JPH02143198A - Operating method for waste liquid concentration system - Google Patents

Operating method for waste liquid concentration system

Info

Publication number
JPH02143198A
JPH02143198A JP29635188A JP29635188A JPH02143198A JP H02143198 A JPH02143198 A JP H02143198A JP 29635188 A JP29635188 A JP 29635188A JP 29635188 A JP29635188 A JP 29635188A JP H02143198 A JPH02143198 A JP H02143198A
Authority
JP
Japan
Prior art keywords
reverse osmosis
electrodialysis
liquid
concentration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29635188A
Other languages
Japanese (ja)
Inventor
Mikio Hayashi
幹夫 林
Masaaki Matsunaga
松永 正昭
Akira Sato
彰 佐藤
Akinori Hattori
服部 昭教
Takaaki Nabeta
鍋田 隆章
Kazunori Suzuki
和則 鈴木
Naoyuki Takebayashi
竹林 尚之
Nobuyuki Haruta
春田 信行
Daisuke Taneda
大介 種田
Takao Matsui
松井 多嘉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Tohoku Electric Power Co Inc
Japan Atomic Power Co Ltd
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Asahi Chemical Industry Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
JGC Corp
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Japan Atomic Power Co Ltd
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Japan Atomic Power Co Ltd, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc, Hokuriku Electric Power Co, Asahi Chemical Industry Co Ltd filed Critical JGC Corp
Priority to JP29635188A priority Critical patent/JPH02143198A/en
Publication of JPH02143198A publication Critical patent/JPH02143198A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of concentration by electrodialysis processing by returning residual liquid which is on the side of concentrated liquid before the an electrodialyser starts operating to the supply liquid tank of a reverse osmosis device. CONSTITUTION:The demineralized water on the side 6a of the supply liquid of the electrodialyser is recycled to the reverse osmosis supply liquid tank 2a through a line (j). Consequently, the salt concentration of intermediate concentrated liquid supplied to the electrodialyser 6 through a line (g) decreases gradually and when the concentration of the intermediate concentrated liquid reaches the density where the efficiency of the electrodialysis processing decreases, e.g. 30g/l, the line of the intermediate concentrated liquid is switched from (g) to (f) to quit the electrodialysis processing, thereby cyclic concentration by the reverse osmosis device. In this case, the residual liquid on the concentration side 6b of the electrodialyser decreases on the whole, so this residual liquid is returned to the reverse osmosis supply liquid tank 2a through the line (j). Consequently, a decrease in the concentration of the concentrated liquid obtained finally is prevented to some extent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、廃液濃縮システムの運転方法に関【7、詳し
くは精密濾過膜と逆浸透膜と電気透析膜を用いて放射性
廃液を濃縮する際に、赦終的に得られる濃縮液の濃度低
下を防止し得る廃液濃縮システムの運転方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of operating a waste liquid concentration system [7] Specifically, a method for concentrating radioactive waste liquid using a precision filtration membrane, a reverse osmosis membrane, and an electrodialysis membrane. In particular, the present invention relates to a method of operating a waste liquid concentration system that can prevent a decrease in the concentration of the concentrated liquid that is eventually obtained.

[従来の技術] 従来、原子力発電所において発生する床ドレンや再生廃
液は、蒸発濃縮器により蒸発濃縮され、蒸留水は回収し
、濃縮液は固化処理系に送られていた。この蒸発濃縮器
の問題として、■塩素イオン等による材料腐食の発生、
■保守の繁雑さ、作業被曝が大きい、■加熱源たる重油
ボイラースチームの使用により、エネルギー消費が大き
い、■メンテナンスの必要上、設置空間の増大等が挙げ
られる。
[Prior Art] Conventionally, floor drain and recycled waste liquid generated in nuclear power plants have been evaporated and concentrated using an evaporative concentrator, distilled water has been recovered, and the concentrated liquid has been sent to a solidification treatment system. Problems with this evaporative concentrator include: - Material corrosion caused by chlorine ions, etc.
■Complicated maintenance and high radiation exposure; ■High energy consumption due to the use of heavy oil boiler steam as a heating source; ■Increased installation space due to the need for maintenance.

これを解決する技術として、膜分離技術を利用した逆浸
透装置や電気透析装置等が考えられる(例えば特開昭5
8−4034号公報、特開昭59−228988号公報
)。前者は逆浸透装置と電気透析装置との組合わせによ
る放射性廃液の処理方法および装置、後者は2段以上の
逆浸透処理装置による高電導度水からの純水の回収方法
について開示しである。これらの装置は、濃縮に際し相
変化を伴なわないため、極めて消費エネルギーが少なく
、かつ加熱に伴なう材質腐食が発生する恐れが大きいと
いう問題が生じない。
Possible technologies to solve this problem include reverse osmosis equipment and electrodialysis equipment that utilize membrane separation technology (for example,
8-4034, JP-A-59-228988). The former discloses a method and apparatus for treating radioactive waste liquid using a combination of a reverse osmosis device and an electrodialysis device, and the latter discloses a method for recovering pure water from high conductivity water using a two or more stage reverse osmosis treatment device. Since these devices do not involve a phase change during concentration, they consume extremely little energy and do not pose the problem of material corrosion due to heating.

本発明では、このような膜分離技術を利用したシステム
として、精密濾過膜、逆浸透膜、電気透析膜により構成
されたシステムが提案されている。
The present invention proposes a system using a microfiltration membrane, a reverse osmosis membrane, and an electrodialysis membrane as a system using such membrane separation technology.

このシステムは、放射性廃液を精密濾過装置(膜)によ
ってクラッドやその他の濁質成分を除去し、次いで第1
段の逆浸透装置(膜)で脱塩を行ない、脱塩された脱塩
水をさらに第2段の逆浸透装置(膜)でさらに脱塩し、
回収水とするもので、他方、第1段逆浸透装置で塩が濃
縮された濃縮液は、電気透析装置(膜)でさらに濃縮さ
れ濃縮廃液タンク等に導かれ、固化処理されるものであ
る。なお、このシステムにおいて2段の逆浸透装置を用
いる理由は、■最終的な回収水性状として21Nj/ 
i (Na 2 S Os )以下となること、および
■電気透析処理可能な塩濃度として約30 g/ jC
Na2S04)以上に濃縮することが必要である。しか
し、逆浸透装置が1段では、両方の条件を満足すること
は困難であり、2段とすることによって両方の条件が満
足される。従って、逆浸透装置を3段以上にする必要性
もない。
This system uses a precision filtration device (membrane) to remove crud and other turbid components from the radioactive waste liquid, and then
Desalination is performed in the reverse osmosis device (membrane) in the second stage, and the desalted water is further desalted in the reverse osmosis device (membrane) in the second stage.
On the other hand, the concentrated liquid from which salts have been concentrated in the first stage reverse osmosis device is further concentrated in an electrodialysis device (membrane), and is led to a concentrated waste liquid tank, etc., where it is solidified. . The reason for using a two-stage reverse osmosis device in this system is: ■ The final recovered water properties are 21Nj/
i (Na 2 S Os ) or less, and ■ a salt concentration that can be treated by electrodialysis of approximately 30 g/jC.
It is necessary to concentrate it to a level higher than that of Na2S04). However, it is difficult to satisfy both conditions with a single stage reverse osmosis device, and both conditions can be satisfied by having a two stage reverse osmosis device. Therefore, there is no need for the reverse osmosis device to have three or more stages.

このシステムの運転方法として連続式処理方法、回分式
処理方法、半回分式処理方法が考えられる。
Possible operating methods for this system include a continuous treatment method, a batch treatment method, and a semi-batch treatment method.

連続式処理方法(逆浸透処理装置による所定濃縮塩濃度
廃液を、廃液量は変動するが連続的に電気透析装置に供
給し、最終濃縮所定塩濃度廃液も連続的に得る処理方法
)は、供給液の塩濃度に対応して、システム全体の流量
バランスが変化するため、各装置にポンプ等のal器類
の設置が必要となり、またその制御が複雑になり、しか
も電気透析処理による処理量およびその変動が大きくな
るので電気透析処理の運転制御がむずかしいという問題
がある。
Continuous treatment method (a treatment method in which waste liquid with a predetermined concentrated salt concentration from a reverse osmosis treatment device is continuously supplied to an electrodialysis device, although the amount of waste liquid fluctuates, and the final concentrated waste liquid with a predetermined salt concentration is also continuously obtained). Since the flow balance of the entire system changes depending on the salt concentration of the solution, it is necessary to install aluminum equipment such as pumps in each device, and its control becomes complicated, and the throughput and Since the fluctuation becomes large, there is a problem in that it is difficult to control the operation of electrodialysis treatment.

また、回分式処理方法(最初に逆浸透処理装置で廃液を
所定塩濃度まで濃縮し、次いでこの濃縮液を電気透析装
置により、さらに濃縮するというそれぞれの装置の運転
が独立して行なわれる処理方法)は、システムの制御は
簡単ではあるが各装置の供給液タンクの液張り工程がム
ダ時間となり、処理能力が低い。さらに処理能力を大き
くしようとすると、タンクの数および電気透析装置の規
模が大きくなるという問題やタンクの内容液を所定量ま
で濃縮するため、特に1段目の逆浸透装置への供給液濃
度が高くなり、浸透圧の増加により逆浸透膜の必要膜面
積が大きくなるという問題が生じる。
In addition, a batch treatment method (a treatment method in which each device is operated independently, in which the waste liquid is first concentrated to a predetermined salt concentration using a reverse osmosis treatment device, and then this concentrated solution is further concentrated using an electrodialysis device) ), the system is easy to control, but the process of filling the supply liquid tank of each device is a waste of time, and the throughput is low. Increasing the processing capacity further increases the number of tanks and the scale of the electrodialysis equipment, and the concentration of the liquid supplied to the first-stage reverse osmosis equipment increases, especially since the contents of the tank are concentrated to a predetermined amount. This causes a problem in that the required membrane area of the reverse osmosis membrane increases due to the increase in osmotic pressure.

そこで、逆浸透装置における濃縮液の塩濃度が所定値に
なるまで逆浸透装置で循環濃縮を行ないながら、濃縮液
の濃度が所定値になった時点でその濃縮液を電気透析装
置に供給すると電気透析処理により塩濃度が低下した廃
液が逆浸透処理装置供給液タンクに戻るのでそのタンク
内液の塩濃度が低下し、その濃度が所定値以下になった
所で電気透析装置への供給を停止し、再び逆浸透装置に
よって循環濃縮を行なう。一方、電気透析処理は、逆浸
透装置における濃縮液が電気透析処理装置供給タンクに
所定量以上溜っている時のみ作動させる。本発明ではこ
の半回分式処理方法が採用される。つまり、半回分式処
理方法とは逆浸透処理装置により常に廃液の濃縮処理を
行ないながら、その1段濃縮液の塩濃度に応じて電気透
析処理に回すか、あるいは元の逆浸透処理装置の供給液
タンクに戻すかを選択して行なう処理方法である。
Therefore, if the reverse osmosis device performs circulation concentration until the salt concentration of the concentrated solution in the reverse osmosis device reaches a predetermined value, then the concentrated solution is supplied to the electrodialysis device when the concentration of the concentrated solution reaches the predetermined value. The waste liquid whose salt concentration has decreased due to the dialysis treatment returns to the reverse osmosis treatment equipment supply liquid tank, so the salt concentration of the liquid in the tank decreases, and when the concentration falls below a predetermined value, the supply to the electrodialysis equipment is stopped. Then, circulatory concentration is performed again using a reverse osmosis device. On the other hand, the electrodialysis treatment is activated only when a predetermined amount or more of concentrated liquid in the reverse osmosis device is stored in the electrodialysis treatment device supply tank. In the present invention, this semi-batch processing method is adopted. In other words, in the semi-batch treatment method, the waste liquid is constantly concentrated using the reverse osmosis treatment equipment, and depending on the salt concentration of the first stage concentrated liquid, it is sent to electrodialysis treatment, or the waste liquid is supplied to the original reverse osmosis treatment equipment. This is a processing method that allows you to select whether to return the liquid to the liquid tank.

この半回分式処理方法においては以下の利点を有する。This semi-batch processing method has the following advantages.

すなわち、■逆浸透装置と電気透析装置が独立して運転
されることにより、システム全体の流量バランスが一定
するため、ポンプ等の機器類およびその制御が簡単とな
る、■塩濃度変動に対して運転時間で対応するため、シ
ステム全体の制御が簡単となる、■ムダ時間となるタン
クへの液張り工程がないこと、また連続式の場合よりシ
ステム内の流量が少なくなる。
In other words, ■ By operating the reverse osmosis device and the electrodialysis device independently, the flow balance of the entire system is constant, which simplifies equipment such as pumps and its control. ■ It is effective against fluctuations in salt concentration. Controlling the entire system is simple because it is handled by operating time; ■ There is no need to fill the tank with liquid, which is a waste of time; and the flow rate in the system is lower than in the case of a continuous type.

[発明が解決しようとする問題点コ しかしながら、半回分式処理方法で廃液処理を行なった
場合、電気透析処理が回分式となるため、その停止時に
、電気透析装置内の濃度差を持つ残液内での拡散現象に
より濃縮液側に残存する残留液の塩濃度が低下しく逆に
供給液側の塩濃度は上昇する)、高濃度濃縮塩回収に影
響を与える問題が生じる。
[Problems to be Solved by the Invention] However, when waste liquid is treated using a semi-batch treatment method, the electrodialysis treatment is performed in batches, so when the electrodialysis process is stopped, residual liquid with different concentrations in the electrodialysis machine is disposed of. Due to the diffusion phenomenon within the reactor, the salt concentration of the residual solution remaining on the concentrate side decreases and, conversely, the salt concentration on the feed solution side increases), causing problems that affect the recovery of highly concentrated concentrated salts.

このように、半回分式処理方法においては、上記したよ
うな利点を有するものの連続式処理方法では間層になら
ない運転停止時における電気透析装置における液の濃度
の拡散平衡化が問題となる。
As described above, although the semi-batch treatment method has the above-mentioned advantages, the continuous treatment method poses a problem of diffusion equilibration of the concentration of the liquid in the electrodialysis apparatus when the operation is stopped, which does not result in an interstitial layer.

本発明は、上述の問題点に鑑みなされたもので、放射性
廃液を半回分式処理方法で濃縮するに際して、電気透析
処理の停止時の電気透析装置における塩濃度の拡散平衡
化による濃縮液全体の稀薄化を防止し得る廃液濃縮シス
テムの運転方法を提供することを目的とする。
The present invention was made in view of the above-mentioned problems, and when concentrating radioactive waste liquid by a semi-batch treatment method, the entire concentrated liquid is An object of the present invention is to provide a method of operating a waste liquid concentration system that can prevent dilution.

[問題点を解決するための手段および作用]本発明の上
記目的は、■電気透析装置の運転開始前に濃縮液側にあ
った残留液を逆浸透装置の供給液タンクに戻す、および
■逆浸透処理装置における塩漬縮度を増加させること、
によって達成される。
[Means and effects for solving the problems] The above-mentioned objects of the present invention are: (1) to return the residual liquid that was on the concentrate side before the start of operation of the electrodialysis device to the feed tank of the reverse osmosis device; increasing the degree of salting shrinkage in the infiltration treatment equipment;
achieved by.

すなわち本発明は、放射性廃液を、精密濾過膜と逆浸透
膜と電気透析膜とを用いて半回分式処理方式で濃縮する
システムでありで、逆浸透処理で塩濃度が許容値まで濃
縮させた液を電気透析処理に供給するとともに、電気透
析膜を用いた電気透析装置の運転開始前に、該電気透析
装置の濃縮液側に残存する残留液を逆浸透装置の供給液
タンクに戻すこと、および逆浸透処理での濃縮液塩濃度
が所定値になるまで電気透析処理に供給を続け濃縮処理
を行なうことを特徴とする廃液濃縮システムの運転方法
にある。
That is, the present invention is a system for concentrating radioactive waste liquid using a semi-batch treatment method using a precision filtration membrane, a reverse osmosis membrane, and an electrodialysis membrane, and the salt concentration is concentrated to an allowable value by reverse osmosis treatment. supplying the liquid to the electrodialysis treatment, and returning the residual liquid remaining on the concentrated liquid side of the electrodialysis apparatus to the feed liquid tank of the reverse osmosis apparatus before starting operation of the electrodialysis apparatus using the electrodialysis membrane; and a method of operating a waste liquid concentration system, characterized in that the concentrated liquid is continuously supplied to the electrodialysis treatment until the salt concentration of the concentrated liquid in the reverse osmosis treatment reaches a predetermined value.

以下、本発明を図面に基づき具体的に説明する。Hereinafter, the present invention will be specifically explained based on the drawings.

第1図は、本発明の運転方法の一実施例を示す概略図で
ある。同図において、1は精密濾過装置、2a、2bは
逆浸透供給液タンク、3は第1段逆浸透装置、4は第2
段逆浸透装置、5は電気透析供給液タンク、6は電気透
析装置、6aは電気透析装置における供給液側、6bは
電気透析装置における濃縮液側、7は電気透析濃縮液タ
ンクをそれぞれ示す。
FIG. 1 is a schematic diagram showing an embodiment of the operating method of the present invention. In the figure, 1 is a precision filtration device, 2a and 2b are reverse osmosis feed liquid tanks, 3 is a first stage reverse osmosis device, and 4 is a second stage reverse osmosis device.
In the stage reverse osmosis apparatus, 5 is an electrodialysis feed liquid tank, 6 is an electrodialysis apparatus, 6a is a feed liquid side in the electrodialysis apparatus, 6b is a concentrate side in the electrodialysis apparatus, and 7 is an electrodialysis concentrate tank.

第1図において、放射性廃液は精密a過装置1に導入さ
れる。この精密濾過装置1は廃液中のクラッドやその他
の濁質成分を除去することによって逆浸透過膜や電気透
析膜の汚れを防止することを目的とするもので、中空糸
膜タイプが好ましいが、平膜タイプでもあるいは限外濾
過膜でもよい。
In FIG. 1, radioactive waste liquid is introduced into a precision aperture device 1. The purpose of this precision filtration device 1 is to prevent fouling of reverse osmosis membranes and electrodialysis membranes by removing crud and other suspended components in waste liquid, and a hollow fiber membrane type is preferable. It may be a flat membrane type or an ultrafiltration membrane.

このクラッド等が除去された廃液はラインaを通って逆
浸透供給液タンク2aに貯留され、次いで第1段逆浸透
装置13にラインbより導入され、ここで塩濃縮、脱塩
される。
The waste liquid from which the crud and the like have been removed passes through line a and is stored in the reverse osmosis supply liquid tank 2a, and is then introduced into the first stage reverse osmosis device 13 through line b, where it is salt-concentrated and desalted.

ここで得られた脱塩水は、ラインCを通って、逆浸透供
給液タンク2bに貯留された後、ラインdを通って74
2段逆浸透装置4に導入され、再び塩濃縮、脱塩される
。このように脱塩された回収水の濃度は、2Q/ J 
(Na 2 S 04 )以下であることが要求される
。この回収水はさらにイオン交換樹脂でざらに脱塩され
、発電所内で再使用されたりする。また、第2段逆浸透
装置4における濃縮液は、ラインeを経て逆浸透供給液
タンク2aにリサイクルされる。
The desalinated water obtained here passes through line C and is stored in the reverse osmosis feed tank 2b, and then passes through line d to 74
It is introduced into the two-stage reverse osmosis device 4, where it is again concentrated and desalted. The concentration of the recovered water desalinated in this way is 2Q/J
(Na 2 S 04 ) or less. This recovered water is then roughly desalinated using an ion exchange resin and reused within the power plant. Further, the concentrated liquid in the second stage reverse osmosis device 4 is recycled to the reverse osmosis supply liquid tank 2a via line e.

このように逆浸透膜f3,4は塩の中間am。In this way, the reverse osmosis membranes f3 and 4 are salt intermediate am.

脱塩水(回収水)の回収を行なう。この逆浸透装置3,
4はスパイラル型、チューブラ−型でもよいが、クラッ
ド等は充分除去されているため、処理量の大きい中空糸
型が最も望ましい。
Collect desalinated water (recovered water). This reverse osmosis device 3,
4 may be a spiral type or a tubular type, but a hollow fiber type is most desirable because it can handle a large amount of material since the cladding etc. are sufficiently removed.

一方、第1段逆浸透装置3で濃縮された中間、lI縮液
は、ラインfを通って逆浸透供給液タンク2aにリサイ
クルされる。そして、第1段逆浸透装FL3で濃縮され
た中間濃縮液の濃度が30 g/ J(Na 2 SO
4)以上まで濃縮された時点で、中間濃縮液はラインg
を通って電気透析供給液タンク5に供給される。この中
間濃縮液の濃度30g/J (Na 2 SO4)は、
電気透析処理可能な塩濃度の下限値であり、また、逆浸
透処理の面からは、低塩濃度濃縮の方が負荷がかからず
望ましい。この中間濃縮液は、ラインhを経て電気透析
装置6に導かれ、さらに濃縮される。この電気透析装置
6においては、陽イオン交換膜、陰イオン交換膜の2種
類のものを使用している。これらはスペーサを間に交互
に重ね電気透析槽を構成する。最終a縮液はラインkを
通って電気透析濃縮液タンク7に一旦貯留され、固化処
理系(図示せず)に回される。この際の最終濃縮液の濃
度は200g/ ! (Na 2 S O4)程度であ
ることが要求される。
On the other hand, the intermediate and lI condensate concentrated in the first stage reverse osmosis device 3 is recycled to the reverse osmosis feed liquid tank 2a through line f. Then, the concentration of the intermediate concentrate concentrated in the first stage reverse osmosis device FL3 was 30 g/J (Na 2 SO
4) When the intermediate concentrate is concentrated to the above level, the intermediate concentrate is transferred to line g
The electrodialysis feed liquid tank 5 is supplied through the electrodialysis feed liquid tank 5. The concentration of this intermediate concentrate is 30g/J (Na 2 SO4),
This is the lower limit of the salt concentration that can be processed by electrodialysis, and from the viewpoint of reverse osmosis treatment, low salt concentration concentration is preferable because it does not impose a load. This intermediate concentrated liquid is led to the electrodialyzer 6 via line h and further concentrated. This electrodialyzer 6 uses two types of membranes: a cation exchange membrane and an anion exchange membrane. These constitute an electrodialysis cell with spacers alternately stacked between them. The final condensate is temporarily stored in the electrodialysis concentrate tank 7 through line k, and then sent to a solidification treatment system (not shown). The concentration of the final concentrate at this time is 200g/! (Na 2 SO 4 ) is required.

一方、電気透析装置の供給液側6aの脱塩水は、ライン
jを通って逆浸透供給液タンク2aにリサイクルされる
。このため、ラインgより電気透析装置6に供給される
中間ala液の塩濃度は徐々に低下し、電気透析処理の
効率が低下する濃度、例えば中間濃縮液が30g/l 
(Na 2 SO4)以下になったところで、中間濃縮
液のラインをgからfに切り換え、電気透析処理を中止
し、逆浸透装置による循環濃縮を行なう。中間濃縮液の
濃度が所望濃度以上になった時点で再びラインをfから
gに切り換え、電気透析処理を再開するが、この際に、
電気透析装置の濃縮側6bに残存する残留液は、運転停
止時間中に拡散平寵化によって濃度が低下し、このまま
処理を行なうと最終濃縮液の濃度が全体的に著しく低下
してしまう。そこで本発明では、この残留液をラインj
を通して逆浸透供給液タンク2aに戻す。この戻し方は
、ラインiのポンプを用いて稀薄になった濃縮液をライ
ンjへ送り出すのが通常である。また、運転停止時にラ
インhのポンプを用いて6bの濃縮液をラインkに送り
出すことも考えられる。このことによって、最終的に得
られる濃縮液の濃度低下がある程度防止することができ
る。しかしながら、充分とはいえず、さらに電気透析処
理装置に供給される逆浸透処理された中間濃縮液の塩濃
度を30 g/ 1から50 g/ !にすることで電
気透析処理された濃縮液の濃度が、要求される200g
/ J(Na2504 )を確保できることを見い出し
た。
Meanwhile, the demineralized water on the feed side 6a of the electrodialysis machine is recycled to the reverse osmosis feed tank 2a through line j. For this reason, the salt concentration of the intermediate ala solution supplied to the electrodialysis apparatus 6 from the line g gradually decreases, and the concentration at which the efficiency of the electrodialysis treatment decreases, for example, 30 g/l of the intermediate concentrated solution.
(Na 2 SO 4 ) or less, the intermediate concentrate line is switched from g to f, the electrodialysis treatment is stopped, and circulation concentration using a reverse osmosis device is performed. When the concentration of the intermediate concentrate reaches the desired concentration or higher, the line is switched from f to g again and the electrodialysis process is restarted, but at this time,
The concentration of the residual liquid remaining on the concentrating side 6b of the electrodialysis apparatus decreases due to diffusion and equalization during the operation stop time, and if the treatment is continued as it is, the overall concentration of the final concentrated liquid will decrease significantly. Therefore, in the present invention, this residual liquid is
through and returned to the reverse osmosis feed tank 2a. This return method is usually to send the diluted concentrate to line j using a pump in line i. It is also conceivable to send the concentrated liquid 6b to line k using the pump in line h when the operation is stopped. This can prevent a decrease in the concentration of the finally obtained concentrate to some extent. However, this was not sufficient, and the salt concentration of the reverse osmosis-treated intermediate concentrate supplied to the electrodialysis treatment equipment was increased from 30 g/1 to 50 g/! By doing this, the concentration of the electrodialyzed concentrate is reduced to the required 200 g.
/J (Na2504).

ここの50g/J  (Na 2 S04 )とは、本
発明の逆浸透処理装置2段カスケードによって得られる
透過液塩4度が、2 q、/1以下を確保するための第
1段逆浸透処理濃縮液のa線上限値である。電気透析処
理に関しては、30g/j以上であれば何ら問題ない。
50 g/J (Na 2 S04) here refers to the first stage reverse osmosis treatment to ensure that the permeate salt concentration obtained by the two-stage cascade of reverse osmosis treatment equipment of the present invention is 2 q, /1 or less. This is the upper limit of the a-line of the concentrated liquid. Regarding electrodialysis treatment, there is no problem as long as it is 30 g/j or more.

この運転によって、最終的に得られる濃縮液の濃度低下
が防止される。
This operation prevents the concentration of the finally obtained concentrate from decreasing.

[実施例] 次に本発明を実施例等によって説明する。[Example] Next, the present invention will be explained by examples and the like.

実施例1〜2 Na2SO4濃度が0.5g/ Jと20 g/ Jで
液温25℃の廃液について、第1図に従って、精密濾過
処理、逆浸透処理および電気透析処理を前述した半回分
処理方法によって行なった。この処理において、第1段
逆浸透装置の処理量は2.8m!/hrで、使用した逆
浸透膜はHR−8355X 1とHR−5355X 2
 (それぞれ東洋紡績社製)であり、第2段逆浸透装置
の処理量は0.877+!/hrで、使用した逆浸透膜
はHR−5255X 2 (東洋紡績社製)であった。
Examples 1-2 For waste liquids with Na2SO4 concentrations of 0.5 g/J and 20 g/J and a liquid temperature of 25°C, microfiltration treatment, reverse osmosis treatment, and electrodialysis treatment were performed in accordance with Fig. 1 in the semi-batch treatment method described above. It was done by In this process, the throughput of the first stage reverse osmosis equipment is 2.8m! /hr, and the reverse osmosis membranes used were HR-8355X 1 and HR-5355X 2.
(each manufactured by Toyobo Co., Ltd.), and the throughput of the second stage reverse osmosis device is 0.877+! /hr, and the reverse osmosis membrane used was HR-5255X 2 (manufactured by Toyobo Co., Ltd.).

また電気透析装置の供給液および′aM液流量は、1.
8i/hrで、電気透析膜はカチオン膜であるアシブレ
ックスに−101とアニオン膜であるアシブレックスA
−201(それぞれ旭化成社製)を360枚使用した。
In addition, the flow rate of the supply liquid and 'aM liquid of the electrodialyzer is 1.
At 8 i/hr, the electrodialysis membranes were Acibrex -101, a cationic membrane, and Acibrex A, an anionic membrane.
-201 (each manufactured by Asahi Kasei Corporation), 360 sheets were used.

第1段逆浸透処理装置で廃液を50 g/ J(Na 
2 S04 )まで濃縮した後、電気透析処理に供給す
る。この処理においては、電気透析処理の再開時に電気
透析装置の濃縮液側に残存する残留液は、第1段逆浸透
供給液タンクに戻した。
In the first stage reverse osmosis treatment equipment, the waste liquid is treated at 50 g/J (Na
2 S04 ) and then fed to electrodialysis treatment. In this process, the residual liquid remaining on the concentrate side of the electrodialyzer when the electrodialysis process was restarted was returned to the first stage reverse osmosis feed tank.

第1段逆浸透処理からの供給液塩濃度が30 g/ J
(Na2SO4)に低下するまで、電気透析処理装置に
供給した。
Feed solution salt concentration from the first stage reverse osmosis treatment is 30 g/J
(Na2SO4) was supplied to the electrodialysis treatment apparatus.

この際の6液の塩濃度、停止時間、処理時間等を第1表
に示す。
Table 1 shows the salt concentration, stopping time, processing time, etc. of the six solutions at this time.

比較例1〜2 Na2SO4濃度が5g/jと208/ Jで液温25
℃の廃液について、第1図に従って、精密濾過処理、逆
浸透処理および電気透析処理を前述した半回分処理方法
によって、実施例1〜2と同様に行なった。
Comparative Examples 1 to 2 Na2SO4 concentration is 5 g/J and 208/J, liquid temperature is 25
C. The waste liquid was subjected to microfiltration treatment, reverse osmosis treatment and electrodialysis treatment in the same manner as in Examples 1 and 2 using the semi-batch treatment method described above according to FIG.

第1段逆浸透処理装置から電気透析処理装置に供給する
条件としては、30g/j (Na 2 S04 )の
−点制御とし、電気透析処理の再開時には、濃縮液側に
残存する残留液はそのままの状態とした。
The conditions for supplying from the first stage reverse osmosis treatment device to the electrodialysis treatment device are - point control of 30 g/j (Na 2 S04), and when the electrodialysis treatment is restarted, the residual liquid remaining on the concentrate side is left as is. The state of

この際の6液の塩濃度、停止時間、処理時間等を第1表
に示す。
Table 1 shows the salt concentration, stopping time, processing time, etc. of the six solutions at this time.

第1表に示されるように、本発明の運転方法によって、
高い濃度の濃縮液が得られる。特にシステム供給塩濃度
(ラインa)が低い場合は効果が顕著である。
As shown in Table 1, by the operating method of the present invention,
A highly concentrated concentrate is obtained. The effect is particularly significant when the system supply salt concentration (line a) is low.

[発明の効果コ 以上説明したように、本発明の運転方法によって、電気
透析処理による濃縮が極めて効率的に行なわれ、高濃度
の濃縮液が得られる。また、蒸発tn縮と比較して省エ
ネルギーとなり、さらに被曝の危険性が約115程度に
低減される等の効果も有する。
[Effects of the Invention] As explained above, by the operating method of the present invention, concentration by electrodialysis treatment is performed extremely efficiently, and a highly concentrated concentrate can be obtained. Furthermore, compared to evaporation tn-condensation, it saves energy and has the effect of reducing the risk of exposure to radiation to about 115%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の運転方法の一実施例を示す概略図、 1 : a 3 : 4 : 5 : 精密濾過装置1 .2b:逆浸透供給液タンク、 第1段逆浸透装置、 第2段逆浸透装置、 電気透析供給液タンク、 6:電気透析装置 (6a:供給液側、6b:I給液側)、7:電気透析濃
縮液タンク、 a〜jニライン。
FIG. 1 is a schematic diagram showing an embodiment of the operating method of the present invention. 1:a3:4:5:Precision filtration device1. 2b: reverse osmosis feed liquid tank, first stage reverse osmosis device, second stage reverse osmosis device, electrodialysis feed liquid tank, 6: electrodialysis device (6a: feed liquid side, 6b: I liquid supply side), 7: Electrodialysis concentrate tank, a-j Niline.

Claims (1)

【特許請求の範囲】 1、放射性廃液を、精密濾過膜と逆浸透膜と電気透析膜
とを用いて半回分式処理方式で濃縮するシステムであっ
て、逆浸透処理で塩濃度が許容値まで濃縮させた液を電
気透析処理に供給するとともに、電気透析膜を用いた電
気透析装置の運転開始前に、該電気透析装置の濃縮液側
に残存する残留液を逆浸透装置の供給液タンクに戻すこ
と、および逆浸透処理での濃縮液塩濃度が所定値になる
まで電気透析処理に供給を続け濃縮処理を行なうことを
特徴とする廃液濃縮システムの運転方法。 2、前記放射性廃液が硫酸ナトリウムを 主成分とする溶液であり、逆浸透処理許容値が50g/
l(Na_2SO_4)、所定値が30g/l(Na_
2SO_4)である特許請求の範囲第1項記載の廃液濃
縮システムの運転方法。
[Claims] 1. A system for concentrating radioactive waste liquid using a semi-batch treatment method using a precision filtration membrane, a reverse osmosis membrane, and an electrodialysis membrane, wherein the salt concentration is reduced to an allowable value by reverse osmosis treatment. In addition to supplying the concentrated liquid to the electrodialysis process, before starting the operation of the electrodialysis apparatus using an electrodialysis membrane, the residual liquid remaining on the concentrated liquid side of the electrodialysis apparatus is transferred to the supply liquid tank of the reverse osmosis apparatus. 1. A method for operating a waste liquid concentration system, comprising: returning the concentrated liquid to the electrodialysis process, and continuing supply to the electrodialysis process until the salt concentration of the concentrated liquid in the reverse osmosis process reaches a predetermined value, thereby performing the concentration process. 2. The radioactive waste liquid is a solution whose main component is sodium sulfate, and the allowable value for reverse osmosis treatment is 50 g/
l(Na_2SO_4), the predetermined value is 30g/l(Na_
2SO_4) A method for operating a waste liquid concentration system according to claim 1.
JP29635188A 1988-11-25 1988-11-25 Operating method for waste liquid concentration system Pending JPH02143198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29635188A JPH02143198A (en) 1988-11-25 1988-11-25 Operating method for waste liquid concentration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29635188A JPH02143198A (en) 1988-11-25 1988-11-25 Operating method for waste liquid concentration system

Publications (1)

Publication Number Publication Date
JPH02143198A true JPH02143198A (en) 1990-06-01

Family

ID=17832429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29635188A Pending JPH02143198A (en) 1988-11-25 1988-11-25 Operating method for waste liquid concentration system

Country Status (1)

Country Link
JP (1) JPH02143198A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
JP2015169523A (en) * 2014-03-06 2015-09-28 三菱重工業株式会社 Seawater strontium recovery apparatus and seawater strontium recovery method
US10457573B2 (en) 2014-01-09 2019-10-29 Tsinghua University Method and apparatus for processing radioactive wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
US10457573B2 (en) 2014-01-09 2019-10-29 Tsinghua University Method and apparatus for processing radioactive wastewater
JP2015169523A (en) * 2014-03-06 2015-09-28 三菱重工業株式会社 Seawater strontium recovery apparatus and seawater strontium recovery method

Similar Documents

Publication Publication Date Title
CN105384300B (en) A kind of method of multistage electrically-driven ion film process high slat-containing wastewater
CA2264619C (en) Method and apparatus for high efficiency reverse osmosis operation
CN105000737B (en) A kind of Industrial sewage treatment system and sewage water treatment method
EP2374761A2 (en) Zero liquid discharge water treatment system and method
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
CN203768159U (en) Small seawater desalination device
CN110002652A (en) Reclaiming system and process flow is concentrated in acid-bearing wastewater
WO1997018166A2 (en) Direct osmotic concentration contaminated water
KR101816340B1 (en) Apparatus for treating radioactive waste with multi-membrane
SI9110558A (en) Process for separating water from a diluted aqueous solution of n-methylmorphine-n-oxide, n-methylomorphine and/or morpholine
JPH02143198A (en) Operating method for waste liquid concentration system
CN107098526A (en) The film concentrator and handling process of strong brine zero-emission sub-prime crystallization
JPS63100996A (en) Method for desalting brine
WO2020264012A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
CN207404983U (en) A kind of boiler feedwater treatment device for being related to Treated sewage reusing
CN218435031U (en) Metal surface treatment liquid recycling system
JPH0240220A (en) Pure water producing device
JPS60190298A (en) Preparation of ultra-pure water
JPH0568974A (en) Treatment of boric acid-containing solution
JP3637458B2 (en) Ammonia nitrogen removal method
JPH09294974A (en) Water treatment apparatus
Yurchevskii et al. Computational–experimental verification of technologies of utilization of the concentrate formed in the reverse-osmosis water demineralization cycle
Mavrov et al. Desalination of surface water to industrial water with lower impact on the environment. Part 1: New technological concept
JP3202887B2 (en) Wastewater recovery method
CN109534583A (en) High-salt wastewater concentration systems and method