JPH02143914A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH02143914A JPH02143914A JP29729988A JP29729988A JPH02143914A JP H02143914 A JPH02143914 A JP H02143914A JP 29729988 A JP29729988 A JP 29729988A JP 29729988 A JP29729988 A JP 29729988A JP H02143914 A JPH02143914 A JP H02143914A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- alumite
- pores
- layer
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 53
- 239000011148 porous material Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 6
- 238000007747 plating Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 22
- 230000005415 magnetization Effects 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000010952 cobalt-chrome Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は磁気記録媒体に関する。更に詳細には、本発明
はアルマイト磁性層の剥離が起こりにくいフレキシブル
磁気記録媒体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium. More specifically, the present invention relates to a flexible magnetic recording medium in which peeling of an alumite magnetic layer is less likely to occur.
[従来の技術]
アルミニウムまたはアルミニウム合金表面を陽極酸化す
ることにより形成したアルマイト層の微細孔(ポア)中
に強磁性体をメッキ充填した磁気記録媒体は、耐食性、
耐久性に富み、最近特に注目されつつある新材料である
。[Prior Art] A magnetic recording medium in which a ferromagnetic material is plated and filled into the fine pores of an alumite layer formed by anodizing the surface of aluminum or an aluminum alloy has corrosion resistance,
It is a new material that is highly durable and has been attracting particular attention recently.
この種の磁気記録媒体では、膜の飽和磁化(MS)は、
膜全体の面積と全ポアの総面積の比(有孔率、α)に充
填する金属の飽和磁化(ms)を掛けた値となる。アル
マイトが径DCの規則正しい正六角形のセルを形成し、
その中心に直径Dpの微細孔(ポア)を有しているとす
れば、膜の飽和磁化(Ms)は次式で表される。In this type of magnetic recording medium, the saturation magnetization (MS) of the film is
It is a value obtained by multiplying the ratio of the area of the entire membrane to the total area of all pores (porosity, α) by the saturation magnetization (ms) of the metal to be filled. Alumite forms regular hexagonal cells with a diameter DC,
Assuming that the film has a micropore with a diameter Dp at its center, the saturation magnetization (Ms) of the film is expressed by the following equation.
Ms=ms *yr/213 (Dp/Dc) 2一般
にDpとDcの間にはD I) !=f1 / 3 ・
D cの関係がある。従って、アルマイト磁気膜のMs
は、Ms =ms e yr/ 18v’3となり、更
に定数項を計算するh、Ms=0.1・msとなる。Ms=ms *yr/213 (Dp/Dc) 2 Generally, there is DI between Dp and Dc! =f1/3・
There is a relationship of D c. Therefore, Ms of the alumite magnetic film
is Ms = ms e yr/ 18v'3, and further h to calculate the constant term, Ms = 0.1 ms.
従って、アルマイト磁気膜に充填する磁性金属には、大
きな飽和磁化を有する鉄が用いられる。Therefore, iron, which has a large saturation magnetization, is used as the magnetic metal to fill the alumite magnetic film.
[発明が解決しようとする課題]
しかし、アルマイト磁性層の微細孔中にFe等の強磁性
金属をメッキ充填した磁気記録媒体は剛性が高いので従
来は−・股的にアルミニウムまたはガラスなどの基板を
用いるリジッドディスクにしか応用されていなかった。[Problems to be Solved by the Invention] However, since a magnetic recording medium in which the fine pores of an alumite magnetic layer are plated and filled with a ferromagnetic metal such as Fe has high rigidity, it has conventionally been possible to use a substrate made of aluminum or glass. It was only applied to rigid disks using .
磁気テープなどのフレキシブル媒体への応用も試みられ
たが、アルマイト磁性層が剥離しやすく、実用に至らな
かった。Attempts were made to apply this to flexible media such as magnetic tape, but the alumite magnetic layer easily peeled off, so it was not put to practical use.
また、Feをメッキした場合でもメッキ膜の飽和磁化(
Ms)は約170emu/cc程度であり、CoCr合
金薄膜で使用される飽和磁化、350emu/cc−5
50emu/ccに比べ極めて小さい。飽和磁化が小さ
(、メッキ膜の静磁気特性がCoCrと同等であれば、
再生出力が低ドする問題がある。In addition, even when plated with Fe, the saturation magnetization of the plated film (
Ms) is about 170 emu/cc, and the saturation magnetization used in CoCr alloy thin film is 350 emu/cc-5.
This is extremely small compared to 50 emu/cc. If the saturation magnetization is small (and the magnetostatic properties of the plated film are equivalent to CoCr,
There is a problem with low playback output.
従って、本発明の目的は、アルマイト磁性層をテープあ
るいはフロッピーなどのフレキシブル媒体に応用する際
、基板から剥離しに<<、かつ、良好な垂直磁気特性を
与えるアルマイトの構造を決定することである。Therefore, an object of the present invention is to determine the structure of anodized aluminum that makes it easy to peel off from the substrate and provides good perpendicular magnetic properties when the alumite magnetic layer is applied to flexible media such as tape or floppy disks. .
[課題を解決するための手段]
前記の目的を達成するための手段として、本発明では、
非磁性基体−Lのアルマイト層の微細孔(ポア)中にF
eをメ、ツキ充填した磁気記録媒体において、アルマイ
ト層の層厚が0.5μm 未if4 テあり、ポア径(
Dp)が400人未満であり、かつ、ポア径(DI))
とポアとポアとの中心SV均粗距離セル径、Dc)が0
.4≦Dp/Dc≦0゜7の関係を同時に滴たすことを
特徴とする磁気記録媒体を提供する。[Means for Solving the Problems] In the present invention, as means for achieving the above object,
F in the micropores of the alumite layer of non-magnetic substrate-L
In a magnetic recording medium filled with pores, the thickness of the alumite layer is less than 0.5 μm, and the pore diameter (
Dp) is less than 400, and the pore diameter (DI))
and the center SV average rough distance cell diameter, Dc) between pores is 0
.. To provide a magnetic recording medium characterized in that drops are simultaneously deposited in a relationship of 4≦Dp/Dc≦0°7.
0.48≦Dp/Dc≦0.60であることが好ましい
。It is preferable that 0.48≦Dp/Dc≦0.60.
磁気記録媒体は磁気テープであることが好ましい。Preferably, the magnetic recording medium is a magnetic tape.
[作用]
前記のように、本発明の磁気記録媒体ではアルマイト磁
性層の層厚が0.5μm未滴なので可撓性を維持するこ
とができる。また、ポア径が400人未満なので媒体を
屈曲させてもポアの破壊や磁性層の剥離は殆ど起こらな
い。一方、ポア径とセル径とが0.4≦Dp/Dc≦0
.7の関係を有するので良好な垂直磁気特性が達成され
る。[Function] As described above, in the magnetic recording medium of the present invention, the thickness of the alumite magnetic layer is less than 0.5 μm, so that flexibility can be maintained. Furthermore, since the pore diameter is less than 400 mm, even if the medium is bent, pore destruction and magnetic layer peeling hardly occur. On the other hand, the pore diameter and cell diameter are 0.4≦Dp/Dc≦0
.. 7, good perpendicular magnetic properties are achieved.
[実施例]
DI)/Dcが0.4未滴の場合、垂直磁化膜としては
優れる反面、飽和磁化(Ms)が小さすぎて再生出力が
不十分となる。一方、Dp/Dcが0.7超の場合、有
孔率(α)が大きくなり面内磁化膜に近づき、垂直媒体
としての特性が失われていく。[Example] When DI)/Dc is less than 0.4, the film is excellent as a perpendicularly magnetized film, but the saturation magnetization (Ms) is too small, resulting in insufficient reproduction output. On the other hand, when Dp/Dc exceeds 0.7, the porosity (α) becomes large and approaches that of an in-plane magnetized film, and the characteristics as a perpendicular medium are lost.
磁気テープやフロッピーディスクなどのフレキシブル媒
体の場合、柔軟性を考慮し、磁性層の厚さは0.5μm
未膚1好ましくは0.25μm以下にする必要がある。In the case of flexible media such as magnetic tape and floppy disks, the thickness of the magnetic layer is 0.5 μm in consideration of flexibility.
The thickness should preferably be 0.25 μm or less.
従ってアルマイト微細孔に充填するFe柱の長さも0.
5μm未溝1好ましくは0.25μm以下となる。Therefore, the length of the Fe pillars filling the alumite micropores is also 0.
5 μm ungrooved 1 preferably 0.25 μm or less.
ポア径は400人未満であるが、220人〜280人程
度が好ましい。The pore diameter is less than 400, but preferably about 220 to 280.
CoCr垂直磁化膜の磁気特性を参考にすれば、本発明
のアルマイト磁気膜における飽和磁化は350〜550
emu/cc1市直方向の保磁力として500〜100
00eの静磁気特性が必要である。アルマイト磁気膜の
飽和磁化は、前述したように、有孔率(α)に充Inさ
れるFeの飽和磁化(1714emu/c c)を掛け
た値となる。従って、350〜550emu/ccの飽
和磁化を得るためにはイf孔率(α)は0.20〜0.
32の範囲内であることが好ましい。Referring to the magnetic properties of the CoCr perpendicular magnetization film, the saturation magnetization of the alumite magnetic film of the present invention is 350 to 550.
emu/cc1 500 to 100 as coercive force in the vertical direction
A magnetostatic property of 00e is required. As described above, the saturation magnetization of the alumite magnetic film is the value obtained by multiplying the porosity (α) by the saturation magnetization of Fe filled with In (1714 emu/cc). Therefore, in order to obtain a saturation magnetization of 350 to 550 emu/cc, if porosity (α) is 0.20 to 0.
It is preferably within the range of 32.
一方、Msが350〜550emu/ccの範囲内で、
かつ、%iα方向の保磁力が500〜10000eを示
し、垂直磁化膜としての特性を示すには、充填したFe
の軸比として〜10が必要となる。磁気テープ等の応用
を考慮し、好ましいアルマイト膜厚(Fe長軸長に対応
する)を0.25μmとすれば、アルマイト微細孔の直
径(Dp)は220人〜280人となる。On the other hand, when Ms is within the range of 350 to 550 emu/cc,
In addition, the coercive force in the %iα direction is 500 to 10000e, and in order to exhibit characteristics as a perpendicular magnetization film, the filled Fe
An axial ratio of ~10 is required. If the preferred alumite film thickness (corresponding to the long axis length of Fe) is 0.25 μm in consideration of applications such as magnetic tape, the diameter (Dp) of the alumite micropores will be 220 to 280 μm.
また、α=π/2f311(Dp/Dc)2より、前記
のαの値、0.20〜0.32およびDpの好ましい値
、220人〜280゛人を考慮すると、ポアとポアとの
間の中心平均距離あるいはセル径Dcは400人〜50
0人の範囲内にあることが好ましい。Also, from α=π/2f311(Dp/Dc)2, considering the value of α, 0.20 to 0.32, and the preferable value of Dp, 220 to 280 people, the difference between the pores and the pores. The center average distance or cell diameter Dc is 400 to 50
Preferably, the number is within the range of 0 people.
本発明の磁気記録媒体としては、ポリエステルフィルム
、ポリイミドフィルムなどの合成樹脂フィルムを基体と
する磁気テープや磁気ディスクなどがあるが、磁気テー
プが最も好ましい。The magnetic recording medium of the present invention includes magnetic tapes and magnetic disks having synthetic resin films such as polyester films and polyimide films as their bases, but magnetic tapes are most preferred.
以下、具体例を挙げて本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail by giving specific examples.
実遁LLL
連続巻取式の真空蒸着装置を用い、厚さ20μmのPE
Tフィルム上にAIを0.3μm成膜した。基板温度は
常温、蒸首時の真空度と、成膜速度はそれぞれ3xlO
””’Torr、35人/seCであった。Jitton LLL Using a continuous winding type vacuum evaporation device, PE with a thickness of 20 μm is
A film of 0.3 μm of AI was formed on the T film. The substrate temperature was room temperature, the vacuum level during evaporation, and the film formation rate were 3xlO.
""'Torr, 35 people/seC.
作製したAλ膜を1モル/Jlの硫酸洛中において、2
2℃でIA/d/の電流密度で1分間陽極酸化した。生
成したアルマイト膜厚は0.25μmであり、セル径、
ポア径は、それぞれ0.046μmおよび0.015μ
mであった。次に30℃の1wt%リン酸溶中に試料を
浸1責し、ポア径を拡大した。The prepared Aλ membrane was placed in 1 mol/Jl of sulfuric acid,
Anodization was carried out at 2°C for 1 minute at a current density of IA/d/. The thickness of the alumite film produced was 0.25 μm, and the cell diameter
Pore diameters are 0.046 μm and 0.015 μm, respectively.
It was m. Next, the sample was immersed in a 1 wt % phosphoric acid solution at 30° C. to enlarge the pore diameter.
第1図にポア径I)pと角孔率αの関係を示す。FIG. 1 shows the relationship between the pore diameter I)p and the square porosity α.
この図より、有孔率を0.20〜0.32にするには、
ポア径を0.022〜0.02811mにすれば良いこ
とが分かる。From this figure, in order to set the porosity to 0.20 to 0.32,
It can be seen that the pore diameter should be set to 0.022 to 0.02811 m.
L巨匠1
実施例1で作製した種々のポア径を有するアルマイトに
Feをメッキ充填した。Feメッキ浴組成は、モール塩
15g/300mJ、グリセリン0.8mJ/300m
Jlからなり、2Nの硫酸でpHを3.0に調整した。L Master 1 Alumite having various pore diameters prepared in Example 1 was filled with Fe by plating. Fe plating bath composition: Mohr salt 15g/300mJ, glycerin 0.8mJ/300m
The pH was adjusted to 3.0 with 2N sulfuric acid.
メッキに使用した電源は 、5交流500 Hz *
15 V p−pで、DCバイアスを印加し、+側(
炭素電極)に5V1−側(アルマイト)にlOvかかる
様にした。The power supply used for plating was 5 AC, 500 Hz *
Apply DC bias at 15 V p-p to the + side (
1Ov was applied to the 5V1- side (alumite) on the carbon electrode).
第2図にポア径と飽和磁化(MS)%垂直方向の保磁力
(Hcよ)の関係を示す。ポア径を0゜022μm〜0
.028μmにすることで、Msを350〜550em
u/ccにすることが可能である。また、ポア径が0.
027μmより大きい領域で、Hcよが〜10000e
となる磁気膜が得られる。Figure 2 shows the relationship between pore diameter and saturation magnetization (MS)% perpendicular coercive force (Hc). Pore diameter 0゜022μm~0
.. By setting it to 028 μm, Ms is 350 to 550 em
It is possible to make it u/cc. In addition, the pore diameter is 0.
In the region larger than 027μm, Hc is ~10000e
A magnetic film is obtained.
実部」11
実施例1で作製したA、l’膜を22゛C13wt5G
のシュウ酸浴中において40Vで陽極酸化し、アルマイ
ト層を0.35μm形成した。この時のセル径、ポア径
はそれぞれ0.098μm、0.030μmであった。Real part'' 11 A, l' film prepared in Example 1 was 22゛C13wt5G
Anodization was performed at 40 V in an oxalic acid bath to form an alumite layer of 0.35 μm. The cell diameter and pore diameter at this time were 0.098 μm and 0.030 μm, respectively.
この後、30°C11wt%のリン酸浴中でポアの拡大
処理を行い、ポア径が0.03μmから、06μmの試
料を作製した。次に実施例2で説明した方法によりアル
マイトの微細孔中にFeをメッキ充填した。Thereafter, the pores were enlarged in a 11 wt % phosphoric acid bath at 30° C. to prepare samples with pore diameters ranging from 0.03 μm to 06 μm. Next, by the method described in Example 2, Fe was filled into the fine pores of the alumite by plating.
種々のポア径を有するアルマイト・Feメッキ膜を1c
mx 10caの短冊状に切り出し、直径2ma+のス
テンレスピンを用い、試料の往復摺動試験を行った。試
験時の荷重と摺動速度はそれぞれ18g + 5 c
m/ seeであり、ステンレスピンにPET而を接触
させて行った。光字顕微鏡により磁性面の割れを観察し
、割れが生じるまでの摺動回数を求めた。1 c of alumite/Fe plating membranes with various pore diameters
A reciprocating sliding test was performed on the sample by cutting it into a rectangular shape of m x 10 ca and using a stainless steel pin with a diameter of 2 ma+. The load and sliding speed during the test were 18g + 5c, respectively.
m/see, and the test was carried out by bringing the PET film into contact with a stainless steel pin. Cracks in the magnetic surface were observed using a light microscope, and the number of sliding movements until cracks occurred was determined.
第3図に割れが生じた摺動回数とアルマイトのポア径と
の関係を示す。図から明らかなように、ポア径が400
人を超えると往復摺動試験に対し、磁VI面の割れが発
生しやすくなることが理解できる。FIG. 3 shows the relationship between the number of sliding movements at which cracks occur and the pore diameter of alumite. As is clear from the figure, the pore diameter is 400
It can be understood that cracks on the magnetic VI surface are more likely to occur in the reciprocating sliding test when the test time exceeds that of a person.
[発明の効果]
以1〕説明した様に、本発明の磁気記録媒体ではアルマ
イl性層の層厚が0.5μm未満なのでlJ jA性を
維持することができる。[Effects of the Invention] 1. As explained above, in the magnetic recording medium of the present invention, since the layer thickness of the aluminum layer is less than 0.5 μm, the lJ jA property can be maintained.
また、ポア径が400人未満なので媒体を屈曲させても
ポアの破壊や磁性層の剥離は殆ど起こらない。一方、ポ
ア径とセル径とが0.4≦Dp/I) c≦0.7の関
係を有するので良好な垂直磁気特性が達成される。Furthermore, since the pore diameter is less than 400 mm, even if the medium is bent, pore destruction and magnetic layer peeling hardly occur. On the other hand, since the pore diameter and the cell diameter have a relationship of 0.4≦Dp/I) c≦0.7, good perpendicular magnetic properties are achieved.
このような特徴により、本発明の磁気記録媒体は磁気テ
ープなどのような長尺な媒体に特に適する。Due to these characteristics, the magnetic recording medium of the present invention is particularly suitable for long media such as magnetic tape.
第1図は、本発明による一実施例を示すポア径と角孔率
の関係を示す特性図である。
第2図は、本発明による一実施例を示すポア径と飽和磁
化、垂直方向の保磁力の関係を示す特性図である。
第3図はポア径と往復摺動回数との関係を示す特性図で
ある。FIG. 1 is a characteristic diagram showing the relationship between pore diameter and square porosity, showing an example according to the present invention. FIG. 2 is a characteristic diagram showing the relationship between pore diameter, saturation magnetization, and perpendicular coercive force, showing one embodiment of the present invention. FIG. 3 is a characteristic diagram showing the relationship between the pore diameter and the number of reciprocating sliding movements.
Claims (3)
にFeをメッキ充填した磁気記録媒体において、アルマ
イト層の層厚が0.5μm未満であり、ポア径(Dp)
が400Å未満であり、かつ、ポア径(Dp)とポアと
ポアとの中心平均距離(セル径、Dc)が0.4≦Dp
/Dc≦0.7の関係を同時に満たすことを特徴とする
磁気記録媒体。(1) In a magnetic recording medium in which the fine pores of an alumite layer on a nonmagnetic substrate are filled with Fe by plating, the layer thickness of the alumite layer is less than 0.5 μm, and the pore diameter (Dp)
is less than 400 Å, and the pore diameter (Dp) and the average distance between pores (cell diameter, Dc) are 0.4≦Dp
A magnetic recording medium characterized in that it simultaneously satisfies the relationship: /Dc≦0.7.
徴とする請求項1記載の磁気記録媒体。(2) The magnetic recording medium according to claim 1, wherein 0.48≦Dp/Dc≦0.60.
は2に記載の磁気記録媒体。(3) The magnetic recording medium according to claim 1 or 2, which is a magnetic tape.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29729988A JPH02143914A (en) | 1988-11-25 | 1988-11-25 | Magnetic recording medium |
EP89305586A EP0345085B1 (en) | 1988-06-03 | 1989-06-02 | Magnetic recording medium and process for the production thereof |
DE68919753T DE68919753T2 (en) | 1988-06-03 | 1989-06-02 | Magnetic recording medium and method for its production. |
US07/361,121 US5139884A (en) | 1988-06-03 | 1989-06-02 | Magnetic recording medium comprising an aluminum substrate in which pores formed by anodic oxidation contain crystallographicaly discontinuous particles of fe-alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29729988A JPH02143914A (en) | 1988-11-25 | 1988-11-25 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02143914A true JPH02143914A (en) | 1990-06-01 |
Family
ID=17844712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29729988A Pending JPH02143914A (en) | 1988-06-03 | 1988-11-25 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02143914A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070712A1 (en) * | 2003-02-06 | 2004-08-19 | Fujitsu Limited | Magnetic recording medium and method for producing the same, magnetic medium substrate being employed therein, and magnetic storage device |
WO2004084193A1 (en) * | 2003-03-19 | 2004-09-30 | Fujitsu Limited | Magnetic recording medium and its manufacturing method, magnetic recorder, and magnetic recording method |
US7629021B2 (en) | 2005-06-16 | 2009-12-08 | Yamagata Fujitsu Limited | Method for producing a stamper |
-
1988
- 1988-11-25 JP JP29729988A patent/JPH02143914A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070712A1 (en) * | 2003-02-06 | 2004-08-19 | Fujitsu Limited | Magnetic recording medium and method for producing the same, magnetic medium substrate being employed therein, and magnetic storage device |
US7112377B2 (en) | 2003-02-06 | 2006-09-26 | Fujitsu Limited | Magnetic recording medium, method of manufacturing the same, magnetic medium substrate employed in the magnetic recording medium, and magnetic storage unit |
WO2004084193A1 (en) * | 2003-03-19 | 2004-09-30 | Fujitsu Limited | Magnetic recording medium and its manufacturing method, magnetic recorder, and magnetic recording method |
US7629021B2 (en) | 2005-06-16 | 2009-12-08 | Yamagata Fujitsu Limited | Method for producing a stamper |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4109287A (en) | Process for recording information or sound and process for preparation of recording materials used therefor | |
JP3762277B2 (en) | Magnetic recording medium and method for manufacturing the same | |
US4650708A (en) | Magnetic recording material and a method for producing the same | |
JP2923790B2 (en) | Magnetic recording media | |
JPH0580804B2 (en) | ||
JPH02143914A (en) | Magnetic recording medium | |
JPS5961106A (en) | Magnetic memory body | |
US4808279A (en) | Process for preparing magnetic recording material | |
US5139884A (en) | Magnetic recording medium comprising an aluminum substrate in which pores formed by anodic oxidation contain crystallographicaly discontinuous particles of fe-alloy | |
JPS59178617A (en) | Manufacture of magnetic recording medium | |
JPH0479026A (en) | Production of intra-surface magnetized film consisting of anodized aluminum | |
EP0199271A2 (en) | Improved magnetic recording member | |
JPH01211213A (en) | Magnetic recording medium | |
Tsuya et al. | Magnetic discs using anodic oxidized aluminium substrates | |
JPH01237927A (en) | Magnetic recording medium and material for anodic oxidation | |
JPS63187415A (en) | Magnetic recording medium and its production | |
JPH03228220A (en) | Magnetic recording medium | |
JPH0256724B2 (en) | ||
JPH038108A (en) | Magnetic recording medium | |
JPS641852B2 (en) | ||
JPS6224433A (en) | Production of vertical magnetic recording medium | |
Su et al. | Fe48Co52 alloy nanowire arrays: Effects of magnetic field annealing | |
JPS59221826A (en) | Magnetic recording medium | |
JPH04307419A (en) | Magnetic recroding medium | |
JPH03230319A (en) | Magnetic recording medium and its production |