was found that the internal resistance of the dry battery does not easily increase even during discharge (rate), and that it has performance suitable for use in dry batteries.

本発明で製造するマンガン酸化物のMnO□含有量は、
乾電池の放電における寿命と密接な関連があることが判
明した。第1図は、本発明の方法で得た各種MnO2含
有量のマンガン酸化物を減極剤として単1型乾電池を製
作し、利用率が90〜100%に達する40Ωの一定抵
抗での乾電池の放電寿命(放電持続時間)を調べた結果
を、MnO2含有量との関係として示すグラフである。
The MnO□ content of the manganese oxide produced by the present invention is
It was found that there is a close relationship with the discharge life of dry batteries. Figure 1 shows that AA type dry cells were manufactured using manganese oxides with various MnO2 contents obtained by the method of the present invention as depolarizers, and the dry cell batteries with a constant resistance of 40Ω reached a utilization rate of 90 to 100%. It is a graph showing the results of examining discharge life (discharge duration) as a relationship with MnO2 content.

この図かられかるように、Mn0z含有量が高いほど放
電寿命が長(なるが、低級品の性能基準である放電持続
時間200時間を維持するためには、75%以上のMn
0t含有量が必要である。Mn01含有量が可及的に多
い方が好ましいことは第1図からも明らかであるが、廉
価な低級品の乾電池用として使用する場合には、MnO
□が90%程度以下で十分である。この目的にとって好
ましいMn0z含有量は75〜88%である。
As can be seen from this figure, the higher the Mn0z content, the longer the discharge life (however, in order to maintain the discharge duration of 200 hours, which is the performance standard for low-grade products, Mn of 75% or more is required.
0t content is required. It is clear from Fig. 1 that it is preferable to have as much MnO1 content as possible, but when used for inexpensive low-grade dry batteries, MnO
It is sufficient that □ is about 90% or less. The preferred MnOz content for this purpose is 75-88%.

AQは、上記のように高抵抗(低率)での放電時の内部
抵抗の増大を抑えるのに有効である。第2図は、マンガ
ン酸化物中のAQ含有量が、150Ωの高抵抗(低率)
放電での内部抵抗(・)および2Ωの低抵抗(高率)放
電での放電持続時間(0)に及ぼす影響を示すグラフで
ある(マンガン酸化物のMnO2含有量80%)。第2
図における内部抵抗は、第3図に示す如く、150Ωの
連続放電において電圧が0.90Vに低下した際の内部
抵抗で表したものである。第3図に示すように、放電の
進行とともに内部抵抗は増大する。
AQ is effective in suppressing an increase in internal resistance during discharge at high resistance (low rate) as described above. Figure 2 shows that the AQ content in manganese oxide is high resistance (low rate) of 150Ω.
2 is a graph showing the influence on internal resistance (·) in discharge and discharge duration (0) in low resistance (high rate) discharge of 2Ω (MnO2 content of manganese oxide 80%). Second
The internal resistance in the figure is expressed as the internal resistance when the voltage drops to 0.90V during continuous discharge of 150Ω, as shown in FIG. As shown in FIG. 3, the internal resistance increases as the discharge progresses.

第2図かられかるように、本発明の主目的である長期低
率放電時の内部抵抗上昇の抑制効果は、0.01%程度
のごく微量のA(iを含有させるだけで顕著に現れる。
As can be seen from Fig. 2, the effect of suppressing the increase in internal resistance during long-term low rate discharge, which is the main objective of the present invention, becomes noticeable when only a very small amount of about 0.01% of A (i) is contained. .

従って、AQ含有量の下限は特にない。Therefore, there is no particular lower limit to the AQ content.

AQ含有量が0.3〜6%程度でAQによる上記効果は
特に顕著となる。M含有量が6.0%を超えると、内部
抵抗上昇がへQ無添加の場合と変わらなくなる上、2オ
ームでの低抵抗連続放電持続時間が低級品の性能基準で
ある330分を下回るようになるので、本発明の方法の
製品中のAQ含有量は6.0%以下に制限する。好まし
いAQ含有量は0.3〜6.0%である。
When the AQ content is about 0.3 to 6%, the above effects due to AQ become particularly remarkable. When the M content exceeds 6.0%, the increase in internal resistance is no different from that without the addition of F, and the low resistance continuous discharge duration at 2 ohms falls below 330 minutes, which is the performance standard for low-grade products. Therefore, the AQ content in the product of the method of the present invention is limited to 6.0% or less. The preferred AQ content is 0.3-6.0%.

AQの存在により上記効果が達成される理由は明らかで
はないが、次のように考えることができる。AQ 3”
イオンが二酸化マンガン粒子表面に吸着していると、そ
の周囲を負の電荷を持った01l−イオンが取り巻いた
状態となる。OH−イオンは、その固をの性質として身
軽で自由に動き回ることができる上、その周囲には電気
的中性を保つために「イオンが多量に存在することにな
る。この+1”イオンは電子(e−)と共に電池の起電
反応に関与し、結果として0■−イオンとH°イオン、
すなわち水分子が解離した状態で二酸化マンガン粒子の
周囲に存在することになるため、亜鉛イオンの拡散が促
進され、反応生成物である塩基性水酸化亜鉛の局部的な
蓄積も防止される。亜鉛イオンの分散阻害は、周知のよ
うに、内部抵抗増大の原因の一つとされている。へ9は
3価イオンであるため、OH−イオンを多く配位させる
ことができ、また電池反応を阻害しないことから、上記
の内部抵抗増大の防止に特に適しているのではないかと
推察される。
The reason why the above effect is achieved by the presence of AQ is not clear, but it can be considered as follows. AQ 3”
When ions are adsorbed on the surface of manganese dioxide particles, they are surrounded by negatively charged 01l- ions. Due to its solid nature, OH- ions are light and can move around freely, and in order to maintain electrical neutrality, there are a large number of ions around them. Together with (e-), it participates in the electromotive reaction of the battery, resulting in 0■- ions and H° ions,
That is, since water molecules exist in a dissociated state around the manganese dioxide particles, diffusion of zinc ions is promoted and local accumulation of basic zinc hydroxide, which is a reaction product, is also prevented. As is well known, inhibition of zinc ion dispersion is one of the causes of increased internal resistance. Since he9 is a trivalent ion, it can coordinate a large amount of OH- ions, and it does not inhibit battery reactions, so it is inferred that it is particularly suitable for preventing the above-mentioned increase in internal resistance. .

本発明のマンガン酸化物中の、MnO□および醇化合物
以外の残りは、実質的に他のマンガン酸化物(Mn20
sおよびMr+aOaなど)のみからなる。ただし、原
料ないし製造工程で不可避的に混入する不純物を微量含
有していてもよい。また、若干の水分を含有していてよ
い。
The remainder of the manganese oxide of the present invention other than MnO□ and the sulfur compound is substantially other manganese oxide (Mn20
s and Mr+aOa, etc.). However, it may contain a trace amount of impurities that are inevitably mixed into the raw materials or during the manufacturing process. Further, it may contain some moisture.

本発明の方法において原料として使用するマンガン化合
物は、硫酸マンガン、炭酸マンガン、硝酸マンガンなと
のマンガン化合物の他に、炭酸マンガン鉱(菱マンガン
鉱)、二酸化マンガン鉱(軟マンガン鉱)、Mn2O3
もしくはMn。Olを主成分とするマンガン鉱石などの
各種マンガン鉱石類、さらにはマンガン化合物を主成分
とする廃棄物(例、本発明の工程の酸処理工程で副生ず
るマンガン塩)など、任意のマンガン含有材料でよい。
In addition to manganese compounds such as manganese sulfate, manganese carbonate, and manganese nitrate, the manganese compounds used as raw materials in the method of the present invention include manganese carbonate (rhomganite), manganese dioxide (soft manganese ore), and Mn2O3.
Or Mn. Any manganese-containing material, such as various manganese ores such as manganese ore whose main component is Ol, and wastes whose main component is a manganese compound (e.g., manganese salt produced as a by-product in the acid treatment step of the process of the present invention) That's fine.

これらは単独で使用してもよく、あるいは2種以上を併
用してもよい。原料として使用するマンガン化合物の粒
度は5薗以下程度が好ましく、必要に応じて使用前に適
宜粉砕してお(。
These may be used alone or in combination of two or more. The particle size of the manganese compound used as a raw material is preferably about 5 particles or less, and if necessary, it may be appropriately pulverized before use.

本発明の方法によれば、まず上記のマンガン化合物を焙
焼して、熱分解によりMr203および/またはMr+
+Osを主成分とする酸化マンガンを得る。
According to the method of the present invention, the above-mentioned manganese compound is first roasted and thermally decomposed to produce Mr203 and/or Mr+.
Manganese oxide containing +Os as a main component is obtained.

この焙焼は、適当な焙焼雰囲気中で、使用した出発物質
をその分解温度以上に加熱することにより行われる。分
解温度は、例えば軟マンガン鉱では500〜950°C
,MnC0,およびその鉱石では約400〜550°C
、Mn5O=では約900〜1050”C程度である。
This roasting is carried out by heating the starting materials used above their decomposition temperature in a suitable roasting atmosphere. The decomposition temperature is, for example, 500 to 950°C for soft manganese ore.
, MnC0, and its ore about 400-550°C
, Mn5O=, it is about 900 to 1050''C.

焙焼雰囲気は、使用する原料に応じて適宜選択するが、
通常は空気などの酸素含有雰囲気でよい。
The roasting atmosphere is selected appropriately depending on the raw materials used.
Usually, an oxygen-containing atmosphere such as air may be used.

ただし、軟マンガン鉱の場合には、還元焙焼雰囲気、例
えば、大気の流入を遮断した自生雰囲気を使用すること
が好ましい。
However, in the case of soft manganese ore, it is preferable to use a reducing roasting atmosphere, for example, an autogenous atmosphere in which the inflow of air is blocked.

焙焼によって得られる酸化マンガンの組成は焙焼温度に
より変動し、例えば700〜950°C程度の焙焼温度
ではMnzO3が主に生成し、温度が上昇するにつれて
Mn30.の生成比率が増大する。また、これらの2種
の酸化マンガンの生成比率は焙焼時の酸素供給量を調節
することによっても制御できる。すなわち、焙焼する際
の空気供給量、圧力を増大させることにより、高温条件
下でもMn2O3を選択的に生成させることが可能であ
る。
The composition of manganese oxide obtained by roasting varies depending on the roasting temperature. For example, at a roasting temperature of about 700 to 950°C, MnzO3 is mainly produced, and as the temperature rises, Mn30. The generation ratio of will increase. Furthermore, the production ratio of these two types of manganese oxides can also be controlled by adjusting the amount of oxygen supplied during roasting. That is, by increasing the air supply amount and pressure during roasting, it is possible to selectively generate Mn2O3 even under high temperature conditions.

このように、焙焼条件には特に制限がなく、使用する原
料および所望の酸化マンガンの組成により適宜選択すれ
ばよい。焙焼時間は、温度その他の処理条件、ならびに
原料マンガン化合物の種類およびその粒度により変動す
るが、一般には2時間以内であろう。焙焼で生成した酸
化マンガン中のMn2O3とMn30gの割合も特に制
限はないが、次の酸処理工程で副生ずる可溶性マンガン
塩の量を低減させるには、Mn20:+の生成比率を高
くすることが好ましく、実質的に全量がMr+403と
なるようにすることが特に好ましい。
As described above, the roasting conditions are not particularly limited and may be appropriately selected depending on the raw materials used and the desired composition of manganese oxide. The roasting time will vary depending on the temperature and other processing conditions, as well as the type and particle size of the raw manganese compound, but will generally be within 2 hours. There is no particular limit to the ratio of Mn2O3 to Mn30g in the manganese oxide produced by roasting, but in order to reduce the amount of soluble manganese salt produced as a by-product in the next acid treatment step, the production ratio of Mn20:+ should be increased. is preferable, and it is particularly preferable that substantially the entire amount is Mr+403.

本発明の方法により乾電池用として適したマンガン酸化
物を得るには、焙焼後に行う鉱酸処理が粒子の深部にま
で達することが好ましい。その意味で、鉱酸処理を受け
る粒子の粒度が小さい方がよく、粒子の最大粒径を70
声以下に粒度調整することが望ましいことが判明した。
In order to obtain a manganese oxide suitable for use in dry batteries by the method of the present invention, it is preferable that the mineral acid treatment performed after roasting reach the deep part of the particles. In that sense, the smaller the particle size of the particles subjected to mineral acid treatment, the better, and the maximum particle size of the particles should be reduced to 70%.
It was found that it is desirable to adjust the granularity to below the voice level.

この粒度調整は、例えば焙焼前に原料のマンガンを微粉
砕した場合には、焙焼後の酸化マンガンを分級して、7
0/JTII以下の粒子を除去するだけでよい。原料の
マンガン化合物が比較的大粒径であった場合には、焙焼
後に微粉砕してから上記のように分級すればよい。
For example, if the manganese raw material is finely pulverized before roasting, this particle size adjustment can be carried out by classifying the manganese oxide after roasting.
It is only necessary to remove particles below 0/JTII. If the raw material manganese compound has a relatively large particle size, it may be roasted, pulverized, and then classified as described above.

焙焼後、所望により粒度調整した酸化マンガンを次いで
酸処理して、高活性のγ−MnO2を主体とする酸化マ
ンガンを得る。酸処理により、低次酸化物であるMn2
0.、およびMn3O4は、4価マンガン(不溶性Mn
O□)と2価マンガン(Mn”と酸アニオンとの可溶性
の塩)に不均化するため、酸処理後に固液分離により不
溶分を回収すると高活性のT−MnO□を主体とする酸
化マンガンが得られる。分離された溶液中には、副生し
た2価マンガン塩が多量に溶解しているので、このマン
ガン塩を晶析により回収し、本発明の原料の一部として
焙焼工程で使用することが有利である。
After roasting, the manganese oxide whose particle size has been adjusted as desired is then treated with an acid to obtain highly active manganese oxide mainly consisting of γ-MnO2. By acid treatment, lower oxide Mn2
0. , and Mn3O4 are tetravalent manganese (insoluble Mn
O□) and divalent manganese (a soluble salt of Mn'' and an acid anion) are disproportioned, so if the insoluble matter is recovered by solid-liquid separation after acid treatment, the oxidation mainly consists of highly active T-MnO□. Manganese is obtained. A large amount of by-product divalent manganese salt is dissolved in the separated solution, so this manganese salt is recovered by crystallization and used as part of the raw material of the present invention in the roasting process. It is advantageous to use it in

この酸処理は、塩酸、硫酸、硝酸などの鉱酸の1種もし
くは2種以上を使用して、7−MnO,が主に生成する
条件で実施する。低次の酸化マンガンの酸処理による7
 −Mn02の化学的合成に関しては、従来から多くの
方法が提案されており、これらの公知方法に準じて酸処
理を実施すればよく、温度や酸濃度などの処理条件も従
来と同様でよい(例、特開昭53−82697号公報、
同60−255626号公報、同61−14137号、
同62−87418号公報など参照)。
This acid treatment is carried out using one or more mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid under conditions that mainly produce 7-MnO. 7 by acid treatment of lower manganese oxide
- Regarding the chemical synthesis of Mn02, many methods have been proposed in the past, and acid treatment may be carried out according to these known methods, and the treatment conditions such as temperature and acid concentration may be the same as conventional methods ( For example, Japanese Patent Application Laid-Open No. 53-82697,
Publication No. 60-255626, No. 61-14137,
(See Publication No. 62-87418, etc.).

酸処理は、MnO7含有量が75%以上の酸化マンガン
が得られるまで行う。
The acid treatment is carried out until manganese oxide with an MnO7 content of 75% or more is obtained.

酸処理後、濾過などの固液分離手段で回収された酸化マ
ンガンは、水洗により表面に付着した酸および可溶性M
n”イオンを除去する。
After acid treatment, the manganese oxide recovered by solid-liquid separation means such as filtration is washed with water to remove the acid and soluble M
n'' ions are removed.

従来は、酸処理が最後の化学的処理であったため、酸処
理後に粒子表面の酸を除去するために中和を行うが、本
発明ではさらにアルミニウム処理を行うため、酸処理後
の中和は必ずしも必要ではない。
Conventionally, acid treatment was the last chemical treatment, so neutralization was performed to remove the acid on the particle surface after acid treatment, but in the present invention, aluminum treatment is further performed, so neutralization after acid treatment is Not necessarily necessary.

アルミニウム処理には、塩化アルミニウム、硫酸アルミ
ニウム、水酸化アルミニウム、アルミン酸ナトリウム、
ポリ塩化アルミニウム、高塩基性塩化アルミニウムなど
の各種のアルミニウム化合物を使用することができる。
For aluminum treatment, aluminum chloride, aluminum sulfate, aluminum hydroxide, sodium aluminate,
Various aluminum compounds can be used, such as polyaluminum chloride and highly basic aluminum chloride.

これらは単独でも2種以上の混合物でもよい。These may be used alone or in a mixture of two or more.

アルミニウム処理の方法は、アルミニウム化合物を酸化
マンガン粒子の表面上に均一に吸着させることのできる
方法であれば、特に限定されない。
The aluminum treatment method is not particularly limited as long as it is a method that can uniformly adsorb an aluminum compound onto the surface of the manganese oxide particles.

例えば、酸処理で得られた酸化マンガン粒子を水に分散
させ、ここに適当量のアルミニウム化合物を添加し、適
宜撹拌して粒子表面にアルカリを付着させることにより
実施できる。
For example, this can be carried out by dispersing manganese oxide particles obtained by acid treatment in water, adding an appropriate amount of an aluminum compound thereto, and stirring appropriately to adhere an alkali to the particle surface.

アルミニウム処理時の処理液の水性媒質のpHは、2.
0〜4.0または10以上とする。pHが4.0を超え
、10までは、水酸化アルミニウムの沈殿が起こり、酸
化マンガン粒子の内部の空孔に八Qが侵入せず、本発明
の効果が得られない。pHが2.0未満では、酸処理後
の中和工程でアルカリを多量に消費することになるため
、経済的でない。
The pH of the aqueous medium of the treatment solution during aluminum treatment is 2.
0 to 4.0 or 10 or more. When the pH exceeds 4.0 and reaches 10, precipitation of aluminum hydroxide occurs, and 8Q does not enter the pores inside the manganese oxide particles, making it impossible to obtain the effects of the present invention. If the pH is less than 2.0, a large amount of alkali will be consumed in the neutralization step after the acid treatment, which is not economical.

前述のように、最終的に得られるマンガン酸化物中のA
12含有量は6.0%以下であるので、この範囲内で所
望のへQ含有量のマンガン酸化物が得られるように、ア
ルミニウム化合物の使用量を実験により決定することが
できる。処理条件も特に限定されないが、通常は室温で
数分〜数時間の処理を行う。その後、濾過等の適当な手
段でマンガン酸化物を回収し、必要に応じて中和した後
、水洗する。
As mentioned above, A in the finally obtained manganese oxide
Since the 12 content is 6.0% or less, the amount of the aluminum compound to be used can be determined by experiment so that a manganese oxide with a desired 12 content can be obtained within this range. Although the treatment conditions are not particularly limited, the treatment is usually performed at room temperature for several minutes to several hours. Thereafter, the manganese oxide is recovered by appropriate means such as filtration, neutralized if necessary, and then washed with water.

アルミニウム処理されたマンガン酸化物は、必要に応じ
て、従来法に準じて嵩密度(あるいはタップ密度)の調
整もしくは粒度調整を行ってもよい。嵩密度の増大は、
圧縮成形後に粉砕することにより達成される。
The bulk density (or tap density) or particle size of the aluminum-treated manganese oxide may be adjusted according to conventional methods, if necessary. The increase in bulk density is
This is achieved by crushing after compression molding.

なお、アルミニウム処理の時期は、酸処理後であれば特
に制限はなく、例えば、酸処理後に濾過および水洗した
マンガン酸化物を乾燥し、圧縮成形と粉砕を先に行い、
その後でアルミニウム処理を実施してもよく、この変更
により生成物の電池性能に顕著な差異は生じない。
The timing of the aluminum treatment is not particularly limited as long as it is after the acid treatment; for example, after the acid treatment, the manganese oxide that has been filtered and washed with water is dried, compression molded and pulverized first,
A subsequent aluminization treatment may be performed, and this modification does not make a significant difference in the cell performance of the product.

(実施例) 次に実施例により本発明を具体的に説明する。(Example) Next, the present invention will be specifically explained with reference to Examples.

ただし、実施例は例示を目的とし、本発明の範囲を制限
する意図はない。
However, the examples are for illustrative purposes and are not intended to limit the scope of the invention.

実施例中、「タップ密度」とは、−200メツシユに粒
度調整された二酸化マンガンを内径28mm、容積10
0 ccのシリンダーに入れ、2ONI11の高さから
300回落下した後の容積(Gilりと重量(g)から
算出した密度(重量/タップ後の容積)である。
In the examples, "tap density" refers to manganese dioxide whose particle size has been adjusted to -200 mesh, whose inner diameter is 28 mm, and whose volume is 10 mm.
This is the density (weight/volume after tapping) calculated from the weight (g) after being placed in a 0 cc cylinder and dropped 300 times from the height of 2ONI11.

1隻■1 電気化学的に不活性なβ−Mn02を主成分とする軟マ
ンガン鉱石を最大粒径5閣以下に粉砕した原料186 
kgを、約850〜900°Cの自生雰囲気中で焙焼し
て、実質的にMn201からなるマンガン酸化物的16
7 kgを得た。この間の反応は次式で表される。
1 vessel 1 Raw material 186 made by pulverizing soft manganese ore whose main component is electrochemically inactive β-Mn02 to a maximum particle size of 5 or less
kg is roasted in an autogenous atmosphere at about 850-900°C to produce manganese oxide 16 consisting essentially of Mn201.
I got 7 kg. The reaction during this time is expressed by the following formula.

2 Mn0z(β) →Mn2O3+ ’A Ot ”
・■得られたMnzOlを粉砕および分級して、最大粒
径10pn以下の粉末状とした後、これを硫酸(10規
定)20I!、を使用して、温度90°Cで60分間酸
処理を行った。この酸処理では次式で示される反応が起
こる。
2 Mn0z(β) →Mn2O3+ 'A Ot''
・■ The obtained MnzOl is crushed and classified to form a powder with a maximum particle size of 10 pn or less, and then mixed with sulfuric acid (10N) 20I! , was used to perform acid treatment at a temperature of 90°C for 60 minutes. In this acid treatment, the reaction shown by the following formula occurs.

MnzO+ + H2SO4→Mn0g + MnSO
4+ H2O・、−■酸処理後、固形分を濾別した後、
これを水洗し、濾過して、y−Mn02を主成分とする
酸化マンガン100 kgを得た。この酸化マンガンは
MnO,を80.4%含有しており、MnO2の実質的
にすべてが電気化学的に活性なT−Mno□であった。
MnzO+ + H2SO4→Mn0g + MnSO
4+ H2O・, -■ After acid treatment, after filtering out the solid content,
This was washed with water and filtered to obtain 100 kg of manganese oxide containing y-Mn02 as a main component. This manganese oxide contained 80.4% MnO, and substantially all of the MnO2 was electrochemically active T-Mno□.

こうして得られた酸化マンガン粉末10 kg(乾燥換
算)を、固/液比が0.18となる量の水に分散させ、
次いで5%−NaOHでpHを3.5に調整しながら5
.56%のAQを含有するポリ塩化アルミニウム水溶液
442 mlを10分間で添加し、得られたスラリーを
室温で1時間撹拌してアルミニウム処理を行った。
10 kg (dry equivalent) of the manganese oxide powder thus obtained was dispersed in an amount of water such that the solid/liquid ratio was 0.18,
Then, while adjusting the pH to 3.5 with 5%-NaOH,
.. 442 ml of an aqueous polyaluminum chloride solution containing 56% AQ was added over 10 minutes, and the resulting slurry was stirred at room temperature for 1 hour to perform aluminum treatment.

次に、マンガン酸化物のpHを乾電池に適するように調
整するために、水性媒質のpHが7.0になるまで5%
NaOHを上記スラリーに添加し、このpHを維持しな
がら室温で約1時間撹拌して、中和を行った。次いで、
スラリーを濾過し、固形分を水洗および乾燥した後、2
0 ton/cm” (ロール線圧2.Oton/m+
)の圧力で圧縮成形し、粉砕し、最大粒径74%以下に
分級することによって、タップ密度が1.80g/cd
のM含有マンガン酸化物を得た。
Next, in order to adjust the pH of the manganese oxide to be suitable for dry cells, 5%
Neutralization was performed by adding NaOH to the slurry and stirring at room temperature for about 1 hour while maintaining the pH. Then,
After filtering the slurry and washing and drying the solid content, 2
0 ton/cm” (roll linear pressure 2.Oton/m+
), the tap density is 1.80 g/cd.
An M-containing manganese oxide was obtained.

この生成物の組成を、アルミニウム処理前の酸化マンガ
ンの組成と共に、次の第1表に示す。
The composition of this product, together with the composition of the manganese oxide before aluminization, is shown in Table 1 below.

第1表に示したアルミニウム処理なしのへQ含有量は、
原料鉱石中に含まれる脈石成分である不活性なA(I酸
化物(AlzOs等)を示し、これは本発明の効果とし
て第4図で説明するような内部抵抗上昇の抑制には何ら
寄与しない。しかし、化学分析上ではアルミニウム処理
に由来する吸着したAQ分と脈石に由来するAQ分とを
区別することは困難であるため、本発明の生成物である
マンガン酸化物中のAQ含有量は、分析値として得られ
た全AQ含有量とする。ただし、脈石に由来するAQ分
が含まれていても、本発明の方法ではアルミニウム処理
が必須工程であり、アルミニウム処理後には処理前に比
べてM含有量が増大していなければならない。
The HeQ content without aluminum treatment shown in Table 1 is:
This shows inert A(I oxides (AlzOs, etc.), which are gangue components contained in the raw material ore, and this does not contribute in any way to suppressing the increase in internal resistance as explained in FIG. 4 as an effect of the present invention. However, because it is difficult to distinguish between the adsorbed AQ content derived from aluminum treatment and the AQ content derived from gangue in chemical analysis, the AQ content in the manganese oxide, which is the product of the present invention, is The amount shall be the total AQ content obtained as an analytical value.However, even if AQ derived from gangue is included, aluminum treatment is an essential step in the method of the present invention, and treatment is not required after aluminum treatment. The M content must be increased compared to before.

本実施例で得られたAQ含有化成マンガン酸化物を使用
して、JIS K−1467に規定の乾電池試作試験法
に準拠して単1型マンガン乾電池を300個試作した。
Using the AQ-containing chemical manganese oxide obtained in this example, 300 AA type manganese dry batteries were prototyped in accordance with the dry battery trial production test method stipulated in JIS K-1467.

試作した各乾電池について、温度20±2°C1抵抗1
50Ωの条件下での連続放電により放電試験を行い、放
電終止電圧(0,9V)までの放電持続時間(日)と放
電中の内部抵抗の変化を測定した。内部抵抗の測定は、
交流1 kHzで四端子法インピーダンスアナライザー
により行った。結果は、添付の第4図に示す。
For each prototype dry battery, temperature 20±2°C1 resistance 1
A discharge test was conducted by continuous discharge under the condition of 50Ω, and the discharge duration (days) until the discharge end voltage (0.9V) and the change in internal resistance during discharge were measured. Measuring internal resistance is
The measurement was performed using a four-probe impedance analyzer at 1 kHz AC. The results are shown in the attached Figure 4.

比較のために、アルミニウム処理を行わなかった以外は
上記と全く同様の方法で調整した化成マンガン酸化物(
組成は第1表に「アルミニウム処理なし」として示した
)を使用して同様に試作した単1型乾電池での放電試験
での結果も、第4図に併せて示す。
For comparison, chemically formed manganese oxide prepared in exactly the same manner as above except that no aluminum treatment was performed.
FIG. 4 also shows the results of a discharge test using a AA type dry battery, which was similarly produced using the composition shown in Table 1 as "without aluminum treatment".

第4図から、本発明によりアルミニウム処理を行ったマ
ンガン酸化物を使用すると、アルミニウム処理なしに比
べて内部抵抗の上昇が著しく抑制され、放電寿命が長く
なることがわかる。
From FIG. 4, it can be seen that when the manganese oxide treated with aluminum according to the present invention is used, the increase in internal resistance is significantly suppressed and the discharge life becomes longer than when no aluminum treatment is used.

1隻1 アルミニウム処理後の中和およびpH調節において、5
%NaOHの代わりに5%NH4OHを用いた以外は実
施例1と同様の方法により、へQ含有マンガン酸化物1
0 kg(乾燥換算)を得た。
1 vessel 1 In neutralization and pH adjustment after aluminum treatment, 5
He Q-containing manganese oxide 1 was prepared in the same manner as in Example 1 except that 5% NHOH was used instead of %NaOH.
0 kg (dry equivalent) was obtained.

このマンガン酸化物を使用して、実施例1と同様に単1
型乾電池300個を試作し、各電池について150Ω連
続放電試験における放電持続時間と内部抵抗の変化を実
施例1と同様に測定した。得られた結果は、第4図に示
した実施例1での結果と同じ傾向を示し、アルミニウム
処理により内部抵抗の増大が著しく抑制され、放電寿命
が改善されることが実証された。
Using this manganese oxide, a monomer was prepared in the same manner as in Example 1.
Three hundred type dry batteries were manufactured, and the discharge duration and change in internal resistance of each battery in a 150Ω continuous discharge test were measured in the same manner as in Example 1. The obtained results showed the same tendency as the results of Example 1 shown in FIG. 4, and it was demonstrated that the aluminum treatment significantly suppressed the increase in internal resistance and improved the discharge life.

皇差舅l 実施例1と同様に酸処理までを行って得た、1Mn0z
を主体とする酸化マンガン粉末10 kg(乾燥換算)
を、固/液比が0.18となる量の水に分散させ、次い
で10%NaOHで水性媒質のpHを12.0とした。
1Mn0z obtained by performing acid treatment in the same manner as in Example 1
10 kg (dry equivalent) of manganese oxide powder mainly composed of
was dispersed in an amount of water to give a solid/liquid ratio of 0.18, and then the pH of the aqueous medium was brought to 12.0 with 10% NaOH.

このアルカリ性スラリーに、無水塩化アルミニウム14
81 gを水にとかした20%水溶液を15分で添加し
、スラリーp)Iを12.0に維持しながら約1時間室
温で撹拌した。次に、1規定の硫酸でスラリーpHが7
.0になるように中和し、7.0のpHを1時間保持し
ながらさらに1時間撹拌した。
Anhydrous aluminum chloride 14
A 20% aqueous solution of 81 g in water was added over 15 minutes and stirred at room temperature for about 1 hour while maintaining the slurry p)I at 12.0. Next, the slurry pH was adjusted to 7 with 1N sulfuric acid.
.. The solution was neutralized to 0 and stirred for an additional 1 hour while maintaining the pH at 7.0 for 1 hour.

その後、スラリーを濾過し、固形分を水洗および乾燥し
、実施例1と同様に加圧圧縮、粉砕および分級して、タ
ップ密度1.80g/c111の化成マンガン酸化物1
0kg (乾燥換算)を得た。その組成を、アルミニウ
ム処理前の酸化マンガンの組成と共に、次の第2表に示
す。
Thereafter, the slurry was filtered, the solid content was washed with water and dried, and the same method as in Example 1 was carried out to compress, crush and classify the slurry to produce chemically converted manganese oxide 1 with a tap density of 1.80 g/c111.
0 kg (dry equivalent) was obtained. Its composition is shown in Table 2 below, along with the composition of manganese oxide before aluminum treatment.

このへQ含有マンガン酸化物を使用して、実施例1と同
様に単1型乾電池300個を試作し、各電池について1
50Ω連続放電試験での放電持続時間と内部抵抗の変化
を実施例1と同様に測定した。得られた結果は、第4図
に示した実施例1での結果と同じ傾向を示し、アルミニ
ウム処理により内部抵抗の増大が著しく抑制され、放電
寿命が改善されることがわかった。
Using this Q-containing manganese oxide, 300 AA-type dry batteries were prototyped in the same manner as in Example 1.
The discharge duration and internal resistance change in the 50Ω continuous discharge test were measured in the same manner as in Example 1. The obtained results showed the same tendency as the results in Example 1 shown in FIG. 4, and it was found that the aluminum treatment significantly suppressed the increase in internal resistance and improved the discharge life.

(発明の効果) 本発明の乾電池用マンガン酸化物の製造方法によれば、
化成二酸化マンガンの製造工程の途中において、特定の
pH条件下でアルミニウム処理を施し、また生成物のM
n0z含有量とへQ含有量を特定範囲に保持することで
、従来より問題となっていた高抵抗(低率)放電時の内
部抵抗の増大が効果的に抑制されたマンガン酸化物を、
安価に製造することが可能となる。
(Effect of the invention) According to the method for producing manganese oxide for dry batteries of the present invention,
During the manufacturing process of chemical manganese dioxide, aluminum treatment is performed under specific pH conditions, and the M of the product is
By maintaining the n0z content and heq content within a specific range, manganese oxide effectively suppresses the increase in internal resistance during high resistance (low rate) discharge, which has been a problem in the past.
It becomes possible to manufacture at low cost.

特に、本発明の乾電池用マンガンの製造方法は、電気分
解等のエネルギー消費の大きな工程を利用せず、化学的
な簡便な焙焼、酸処理、アルミニウム処理、および必要
に応じて行う簡単な加圧圧縮、粉砕により実施されるの
で、電解法に比べてコスト的に非常に有利であり、現在
使用されている低級品の二酸化マンガンと同等のコスト
で製造できる。しかも、その電気化学的性能は、高価な
電解二酸化マンガンを配合しなくても少なくとも低級品
の二酸化マンガンの性能基準を満たすことができる。
In particular, the method for manufacturing manganese for dry batteries of the present invention does not use energy-consuming processes such as electrolysis, and involves simple chemical roasting, acid treatment, aluminum treatment, and simple processing as necessary. Since it is carried out by pressure compression and pulverization, it is very cost-effective compared to the electrolytic method, and can be produced at the same cost as the low-grade manganese dioxide currently in use. Furthermore, its electrochemical performance can meet at least the performance standards of lower-grade manganese dioxide without adding expensive electrolytic manganese dioxide.

したがって、本発明の方法で製造されたマンガン酸化物
を減極剤として乾電池に組み込むことにより、優れた性
能を有する乾電池を経済的に製造することができ、特に
廉価なマンガン乾電池の製造にとって本発明の方法は非
常に有利である。
Therefore, by incorporating the manganese oxide produced by the method of the present invention into a dry battery as a depolarizing agent, a dry battery having excellent performance can be economically produced, and the present invention is particularly useful for producing inexpensive manganese dry batteries. The method is very advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マンガン酸化物のMnO□含有量とそれから
構成した電池の40Ω連続放電持続時間との関係を示す
グラフ、 第2図は、マンガン酸化物中のAQ含有量による、15
0Ω連続放電における0、9 Vカットオフ時の乾電池
の内部抵抗(・)および2Ω連続放電持続時間(0)の
変動を示すグラフ、 第3図は、マンガン酸化物により構成された乾電池の1
50Ω連続放電持続時間(日)による電位(・)と内部
抵抗(○)の変動を示すグラフ、および 第4図は、実施例で製造したマンガン酸化物から構成し
た乾電池の150Ω連続放電における放電時間と電位お
よび内部抵抗の変化を示すグラフであり、破線が本発明
によるM含有マンガン酸化物の場合、実線が従来のアル
ミニウム処理を行わなかりたマンガン酸化物の場合を示
す。
Figure 1 is a graph showing the relationship between the MnO□ content of manganese oxide and the 40Ω continuous discharge duration of a battery constructed from it.
A graph showing the variation in internal resistance (・) and 2Ω continuous discharge duration (0) of a dry battery at 0 and 9 V cutoff in 0Ω continuous discharge.
A graph showing changes in potential (・) and internal resistance (○) depending on the duration of 50Ω continuous discharge (days), and FIG. 2 is a graph showing changes in potential and internal resistance, where the broken line shows the case of the M-containing manganese oxide according to the present invention, and the solid line shows the case of the manganese oxide not subjected to the conventional aluminum treatment.

Claims (1)

【特許請求の範囲】[Claims] (1)マンガン化合物をその分解温度以上の温度で焙焼
してMn_2O_3および/またはMn_3O_4を主
成分とする酸化マンガンを生成させ、次いでこの生成物
を鉱酸で処理してMnO_2を主成分とする酸化マンガ
ンを得た後、これをアルミニウム化合物を含有するpH
2.0〜4.0または10以上の水性媒質中で処理して
、75%以上のMnO_2とAlとして6.0%以下の
アルミニウム化合物とを含有するマンガン酸化物を得る
ことを特徴とする、乾電池用マンガン酸化物の製造方法
(1) Roasting a manganese compound at a temperature above its decomposition temperature to produce manganese oxide containing Mn_2O_3 and/or Mn_3O_4 as the main component, and then treating this product with mineral acid to produce manganese oxide containing MnO_2 as the main component. After obtaining manganese oxide, it is converted to pH containing aluminum compound.
2.0 to 4.0 or 10 or more to obtain a manganese oxide containing 75% or more MnO_2 and 6.0% or less aluminum compound as Al, A method for producing manganese oxide for dry batteries.
JP63297879A 1988-11-25 1988-11-25 Production of manganese oxide for dry cell Pending JPH02145428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63297879A JPH02145428A (en) 1988-11-25 1988-11-25 Production of manganese oxide for dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63297879A JPH02145428A (en) 1988-11-25 1988-11-25 Production of manganese oxide for dry cell

Publications (1)

Publication Number Publication Date
JPH02145428A true JPH02145428A (en) 1990-06-04

Family

ID=17852298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63297879A Pending JPH02145428A (en) 1988-11-25 1988-11-25 Production of manganese oxide for dry cell

Country Status (1)

Country Link
JP (1) JPH02145428A (en)

Similar Documents

Publication Publication Date Title
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JPH0837007A (en) Lithium-containing transition metal composite oxide, and its manufacture and use
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
EP1675199B1 (en) Battery positive electrode material
CN100420077C (en) Positive pole material of lithium ion cell
WO2000006496A1 (en) Process for producing spinel type lithium manganate
US20100272631A1 (en) Silver oxide powder for alkaline battery and method of producing the same
CN111430701A (en) Lithium-rich carbonate precursor and preparation method and application thereof
EP1243556B1 (en) Method for producing lithium manganate
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2009117246A (en) Electrolytic manganese dioxide, and manufacturing method and application thereof
JP2004111389A (en) PRIMARY BATTERY CONSISTING OF Ni COMPOUND POSITIVE ELECTRODE MATERIAL
US20050142058A1 (en) Low temperature process for preparing tricobalt tetraoxide
JP2003257429A (en) Preparation method of iron-containing olivin manganese lithium phosphate and battery using the same
JPH02145428A (en) Production of manganese oxide for dry cell
JPH02145429A (en) Production of manganese oxide for dry cell
JPH082921A (en) Lithium-manganese double oxide, its production and use
JP2925630B2 (en) Alkaline batteries
JP2638624B2 (en) Method for producing positive electrode mixture for manganese battery
JP2001240417A (en) Method for manufacturing lithium manganate and lithium cell using the same
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JPH0675400B2 (en) Activated chemically treated manganese dioxide for dry batteries and method for producing the same
JPH03503333A (en) Method for producing improved electrolytic manganese dioxide
JPS6230624A (en) Production of manganese oxide for dry cell
JPS60255625A (en) Manganese oxide for dry cell and its preparation