JPH02143374A - Product sum arithmetic unit - Google Patents

Product sum arithmetic unit

Info

Publication number
JPH02143374A
JPH02143374A JP29753188A JP29753188A JPH02143374A JP H02143374 A JPH02143374 A JP H02143374A JP 29753188 A JP29753188 A JP 29753188A JP 29753188 A JP29753188 A JP 29753188A JP H02143374 A JPH02143374 A JP H02143374A
Authority
JP
Japan
Prior art keywords
partial
sum
product
register
carry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29753188A
Other languages
Japanese (ja)
Inventor
Takashi Hattori
孝 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29753188A priority Critical patent/JPH02143374A/en
Publication of JPH02143374A publication Critical patent/JPH02143374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

PURPOSE:To obtain the sum of products at a speed higher than that in a case when up to the products are obtained using a multiplier by keeping the part of a multiplication in the shapes of a partial sum and a partial carry and repeating the multiplication without obtaining up to the products. CONSTITUTION:The partial sum and the partial carry to the obtained before a product is obtained are used for an operation instead of the product, and the partial sum and the partial carry of the preceding operation cycle are to be added in a circuit to generate the partial sum and the partial carry. Here, since the partial sum and the partial carry can be obtained in the middle of a process to generate the product, the circuit to generate the partial sum and the partial carry can execute its operation at the speed higher than that of the multiplier to obtain the product. Further, since the partial sum and the partial carry of the preceding operation cycle are added in the generating circuit in each operation cycle, processing for obtaining each sum to be executed whenever the product is obtained becomes unnecessary, and a high-speed operation can be attained. Thus, the sum of the products can be obtained at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、信号処理1画像処理をはじめ様々な分計で
用いられる積和演算を高速に実行する演算装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an arithmetic device that rapidly executes a sum-of-products operation used in various types of calculations, including signal processing and image processing.

〔従来の技術〕[Conventional technology]

第2図は例えばS、Tsujimichi他、 ”人N
e+ct−Generation  32−旧t  V
LSI  Signal  ProceSsor   
(rcAssP86 PROCEEDrNGS)に示さ
れtこ従来の積和演算装置の回路構成を示す図であり2
図において、(1)は上記積和演算のうち積を求める2
進乗算器、(2)は上記積和演算のうち和を求める2進
加算!、+31は2進乗算益(1)に被乗数を供給する
レジスタ、(4)は2進乗算器(1)に乗数を供給する
レジスタ、(5)は2進乗算器(1)からの積を入力し
さらに2進加算器(2)に加数を供給するレジスタ、(
6)ば2進加算器(2)からの和を入力しさらに2進加
算器(2)に被加数を供給するレジスタ、(7)ば被加
数レジスタ(6)の内容をゼロクリアするための入力セ
レクタである。
Figure 2 shows, for example, S. Tsujimichi et al.
e+ct-Generation 32-old t V
LSI Signal Processor
(rcAssP86 PROCEEDrNGS) is a diagram showing the circuit configuration of a conventional product-sum operation device.
In the figure, (1) is the 2nd step of calculating the product in the above product-sum operation.
Base multiplier, (2) is a binary addition that calculates the sum among the above product-sum operations! , +31 is the register that supplies the multiplicand to the binary multiplication gain (1), (4) is the register that supplies the multiplier to the binary multiplier (1), and (5) is the register that supplies the product from the binary multiplier (1). a register that inputs and also supplies an addend to the binary adder (2), (
6) A register for inputting the sum from the binary adder (2) and further supplying the summand to the binary adder (2), and (7) for clearing the contents of the summand register (6) to zero. is the input selector for

次に第2図に示された従来の積和演算装置の動作を、下
式で表されろような積和Zを求める場合について説明す
る。
Next, the operation of the conventional product-sum calculating device shown in FIG. 2 will be described in the case where a product-sum Z as expressed by the following formula is calculated.

従来例の積和演算装置ではまず、x、に対応する2進数
およびY、に対応する2進数をレジスタ(3)およびレ
ジスタ(4)を通して2進乗算器(1)に入力し積を求
める。次いでこのときに2進乗算器(1)より出力され
た上記槽をレジスタ(5)を通して2進加算器[2]に
入力し、入力セレクタ(力によってゼロクリアされたレ
ジスタ(6)の内容と加算しその和をレジスタ(6)に
入力する。同時に2進乗算器(11で次のX、に対応す
る2進数およびY2に対応する2進数の乗算を行いその
積をレジスタ(5)に入力する。次いで乙のときのレジ
スタ(6)とレジスタ(5)の内容を2進加算器(2)
で加算し、その和をレジスタ(6)に入力する。
In the conventional product-sum arithmetic device, first, a binary number corresponding to x and a binary number corresponding to Y are input to a binary multiplier (1) through registers (3) and (4) to calculate the product. Next, the above tank outputted from the binary multiplier (1) at this time is input to the binary adder [2] through the register (5), and is added to the contents of the register (6) cleared to zero by the input selector (force). Input the sum into register (6).At the same time, the binary multiplier (11) multiplies the binary number corresponding to the next X and the binary number corresponding to Y2, and inputs the product into register (5). .Next, the contents of register (6) and register (5) at the time of B are added to the binary adder (2).
and input the sum into register (6).

ここまでの動作によってレジスタ(6)にX、Y□十X
、Y。
By the operation up to this point, register (6) is set to X, Y□10X.
,Y.

の積和が求まり、上記動作をに=nまで繰り返すことに
よって最終的な積和Zが求められる。つまり従来の積和
演算装置では、上記動作の繰り返しによって積和を求め
ていることになる。
The final sum of products Z is obtained by repeating the above operation until n=n. In other words, in the conventional product-sum calculation device, the product-sum is calculated by repeating the above operations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の積和演算装置は以上のように構成されているので
、各演算サイクル毎に積を求めさらに。
Since the conventional product-sum calculation device is configured as described above, the product is calculated for each calculation cycle.

積を求める毎に以前に求めた積和との和を毎回求めなけ
ればならず、高速に積和演算が実行できない点が解決し
なければならない課題としてあった。
Each time a product is calculated, it is necessary to calculate the sum with the previously calculated sum of products, and the problem that must be solved is that the sum of products operation cannot be performed at high speed.

この発明は上記のような課題を解決するためになされた
もので、積を求める毎の毎回の和を必要とせずに積和を
求めることができるとともに、上記2進乗算器を用いた
積和演算器よりも高速に動作させることができる積和演
算装置を得ろことを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to calculate the sum of products without requiring the sum every time the product is calculated, and it is also possible to calculate the sum of products using the binary multiplier described above. The object of the present invention is to obtain a product-sum operation device that can operate faster than an arithmetic unit.

〔課題を解決するtコめの手段〕[Top means to solve problems]

この発明に係る積和演算装置は、積を求める以前に得ら
れる部分和と部分キャリを積の代わりに演算に用いると
共に、上記部分和および部分キャリを生成する回路にお
いて前の演算サイクルの部分和と部分キャリを加算でき
ろようにしたものである。
The product-sum calculation device according to the present invention uses partial sums and partial carries obtained before calculating products in calculations instead of products, and uses the partial sums and partial carries of the previous calculation cycle in a circuit that generates the partial sums and partial carries. and partial carries can be added.

〔作 用〕[For production]

この発明における部分和と部分キャリを生成する回路は
、上記部分和および部分キャリが積を生成する過程の途
中で求められることから、積を求める乗算器よりも高速
に動作が可能となり、さらに各演算サイクルにおいて上
記生成回路で前の演算サイクルの部分和と部分キャリを
加算することから、積を求める毎の毎回の和を求める処
理が不要となり高速演算が可能となる。
The circuit that generates partial sums and partial carries in this invention can operate faster than a multiplier that calculates products because the partial sums and partial carries are determined during the process of generating products, and each Since in an arithmetic cycle, the generating circuit adds the partial sum and partial carry of the previous arithmetic cycle, there is no need to perform a process of calculating a sum each time a product is calculated, and high-speed calculation becomes possible.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、(3)は被乗数をセットするレジスタ、(
4)は乗数をセットするレジスタ、 (+1)は部分和
をセットするレジスタ、■は部分キャリをセットするレ
ジスタ、Q3)は部分積生成回路、(2)ばキャリ・セ
ーブ法を採用したトリー回路、(2)は部分和と部分キ
ャリを和の形に直すための2進加算器。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (3) is the register that sets the multiplicand, (
4) is a register that sets a multiplier, (+1) is a register that sets a partial sum, ■ is a register that sets a partial carry, Q3) is a partial product generation circuit, and (2) is a tree circuit that uses the carry-save method. , (2) is a binary adder to convert the partial sum and partial carry into a sum form.

(19は2進加算器(2)の出力を受けるレジスタ、(
7)は部分和レジスタ01)と部分キャリレジスタ(の
の内容をゼロクリアするための入力セレクタである。
(19 is a register that receives the output of the binary adder (2), (
7) is an input selector for clearing the contents of the partial sum register 01) and the partial carry register (01) to zero.

次に、この発明の一実施例の積和演算装置の動作を従来
例と同様に上式で表されるような積和Zを求める場合に
ついて説明する。
Next, the operation of the sum-of-products calculation device according to an embodiment of the present invention will be described in the case where the sum-of-products Z as expressed by the above equation is calculated in the same way as in the conventional example.

実施例の積和演算装置ではまず、上式x1に対応する2
進数およびY、に対応する2進数をレジスタ(3)およ
びレジスタ(4]を通して部分積生成回路()(こ入力
し部分積群を生成する。次いで生成された上記部分積群
と、入力セレクタ(7)によってゼロクリアされたレジ
スタθ1)およびレジスタ■の内容をトリー回路(2)
の入力データとして上記トリー回m ()4)に入力す
る。上記トリー回路(2)はキャリ・セーブ法を採用し
ており、上記入力データに対する出力としては積の形と
なる前の中間結果である部分和と部分キャリの形で出力
される。乙のときにトリー回路(2)より出力された上
記部分和と上記部分キャリをそれぞれレジスタ(11)
およびレジスタ■に入力する。次いで、レジスタ(3)
およびレジスタ(4)を通して次のxiに対応する2進
数およびY2に対応する2進数を、また、上記部分和と
上記部分キャリがセットされたレジスタ01)およびレ
ジスタ■の内容を部分積生成回路(13)およびトリー
回#!(2)に入力し、新tこな部分和と部分キャリを
それぞれレジスタ01〉およびレジスタ(Φにセットす
る。ここまでの動作によって、レジスタ01)およびレ
ジスタ■にX、Y□十X、Y、の積和が部分和と部分キ
ャリの形で求まり、上記動作をに−nまで繰り返すこと
によって最終的な積和Zが最終的な部分和と部分キャリ
の形で求められろ。次に部分和と部分キャリの形を最終
的な積和の形に直すために、上記Zの部分和と部分キャ
リをレジスタ01)およびレジスタ■を通して2進加算
器(2)に入力し結果をレジスタ(19にセットする。
In the product-sum calculation device of the embodiment, first, 2 corresponding to the above equation x1 is calculated.
The binary number corresponding to the base number and Y is input to the partial product generation circuit () () through register (3) and register (4) to generate a partial product group.Then, the generated partial product group and the input selector ( 7) The contents of register θ1) and register ■ cleared to zero by tree circuit (2)
The above tree times m ()4) are input as input data. The tree circuit (2) employs a carry-save method, and outputs the input data in the form of a partial sum and a partial carry, which are intermediate results before being converted into a product form. The above partial sum and the above partial carry output from the tree circuit (2) at the time of B are respectively stored in registers (11).
and input into register ■. Then register (3)
The binary number corresponding to the next xi and the binary number corresponding to Y2 are passed through the register (4), and the contents of the register 01 (in which the above partial sum and the above partial carry are set) and register 13) and Tory times #! (2), and set the new partial sum and partial carry in register 01〉 and register (Φ) respectively.By the operation so far, register 01) and register , can be found in the form of a partial sum and a partial carry, and by repeating the above operation up to -n, the final sum of products Z can be found in the form of a final partial sum and a partial carry. Next, in order to convert the form of the partial sum and partial carry into the final product-sum form, the partial sum and partial carry of Z are input to the binary adder (2) through register 01) and register Register (set to 19).

つまりこの発明の一実施例の積和を求める演算装置では
、上記動作の繰り返しによって積和を部分和と部分キャ
リの形で求め、最後に1回だけ2進加算器(2)を用い
て最終的な積和を得ていることになる。
In other words, in the arithmetic device for calculating the sum of products according to an embodiment of the present invention, the sum of products is obtained in the form of a partial sum and a partial carry by repeating the above operation, and finally, the binary adder (2) is used only once to finalize the sum of products. This means that we have obtained the sum of products.

ここで実施例と従来例の動作速度について比較する。Here, the operating speeds of the embodiment and the conventional example will be compared.

積和演算のうちの積を求める部分は、動作速度が上記乗
数レジスタ(4)のビット幅のみに依存する部分積の加
算から部分和および部分キャリを生成するまでの過程(
以下、過程Aと呼ぶ)と、動作速度が上記被乗数レジス
タ(3)のビット幅のみに依存する上記部分和および部
分キャリの加算から積を生成するまでの過程(同様に、
過程B)に分けられろ。従来例では積の生成を上記2進
乗算器(1)で行っており、上記過程Aと上記過程Bを
各演算サイクル毎に繰り返し実行しているため、@作速
度は上記被乗数レジスタ(3)と上記乗数レジスタ(4
)の両方のビット幅に依存する。これに対して実施例で
は、動作速度が上記乗数レジスタ(4)のビット幅に依
存する上記過程Aのみを各演算サイクル毎に繰り返し実
行し、最後の演算サイクルに1回だけ動作速度が上記被
乗数レジスタ(3)のビット幅に依存する上記過程Bを
実行する構成とした。つまり従来例の各演算サイクルの
動作速度が被乗数および乗数の各々のビット幅に依存す
るのに対して、実施例の各演算サイクルの動作速度は最
後の演算サイクル1回でけ被乗数のビット幅に依存し、
残りの演算サイクルは乗数のビット幅のみに依存するた
め、上記被乗数レジスタ(3)のビット幅に動作速度が
依存する過程Bを各演算サイクル毎に実行する必要がな
い分だけ実施例の方が高速に積和演算を可能としている
The part of the product-sum operation that calculates the product is a process from adding partial products to generating partial sums and partial carries, whose operating speed depends only on the bit width of the multiplier register (4).
(hereinafter referred to as process A), and the process from addition of the partial sum and partial carry to generation of the product (similarly,
Divided into process B). In the conventional example, the product is generated by the above binary multiplier (1), and the above process A and the above process B are repeatedly executed in each calculation cycle, so the @production speed is determined by the above multiplicand register (3). and the above multiplier register (4
) depends on the bit width of both. On the other hand, in the embodiment, only the above-mentioned process A in which the operating speed depends on the bit width of the multiplier register (4) is repeatedly executed in each calculation cycle, and only once in the last calculation cycle, the operating speed depends on the bit width of the multiplicand. The configuration is such that the above process B is executed depending on the bit width of register (3). In other words, while the operating speed of each arithmetic cycle in the conventional example depends on the bit width of each multiplicand and multiplier, the operating speed of each arithmetic cycle in the embodiment depends on the bit width of the multiplicand in the last arithmetic cycle. depends on
Since the remaining arithmetic cycles depend only on the bit width of the multiplier, the embodiment is better because it does not need to execute process B, whose operating speed depends on the bit width of the multiplicand register (3), for each arithmetic cycle. It enables high-speed product-sum operations.

以上のことを第3図および第4図を用いて説明する。第
3rI!Jおよび第4図はそれぞれ従来例および実施例
の積和演算の実行動作をタイム・チャートで示したもの
であり1図において、(Dは上記過程Aを実行する部分
、 (r/)は上記過程Bを実行する部分、(■は従来
例における積和演算のうち和を求める加算過程(以下、
過程Cと呼ぶ)である。なお。
The above will be explained using FIGS. 3 and 4. 3rd rI! J and FIG. 4 are time charts showing the execution operation of the product-sum operation in the conventional example and the embodiment, respectively. In FIG. 1, (D is the part that executes the above process A, and (r/) is the The part that executes process B, (■ is the addition process that calculates the sum of the product-sum operations in the conventional example (hereinafter referred to as
(referred to as process C). In addition.

第3図および第4図は1通常、被乗数と乗数が同じビッ
ト幅と考えられるために上記過程Aと上記過程Bの動作
速度が同じと仮定しており、さらに積和演算の項数nJ
t!n=6としている。各演算サイクル毎の過程A、B
、Cをそれぞれ過程人i、Bi、Cとすると、第3図に
おいて、過程CIは過程用および過程B】を実行するこ
とによって得られた積と初期値0の加算を実行する過程
であり、実質的には過程Bと同等の動作速度である。ま
た、過程C2は過程用および過程B2からの積と過程C
Iの結果を加算ずろ過程となり、以下同様であるが、過
程A・Bおよび過程Cは従来例の説明で述べたように並
列に動作するため実際の演算サイクルに現れるのはこの
場合、最後の過程C6のみとなる。第4図では、上述の
実施例のように過程Aのみの繰り返しが続き最後に1回
t!け過程Bが実行される。」1記仮定から、従来例が
上記過程Aと上記過程Bを1回づつ実行する間に実施例
では上記過程Aを2回実行することが可能であることが
いえ、第3図および第4図の比較から、従来例の最後の
演算サイクル7および実施例の最後の演算サイクル4を
除けば、実施例は従来例の2倍の速度で積和演算が可能
となることが分かる。被乗数のピノ)・幅が太き(なる
につれ、上記過程Aの演算サイクル1回分の動作速度は
上記過程已に較べて相対的に高速となるため、上記被乗
数レジスタ(3)のビット幅が大きなものほど実施例の
高速化が顕著となる。また、繰り返しの回数が多くなる
ほど、つまり積和5ii算の項数nが大きくなるほど実
施例を用いることにより高速化が図られる。
3 and 4 assume that the operating speeds of process A and process B are the same because the multiplicand and the multiplier are usually considered to have the same bit width, and the number of terms in the product-sum operation is nJ.
T! It is assumed that n=6. Processes A and B for each calculation cycle
, C are the process people i, Bi, and C, respectively. In Fig. 3, the process CI is the process of adding the product obtained by executing the process and the process B] and the initial value 0, The operating speed is substantially the same as in process B. Also, process C2 is for process and product from process B2 and process C
The result of I becomes an addition-plus process, and the same applies hereafter. However, as mentioned in the explanation of the conventional example, processes A, B, and C operate in parallel, so in this case, the last one appears in the actual calculation cycle. Only process C6 is required. In FIG. 4, as in the above embodiment, only process A is repeated one time t! Step B is executed. ” From the assumption in item 1, it can be said that while the conventional example executes the above process A and the above process B once, the embodiment can execute the above process A twice, and the example shown in FIGS. From a comparison of the figures, it can be seen that, except for the last calculation cycle 7 of the conventional example and the last calculation cycle 4 of the embodiment, the embodiment can perform product-sum calculations twice as fast as the conventional example. The bit width of the multiplicand register (3) becomes larger as the multiplicand becomes wider (as the operation speed of one calculation cycle of the above process A becomes relatively faster compared to the above process). The higher the number of repetitions, that is, the larger the number of terms n in the product-sum 5ii arithmetic, the faster the speed is achieved by using the embodiment.

なお、上記実施例では2進加算器(2)の出力を受けろ
レジスタ(1つを設けtこものを示したが、トリー回l
l5(ロ)からの部分和の出力を受けるレジスタ(11
)もしくは部分キャリの出力を受けろレジスタ(至)と
兼用してもよい。
In the above embodiment, one register was provided to receive the output of the binary adder (2), but the tree time is
A register (11
) or may also be used as a register (to) that receives the output of a partial carry.

また、上記実施例ではレジスタ01)およびレジスタ■
に初期値Oを与えるために入力セレクタ(7)を設けた
が、レジスタ(11)およびレジスタ■のゼロクリアが
可能な回路であればセレクタである必要はない。
In addition, in the above embodiment, register 01) and register
Although an input selector (7) is provided to give an initial value O to the input selector (7), the input selector (7) does not need to be provided as long as the circuit can clear the register (11) and the register (2) to zero.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば乗算、加算の繰り返し
によって積和を求めていたものを乗算の繰り返しのみで
実質的な加算を1回でけで済むように構成したので、!
!I和を求めろ演算装置がR易に実現でき、また1乗算
の部分を部分和と部分キャリの形までに止めておき積ま
で求めずに繰り返しているため2乗算器を用いて積まで
求める場合よりも高速に積和が得られる効果がある。
As described above, according to the present invention, instead of calculating the sum of products by repeating multiplication and addition, it is now possible to perform only one addition by repeating multiplication.
! Find the I sum.The arithmetic device can be easily implemented, and since the 1 multiplication part is stopped at the form of partial sum and partial carry and is repeated without finding the product, use a square multiplier to find the product. This has the effect of obtaining the sum of products faster than in the case of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による積和演算装置を示す
回路構成図、第2図は従来の積和演算装置を示す回路構
成図、第3図は従来例の積和演算の実行動作のタイム・
チャート図、第4図は実施例の積和演算の実行動作のタ
イム・チャート図である。 (2)は2進加算器、 (I+)は部分和レジスタ、(
Φは部分キャリレジスタ、03)は部分積生成回路、(
2)はトリ −回g古。 なお2図中、同一符号は同一、又は相当部分を示す。 代理人  大  岩  増  雄 第1図 32図 15  出力レジスタ
FIG. 1 is a circuit configuration diagram showing a product-sum calculation device according to an embodiment of the present invention, FIG. 2 is a circuit diagram showing a conventional product-sum calculation device, and FIG. 3 is a conventional product-sum calculation execution operation. The time of
Chart Figure 4 is a time chart diagram of the execution operation of the product-sum operation in the embodiment. (2) is a binary adder, (I+) is a partial sum register, (
Φ is a partial carry register, 03) is a partial product generation circuit, (
2) is tri-age old. Note that in the two figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 32 Figure 15 Output register

Claims (1)

【特許請求の範囲】[Claims] 演算サイクルを繰り返して積和演算を行う積和演算装置
において、演算の中間結果を格納する第1および第2の
レジスタと、入力された被乗数と乗数から部分積群を生
成する回路と、該部分積生成回路と上記第1および第2
のレジスタに接続され上記部分積群と上記第1および第
2のレジスタの内容を加算し部分和と部分キャリを生成
し上記第1および第2のレジスタに上記部分和および部
分キャリを新たな演算の中間結果として出力するキャリ
・セーブ法を採用したトリー回路と、上記第1および第
2のレジスタに接続され上記第1および第2のレジスタ
の内容を加算し最終的な積和を出力する2進加算器とを
有し、各演算サイクルにおいて、上記部分積生成回路と
上記トリー回路により部分和および部分キャリの形での
積の生成を行うと同時に、前の演算サイクルまでの積和
を部分和および部分キャリの形のままで上記トリー回路
に入力することによって積和演算を実現するようにした
ことを特徴とする積和演算装置。
A product-sum calculation device that performs a product-sum calculation by repeating calculation cycles includes first and second registers that store intermediate results of calculations, a circuit that generates a partial product group from input multiplicands and multipliers, and a circuit that generates a partial product group from input multiplicands and multipliers; The product generating circuit and the first and second
The partial product group is connected to the register of , and the contents of the first and second registers are added to generate a partial sum and a partial carry, and the partial sum and partial carry are added to the first and second registers to perform a new operation. A tree circuit employing a carry-save method that outputs an intermediate result of In each operation cycle, the partial product generation circuit and the tree circuit generate products in the form of partial sums and partial carries, and at the same time, the sum of products up to the previous operation cycle is partially calculated. A product-sum calculation device characterized in that a product-sum calculation is realized by inputting the sum and partial carry as they are to the tree circuit.
JP29753188A 1988-11-25 1988-11-25 Product sum arithmetic unit Pending JPH02143374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29753188A JPH02143374A (en) 1988-11-25 1988-11-25 Product sum arithmetic unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29753188A JPH02143374A (en) 1988-11-25 1988-11-25 Product sum arithmetic unit

Publications (1)

Publication Number Publication Date
JPH02143374A true JPH02143374A (en) 1990-06-01

Family

ID=17847738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29753188A Pending JPH02143374A (en) 1988-11-25 1988-11-25 Product sum arithmetic unit

Country Status (1)

Country Link
JP (1) JPH02143374A (en)

Similar Documents

Publication Publication Date Title
JPH1195981A (en) Multiplication circuit
JPS6347874A (en) Arithmetic unit
JPH0612229A (en) Multiplication and accumulation circuit
JPH0831025B2 (en) Multiplication circuit
JPH0368416B2 (en)
JPH0823811B2 (en) Method for determining overflow in a three-operand arithmetic logic mechanism and mechanism for detecting arithmetic overflow
JP2597736B2 (en) Fast multiplier
JPH08329261A (en) Parameteric curve generator
Kaihara et al. Bipartite modular multiplication
JP3660075B2 (en) Dividing device
US5870322A (en) Multiplier to selectively perform unsigned magnitude multiplication or signed magnitude multiplication
JPH02143374A (en) Product sum arithmetic unit
JPH08314697A (en) Signed / unsigned multi-purpose multiplier
US20050246406A9 (en) Emod a fast modulus calculation for computer systems
JPS58129653A (en) Multiplication system
JPH07271557A (en) Equipment and method for data processing and multiplication
JP4223819B2 (en) Power residue calculation apparatus and program
JP2812365B2 (en) Multiplication circuit
Zhou et al. New algorithm and fast VLSI implementation for modular inversion in galois field GF (p)
JPH01241622A (en) Multiplying device
JP3461252B2 (en) Multiplication method
JPH0784762A (en) Multiplication circuit
JP3696307B2 (en) Product-sum operation unit
KR0153759B1 (en) High speed multiplication-accumulation circuit
JP3130797B2 (en) Product-sum operation processing method and apparatus