JPH0214487B2 - - Google Patents

Info

Publication number
JPH0214487B2
JPH0214487B2 JP59077594A JP7759484A JPH0214487B2 JP H0214487 B2 JPH0214487 B2 JP H0214487B2 JP 59077594 A JP59077594 A JP 59077594A JP 7759484 A JP7759484 A JP 7759484A JP H0214487 B2 JPH0214487 B2 JP H0214487B2
Authority
JP
Japan
Prior art keywords
sand
polymer material
water
soil
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59077594A
Other languages
Japanese (ja)
Other versions
JPS60223518A (en
Inventor
Yoshio Suzuki
Satoshi Saito
Yasushi Kanzaki
Katsumi Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP7759484A priority Critical patent/JPS60223518A/en
Publication of JPS60223518A publication Critical patent/JPS60223518A/en
Publication of JPH0214487B2 publication Critical patent/JPH0214487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/10Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、多量の水分を含む軟弱粘性土地盤
の水分を高吸水性高分子材料の柱に吸水させ、こ
の柱をコンクリート柱または砂柱に代えて強固な
地盤にする地盤の改良方法に関するものである。 従来の技術 従来、軟弱粘性土中に含まれる水をドレーンに
よつて抜き取つて粘性土を高密度化することによ
り地盤を強化する軟弱粘性土地盤の改良工法とし
て、軟弱粘性土地盤中に多数の砂杭を打設してド
レーンとし地盤上に盛土を行つて荷重をかけ粘性
土からドレーンへ水を絞り出して排水するサンド
ドレーン工法や砂杭の代わりに紙を用いるペーパ
ードレーン工法などが知られているが、これらの
工法は粘性土からの排水に2〜3か月の長期間を
要し、砂や紙だけでなく盛土を必ず必要とし施工
が面倒な欠点があつた。 発明の目的 この発明は、上記の従来工法の欠点に鑑みなさ
れたもので、この発明の目的は、盛土による載荷
重を必要とせず、きわめて短期間に排水を完了す
るとともに、施工が容易であり、かつ地盤として
より大きな支持力が得られる軟弱粘性土地盤の改
良工法を提供することである。 発明の構成 上記の目的を達成するためのこの発明の構成
は、軟弱粘性土地盤中に間隔を置いて多数の高吸
水性高分子材料の柱を立設し、前記柱がその間の
粘性土の水分を吸水して膨潤した後、吸水してゲ
ル化した前記柱中にパイプを貫通させ、パイプを
通して前記柱の底部にコンクリートまたは砂を圧
入して前記柱を押し上げ、これと交換してコンク
リート柱または砂柱を形成するようにして軟弱粘
性土地盤の改良工法からなるものである。 実施例 この発明の好適な実施例を図面を参照して説明
する。 第1図において、軟弱粘性土地盤1に間隔を置
いて多数の柱孔2を設け、この柱孔2に高吸水性
高分子材料3を充填する。この高吸水性高分子材
料3は粉粒体のほか袋詰め粉粒体、シート状体ま
たは固形化した柱状体を使用してもよい。この場
合、固形化した材料は、あらかじめ削孔すること
なくガイドとともに圧入した後ガイドを引き抜く
ようにして設置すればよい。前記の高分子材料3
は高吸水性であるので高吸水性高分子材料の柱4
の周囲の粘性土5中の水分を吸収し、第2図に示
すように高吸水性高分子材料3自身が膨潤するこ
とにより周囲の粘性土5を圧縮するため粘性土5
中の水分が絞り出され高吸水性高分子材料3が一
層吸水しやすくなる。吸水された水分は高吸水性
高分子材料3の高い保水性により柱4内に保留さ
れ、吸水された粘性土5′へ再吸収されることは
ない。このように粘性土5中の水分は高吸水性高
分子材料の柱4に吸収され粘性土5自体の水分を
低減させることができるので粘性土5の強度を向
上させることができる。得られる地盤1の強度と
それに必要な時間は高吸水性高分子材料の柱4の
ピツチと太さでコントロールすることができる。
6は表土(サンドマツト等)で必要に応じて用い
るものである。 上記の高吸水性高分子材料とは、軟弱粘性土と
高吸水性高分子材料とを接触させたときに軟弱粘
性土から高吸水性高分子材料へ水分の移動を生じ
させる機能を有するものであり、天然または合成
の有機高分子化合物またはその改質物であり、例
えばポリビニルアルコール、ポリエチレンオキシ
ド、ポリアクリル酸ナトリウム、ポリアクリル酸
カリウム、ポリアクリルアミド、カルボキシメチ
ルセルロース、ビニールアルコール−アクリル酸
ナトリウム共重合体、ビニールアルコール−アク
リル酸カリウム共重合体、ビニールアルコール−
アクリルアミド共重合体もしくはこれらの重合体
のジクロル酢酸またはエピクロルヒドリンその他
の架橋剤による架橋物、またはこれらの重合体の
一部親水性基を置換したものなどが挙げられる。
また、ポリアクリルニトリル、ポリアクリル酸エ
ステルなどの部分加水分解物やポリスチレンのス
ルホン化物、でん粉、アクリルニトリル、メタア
クリレートなどのグラフト共重合体などおよびこ
れらの高吸水性高分子材料にベントナイトなどの
無機質膨潤性材料を加えたもの、改質スラグなど
の無機質吸着材料を加えたものも含まれるが、特
にビニールアルコール−アクリル酸カリウム共重
合体、ビニールアルコール−マレイン酸エステル
共重合体、アクリル酸塩グラフトでん粉、ビニー
ルアルコール−アクリル酸ナトリウム共重合体、
架橋ポリアクリル酸塩、変性ポリビニールアルコ
ールが好適であつて、その中の1つであるビニー
ルアルコール−アクリル酸カリウム塩の性状は次
のとおりである。 第3図は蒸溜水についての初期吸水能力を示す
もので、樹脂の重量の900倍の重量の吸水能を有
している。第4図は1%の食塩水についてのもの
であり吸水能は90倍で蒸溜水の場合の1/10に低下
する。また、第5図は保水効果を示すもので遠心
分離器で15分間1600Gに加圧してもその吸水能に
殆んど変化がなく優れた保水性を有している。 この樹脂を粘性土中に樹脂柱として設置した場
合について次のような試験を行つた。 内径60mm、高さ60mmの円筒状のアクリル樹脂製
容器中に陸上土および海成粘土を充填しその中心
部に高吸水性高分子材料として直径20mm、高さ60
mmの円柱状ビニルアルコール・アクリル酸カリウ
ム塩を挿入した供試体を作り、含水比とせん断強
さを試験した。その結果は第1表および第2表に
示すとおりである。
Industrial Application Fields This invention enables columns made of highly water-absorbent polymer materials to absorb water from a soft and viscous ground that contains a large amount of water, and uses these columns to replace concrete columns or sand columns to form a solid foundation. The present invention relates to an improvement method. Conventional technology Conventionally, as an improvement method for soft and cohesive soil, the water contained in the soft and cohesive soil is drained using drains to make the cohesive soil more dense and thereby strengthen the ground. Some well-known methods include the sand drain method, in which sand piles are driven into the ground as drains, and embankments are placed on the ground, and a load is applied to squeeze out water from the cohesive soil into the drain, and the paper drain method, in which paper is used instead of sand piles, is used. However, these methods require a long period of two to three months to drain the clayey soil, and they always require embankments in addition to sand and paper, making construction cumbersome. Purpose of the Invention This invention was made in view of the above-mentioned drawbacks of the conventional construction method.The purpose of the invention is to complete drainage in a very short period of time without requiring loading by embankment, and to be easy to construct. It is an object of the present invention to provide a construction method for improving soft and viscous soil, which also provides a larger bearing capacity as a soil. Structure of the Invention The structure of the present invention for achieving the above-mentioned object is to erect a large number of pillars made of a super absorbent polymer material at intervals in a soft and cohesive ground, and the pillars are made of cohesive soil between them. After it absorbs water and swells, a pipe is passed through the column that absorbs water and becomes a gel, and concrete or sand is forced into the bottom of the column through the pipe to push up the column, replacing it with a concrete column. Alternatively, it consists of an improved construction method for soft and viscous soil by forming sand columns. Embodiment A preferred embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a large number of postholes 2 are provided at intervals in a soft and viscous ground 1, and the postholes 2 are filled with a superabsorbent polymeric material 3. As the super absorbent polymer material 3, in addition to powder or granule material, bagged powder or granule material, sheet-like material, or solidified columnar material may be used. In this case, the solidified material may be press-fitted together with the guide without drilling holes in advance, and then installed by pulling out the guide. Said polymer material 3
is highly water absorbent, so it is the pillar 4 of super absorbent polymer material.
The super absorbent polymer material 3 absorbs moisture in the surrounding clay soil 5 and swells as shown in FIG. 2, thereby compressing the surrounding clay soil 5.
The moisture inside is squeezed out, and the superabsorbent polymer material 3 becomes even easier to absorb water. The absorbed moisture is retained within the columns 4 due to the high water retention properties of the superabsorbent polymeric material 3, and is not reabsorbed into the absorbed cohesive soil 5'. In this way, the moisture in the clayey soil 5 is absorbed by the pillars 4 made of super absorbent polymer material, and the moisture content of the clayey soil 5 itself can be reduced, so that the strength of the clayey soil 5 can be improved. The strength of the obtained ground 1 and the time required for it can be controlled by the pitch and thickness of the pillars 4 made of super absorbent polymer material.
6 is topsoil (sand mats, etc.), which is used as needed. The superabsorbent polymer material mentioned above is one that has the function of causing moisture to move from the soft and viscous soil to the superabsorbent polymer material when the soft and viscous soil is brought into contact with the superabsorbent polymer material. Natural or synthetic organic polymer compounds or modified products thereof, such as polyvinyl alcohol, polyethylene oxide, sodium polyacrylate, potassium polyacrylate, polyacrylamide, carboxymethyl cellulose, vinyl alcohol-sodium acrylate copolymer, Vinyl alcohol - potassium acrylate copolymer, vinyl alcohol -
Examples include acrylamide copolymers, crosslinked products of these polymers with dichloroacetic acid, epichlorohydrin, and other crosslinking agents, and partially substituted hydrophilic groups of these polymers.
In addition, partial hydrolysates such as polyacrylonitrile and polyacrylic acid ester, sulfonated polystyrene, starch, graft copolymers such as acrylonitrile and methacrylate, and inorganic materials such as bentonite are added to these highly water-absorbent polymer materials. These include those with swelling materials added and those with inorganic adsorption materials such as modified slag, but especially vinyl alcohol-potassium acrylate copolymers, vinyl alcohol-maleate ester copolymers, and acrylate grafts. Starch, vinyl alcohol-sodium acrylate copolymer,
Crosslinked polyacrylates and modified polyvinyl alcohols are preferred, and the properties of vinyl alcohol-acrylic acid potassium salt, one of them, are as follows. Figure 3 shows the initial water absorption capacity for distilled water, which has a water absorption capacity 900 times the weight of the resin. Figure 4 shows the water absorption capacity of 1% saline solution, which is 90 times lower than that of distilled water. Moreover, FIG. 5 shows the water retention effect, and even when pressurized to 1600G for 15 minutes using a centrifugal separator, there is almost no change in its water absorption ability, and it has excellent water retention. The following tests were conducted on a case where this resin was installed as a resin column in clayey soil. A cylindrical acrylic resin container with an inner diameter of 60 mm and a height of 60 mm is filled with terrestrial soil and marine clay, and a super absorbent polymer material is placed in the center with a diameter of 20 mm and a height of 60 mm.
A specimen containing a cylindrical vinyl alcohol/acrylic acid potassium salt of mm was prepared and tested for water content ratio and shear strength. The results are shown in Tables 1 and 2.

【表】【table】

【表】 つぎに第6図に示すように、高吸水性高分子材
料3が吸水した前記柱4の上方からトレミー管な
どのパイプ7を挿入すると、吸水した高吸水性高
分子材料3はゲル化しているので、パイプ7は容
易に挿通することができる。前記柱4の底部に達
したパイプ7の先端からコンクリート8または砂
を圧入すると、ゲル化した高吸水性高分子材料の
柱4は減摩材の作用をするのでコンクリートまた
は砂が圧入されるのにつれて前記柱4は吸水され
て硬くなつた粘性土5′の中を滑るように上昇し
高吸水性高分子材料の柱4はコンクリート柱また
は砂柱と交換された第7図にような状態となるの
で軟弱粘性土地盤1はコンクリート柱9または砂
柱の支持力によつてさらに強固なものとなる。 発明の効果 この発明は、前記の構成からなるので、従来の
ドレーン工法におけるように盛土による載荷重の
必要がなく1週間程度のきわめて短期間に排水を
完了するので工期が大幅に短縮できるうえ、土構
造や建築物の基礎にも十分耐える地盤とすること
ができ、また材料が高吸水性であるので砂杭やペ
ーパー帯に比べて高吸水性高分子材料の柱の容積
より遥かに大きい容積の粘性土から吸水する能力
を有し、したがつて単位容積当りの高吸水性高分
子材料の量が少くてすみ材料費が節約でき、さら
に従来必要とされた砂は不要であり工場で製造さ
れた材料を用いるので清潔で身軽な工事が可能で
あり、高吸水性高分子材料の柱は吸水してゲル状
であるので支持力を有しないが、これに代えてコ
ンクリート柱または砂柱としたので大きな支持力
が得られ、より一層規模の大きな土構造や建築物
の基礎にも十分使用に耐える地盤となるばかりで
なく、高吸水性高分子材料の柱がゲル状であるの
でこの柱の中にパイプを貫挿してコンクリート柱
または砂柱を造成する工事の施工を容易に行うこ
とができる効果がある。
[Table] Next, as shown in FIG. 6, when a pipe 7 such as a tremie tube is inserted from above the pillar 4 where the superabsorbent polymer material 3 has absorbed water, the superabsorbent polymer material 3 that has absorbed water will become a gel. , so the pipe 7 can be inserted easily. When concrete 8 or sand is press-fitted from the tip of the pipe 7 that has reached the bottom of the column 4, the column 4 made of gelled super absorbent polymer material acts as an anti-friction material, so that the concrete or sand cannot be press-fitted. As time goes by, the pillar 4 slides up through the sticky soil 5' which has become hard due to absorption of water, and the pillar 4 made of super absorbent polymer material is replaced with a concrete pillar or a sand pillar, as shown in Fig. 7. Therefore, the soft and viscous ground 1 becomes even stronger due to the supporting force of the concrete pillars 9 or sand pillars. Effects of the Invention Since the present invention has the above-mentioned configuration, there is no need for loading by embankment unlike in conventional drain construction methods, and drainage can be completed in a very short period of about one week, so the construction period can be significantly shortened. The ground can be made to withstand the foundations of earth structures and buildings, and since the material is highly water-absorbent, the volume is much larger than that of columns made of highly water-absorbent polymer materials compared to sand piles or paper strips. It has the ability to absorb water from cohesive soil, and therefore requires less amount of super absorbent polymer material per unit volume, saving material costs.Furthermore, sand, which was conventionally required, is not required and can be manufactured in a factory. The use of superabsorbent polymer material allows for clean and light construction work, and since superabsorbent polymer pillars absorb water and become gel-like, they do not have supporting capacity, but concrete pillars or sand pillars can be used instead. As a result, a large supporting capacity is obtained, and the foundation not only can be used for even larger scale earth structures and building foundations, but also because the pillars made of super absorbent polymer material are gel-like. This has the effect of making it easier to construct concrete columns or sand columns by inserting pipes into them.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ縦断説明図、第
3図〜第5図はそれぞれ高吸水性高分子材料の性
能を示すグラフ、第6図および第7図はそれぞれ
縦断説明図である。 1…軟弱粘性土地盤、3…高吸水性高分子材
料、4…高吸水性高分子材料の柱、5…粘性土、
7…パイプ、8…コンクリート、9…コンクリー
ト柱。
FIGS. 1 and 2 are longitudinal explanatory diagrams, FIGS. 3 to 5 are graphs showing the performance of superabsorbent polymer materials, and FIGS. 6 and 7 are longitudinal explanatory diagrams, respectively. 1... Soft and viscous soil ground, 3... Super absorbent polymer material, 4... Pillar of super absorbent polymer material, 5... Cohesive soil,
7...pipe, 8...concrete, 9...concrete column.

Claims (1)

【特許請求の範囲】[Claims] 1 軟弱粘性土地盤1中に間隔を置いて多数の高
吸水性高分子材料の柱4を立設し、前記柱4がそ
の間の粘性土5の水分を吸水して膨潤した後、吸
水してゲル化した前記柱4中にパイプ7を貫通さ
せ、パイプ7を通して前記柱4の底部にコンクリ
ート8または砂を圧入して前記柱4を押し上げ、
これと交換してコンクリート柱9または砂柱を形
成するようにした軟弱粘性土地盤の改良工法。
1. A large number of pillars 4 made of super absorbent polymer material are erected at intervals in a soft and cohesive soil platform 1, and after the pillars 4 absorb water from the cohesive soil 5 between them and swell, they absorb water. A pipe 7 is passed through the gelled column 4, and concrete 8 or sand is press-fitted into the bottom of the column 4 through the pipe 7 to push up the column 4,
This is an improvement method for a soft and viscous land platform in which a concrete pillar 9 or a sand pillar is formed in place of this.
JP7759484A 1984-04-19 1984-04-19 Improvement work of weak and viscous ground Granted JPS60223518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7759484A JPS60223518A (en) 1984-04-19 1984-04-19 Improvement work of weak and viscous ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7759484A JPS60223518A (en) 1984-04-19 1984-04-19 Improvement work of weak and viscous ground

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP29006988A Division JPH01158108A (en) 1988-11-18 1988-11-18 Improving work of soft, cohesive ground

Publications (2)

Publication Number Publication Date
JPS60223518A JPS60223518A (en) 1985-11-08
JPH0214487B2 true JPH0214487B2 (en) 1990-04-09

Family

ID=13638280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7759484A Granted JPS60223518A (en) 1984-04-19 1984-04-19 Improvement work of weak and viscous ground

Country Status (1)

Country Link
JP (1) JPS60223518A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106677156B (en) * 2016-12-27 2018-12-11 吴慧明 A method of disturbance treatment being carried out to soft soil foundation using aerosol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078109A (en) * 1973-11-08 1975-06-25
JPS58191811A (en) * 1982-04-30 1983-11-09 Kajima Corp Prevention of leak of water from ground

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078109A (en) * 1973-11-08 1975-06-25
JPS58191811A (en) * 1982-04-30 1983-11-09 Kajima Corp Prevention of leak of water from ground

Also Published As

Publication number Publication date
JPS60223518A (en) 1985-11-08

Similar Documents

Publication Publication Date Title
Wang et al. Effect of underground void on foundation stability
NO155393B (en) PROCEDURE TO AA IMPROVE THE STRUCTURAL STRENGTH OF BLOOD EARTH AND MIXING FOR USE IN PERFORMING THE PROCEDURE.
López-Lara et al. Expansion reduction of clayey soils through Surcharge application and Lime Treatment
JPH0214487B2 (en)
JPH0214488B2 (en)
CA2164354C (en) Water-preventing sealant with plasticity
Dos et al. Uplift capacity of plate anchors in clay
JPS61165411A (en) Improvement work for soft cohesive ground
Özbakan et al. An Effect of Sodium Polyacrylate on Sandy Soil Parameters and Its Use in Soil Improvement
JPS58189417A (en) Water sealing for joint of sheathing
KR20010062058A (en) Gabion
JPH029123B2 (en)
US20170030040A1 (en) Self-filling flood-protection bag
JPS63165615A (en) Reduction of frictional resistance by water-swelling film
JP3821575B2 (en) Soil improvement method
JPS61229012A (en) Method of consolidating and improving soft ground
CN205399407U (en) Shaped steel soil cement pile foundation
JPH0489996A (en) Muddy soil adjusting agent used with muddy soil pressurization shield method
JP2606065B2 (en) Groundwater salinization prevention method using super absorbent fiber sheet
JPS6290412A (en) Temporary levee
Chougale et al. Study on Soil Stabilization by Using Natural Fiber for Artificial Lake Liner–A Review
JPH0647808B2 (en) Simple type levee
SU950856A1 (en) Method of consolidating soil
JP2023184203A (en) Moisture content adjustment method
Akai On the Character of Seepage Water and Their Effect on the Stability of Earth Embankments