JPH02143167A - Flow velocity vector display system - Google Patents

Flow velocity vector display system

Info

Publication number
JPH02143167A
JPH02143167A JP29728288A JP29728288A JPH02143167A JP H02143167 A JPH02143167 A JP H02143167A JP 29728288 A JP29728288 A JP 29728288A JP 29728288 A JP29728288 A JP 29728288A JP H02143167 A JPH02143167 A JP H02143167A
Authority
JP
Japan
Prior art keywords
vector
plane
flow velocity
projection
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29728288A
Other languages
Japanese (ja)
Inventor
Toru Kawakami
亨 川上
Norihide Arakane
仙英 荒金
Toshinao Tsutsui
利尚 筒井
Yoko Ishida
陽子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP29728288A priority Critical patent/JPH02143167A/en
Publication of JPH02143167A publication Critical patent/JPH02143167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To display a three-dimensional flow velocity vector distribution in an easily understandable manner by displaying a flow velocity vector on a plane of projection and displaying the flow velocity component in the direction perpendicular to the projection surface as well by a different system. CONSTITUTION:The flow velocity vector V is displayed in various densities as the two-dimensional vector Vxy the X-Y surface of which is used as the plane of projection. The vector component Vz perpendicular to the X-Y surface is displayed simultaneously with the vector Vxy by the system different from the system for the vector Vxy by the pale color, intermediate color, dark color, etc., respectively corresponding to the vector component Vz=0, the vector Vznot equal to 0, the vector Vxy. The three-dimensional flow velocity vector distribution is displayed in the easily understandable manner by this display.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流速ベクトル表示方式に関するものであり、
流体の各部における3次元的な流速ベクトルを平面上に
表示する用途に用いられるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flow velocity vector display method,
It is used for displaying three-dimensional flow velocity vectors in each part of a fluid on a plane.

[従来の技術] 従来、3次元的なベクトル分−平面上に表示する方式と
しては、第4図に示すように、3次元的なベクトルVを
X軸、Y軸、Z軸の3軸方向の各速度成分V x 、 
V y 、 V zに分解し、それらを斜視図で表す方
式が一般的である。また、第5図(a)、(b)に示す
ように、3次元的なベクトル■を任意の平面(例えばX
Y千面など)に投影した投影ベクトルVxyのみを表示
し、その面と垂直な方向の速度成分は別の面(例えばY
Z平面)への投影図によって表示する方式がある。
[Prior Art] Conventionally, as a method for displaying three-dimensional vectors on a plane, three-dimensional vectors V are displayed in the three-axis directions of the X-axis, Y-axis, and Z-axis, as shown in FIG. Each velocity component V x ,
A common method is to decompose it into V y and V z and represent them in a perspective view. Furthermore, as shown in FIGS. 5(a) and 5(b), the three-dimensional vector
Displays only the projected vector Vxy projected onto a plane (Y plane, etc.), and the velocity component in the direction perpendicular to that plane is displayed on another plane (for example, Y plane).
There is a method of displaying a projection view onto the Z plane).

[発明が解決しようとする課題] ところが、流体の各部における流速ベクトルの分布を表
示する場合には、第4図に示す表示方式では矢印が非常
に多くなり、見ずらいものになるという問題がある。ま
た、流速ベクトルが3軸の各成分■に、Vy、Vzに分
解されていると、任意の断面内における流れを主として
観察したいときには、その断面内における流れを頭の中
で合成することは容易ではなく、分かりにくい表示にな
るという問題がある。一方、第5図(a) 、 (b)
に示すように、任意の断面への投影ベクトルを表示する
方式は、その断面内での流速分布は非常に分かりやすく
、現在、実験計測や流れの数値解析結果を表示する場合
には、広く用いられている。しかしながら、この場合、
前記断面とは垂直な方向の速度成分は全く表記されてい
ないため、3次元的な流速分布を理解するには、前記断
面とは垂直な面についての投影図も併せて観察し、頭の
中で3次元的なベクトルを合成する必要があった。
[Problem to be Solved by the Invention] However, when displaying the distribution of flow velocity vectors in each part of the fluid, the display method shown in Fig. 4 has a problem in that the number of arrows becomes too large and it becomes difficult to see. be. Also, if the flow velocity vector is decomposed into three axes of components, Vy and Vz, when you want to mainly observe the flow within an arbitrary cross section, it is easy to synthesize the flow within that cross section in your head. Instead, there is a problem that the display becomes difficult to understand. On the other hand, Fig. 5 (a) and (b)
As shown in Figure 2, the method of displaying the projected vector onto an arbitrary cross section is very easy to understand the flow velocity distribution within that cross section, and is currently widely used when displaying the results of experimental measurements and numerical flow analysis. It is being However, in this case,
Velocity components in the direction perpendicular to the cross section are not shown at all, so in order to understand the three-dimensional flow velocity distribution, it is necessary to also observe the projection diagram of the plane perpendicular to the cross section and visualize it in your head. It was necessary to synthesize three-dimensional vectors.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、3次元的な流速分布を容易に理
解できるように表示できる流速ベクトル表示方式を提供
することにある。
The present invention has been made in view of these points, and an object thereof is to provide a flow velocity vector display method that can display a three-dimensional flow velocity distribution in an easily understandable manner.

[課題を解決するための手段] 本発明に係る流速ベクトル表示方式にあっては、上記の
課題を解決するために、第1図に示すように、3次元的
な流速ベクトルを任意の平面に投影した2次元的な投影
ベクトルを平面上に表示し、投影面とは垂直な方向の速
度成分を投影面内の速度成分とは区別して同一面上に表
示することを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the flow velocity vector display method according to the present invention displays a three-dimensional flow velocity vector on an arbitrary plane, as shown in FIG. It is characterized by displaying the projected two-dimensional projection vector on a plane, and displaying the velocity component in the direction perpendicular to the projection plane on the same plane, distinguishing it from the velocity component within the projection plane. .

投影面とは垂直な方向の速度成分を投影面内の速度成分
と区別する方式としては、例えば、投影ベクトルの線分
又は矢印の色調、濃淡又は太さ、若しくは矢印の大きさ
又は開き角度で区別する方式がある。また、投影ベクト
ルとは色調又は線種の異なるベクトルで表示しても良い
Methods for distinguishing velocity components in a direction perpendicular to the projection plane from velocity components within the projection plane include, for example, the color tone, shading, or thickness of the projection vector line segment or arrow, or the size or opening angle of the arrow. There is a way to differentiate. Further, the projection vector may be displayed using a vector different in color tone or line type.

[作用] 本発明にあっては、このように、流体の3次元的な流れ
を表示する際に、主に観察したい平面内の流れをその面
内への流速ベクトルの投影で表し、投影面とは垂直な方
向の速度成分を投影面内の速度成分とは区別して同一面
上に表示しているので、任意の平面内の流れの様子を観
察しつつも3次元的な流れを理解することができる。
[Operation] In this way, in the present invention, when displaying a three-dimensional flow of fluid, the flow in a plane to be observed is mainly expressed by projecting the flow velocity vector into that plane, and the projection plane is Because the velocity component in the perpendicular direction is distinguished from the velocity component in the projection plane and displayed on the same plane, it is possible to understand the three-dimensional flow while observing the flow in any plane. be able to.

〔実施例] ylc1図は本発明の一実施例を示す説明図である。〔Example] Figure ylc1 is an explanatory diagram showing one embodiment of the present invention.

本実施例にあっては、3次元的なベクトルVを任意の平
面(例えばXY平面など)に投影した投影ベクトルVx
yを表示し、その面と垂直な方向の速度成分Vzは投影
ベクトルVxyの濃淡で表示している。第1図の右側に
併記したように、Vz≦−1゜5、 1.5<Vz<=
0.5、−〇、5≦Vz≦+0.5、+0.5<Vz<
+1..5、+1.5≦Vzの各場合に応じて、投影ベ
クトルVxyの濃淡が異なる。ここでは、投影ベクトル
Vxyが塗り潰した線であるので、Z軸方向の速度成分
Vzは+1.5以上であることが分かる。
In this embodiment, a projection vector Vx is obtained by projecting a three-dimensional vector V onto an arbitrary plane (for example, an XY plane).
y is displayed, and the velocity component Vz in the direction perpendicular to that plane is displayed as the shading of the projection vector Vxy. As shown on the right side of Figure 1, Vz≦-1°5, 1.5<Vz<=
0.5, -〇, 5≦Vz≦+0.5, +0.5<Vz<
+1. .. 5. The shading of the projection vector Vxy differs depending on each case of +1.5≦Vz. Here, since the projection vector Vxy is a filled line, it can be seen that the velocity component Vz in the Z-axis direction is +1.5 or more.

第2図は本発明の他の実施例を示す説明図である0本実
施例にあっては、投影ベクトルVxyの基端部分を速度
成分Vz=Oに対応する濃度とし、投影ベクトルVxy
の先端部分をその投影ベクトルVxy自体の速度に対応
する濃度とし、投影ベクトルVxyの中間部分を垂直方
向の速度成分Vzの速度に対応する濃度とする。このよ
うにすれば、先端部分に対する中間部分の濃度比を観察
することにより、3次元的なベクトルVをZ軸に投影し
たベクトルの長さを、投影ベクトルVxyの長さに対す
る比率として把握することができる。
FIG. 2 is an explanatory diagram showing another embodiment of the present invention. In this embodiment, the proximal end portion of the projection vector Vxy has a density corresponding to the velocity component Vz=O, and the projection vector Vxy
The leading end of the projection vector Vxy has a density corresponding to the velocity of the projection vector Vxy itself, and the middle part of the projection vector Vxy has a density corresponding to the velocity of the vertical velocity component Vz. In this way, by observing the density ratio of the middle part to the tip part, the length of the vector obtained by projecting the three-dimensional vector V onto the Z axis can be grasped as the ratio to the length of the projected vector Vxy. Can be done.

なお、第1図及び第2図では、垂直方向の速度成分Vz
を投影ベクトルVxyの線分の濃淡で表示しているが、
この他に、ベクトルを構成する線分又は矢印の色調や太
さ又は矢印の大きさや開き角度で表示することもできる
In addition, in FIGS. 1 and 2, the vertical velocity component Vz
is displayed by the shading of the line segment of the projection vector Vxy,
In addition, it is also possible to display the color tone and thickness of the line segments or arrows that make up the vector, or the size and opening angle of the arrows.

第3図は本発明のさらに他の実施例を示す説明図である
0本実施例では、3次元的なベクトル■を任意の平面(
例えばXY平面など)に投影した投影ベクトルVxyを
表示し、その面と垂直な方向の速度成分は投影ベクトル
Vxyとは垂直なベクトルVzの長さで表示している。
FIG. 3 is an explanatory diagram showing still another embodiment of the present invention. In this embodiment, a three-dimensional vector
For example, a projection vector Vxy projected onto an XY plane) is displayed, and a velocity component in a direction perpendicular to the plane is displayed as the length of a vector Vz perpendicular to the projection vector Vxy.

投影ベクトル■にyと垂直方向のベクトルVzとは、色
調又は線種等を変えることにより区別することができる
The projection vector y and the vertical vector Vz can be distinguished by changing the color tone or line type.

[発明の効果] 本発明によれば、3次元的な流速ベクトルを任意の平面
に投影し、投影ベクトルによりその平面内の流れをi察
可能とすると共に、前記平面とは垂直な方向の速度成分
を同一平面内に表示するようにしたので、前記平面内の
流れをvi察しながら流速ベクトルを3次元的に把握す
ることができるという効果がある。
[Effects of the Invention] According to the present invention, a three-dimensional flow velocity vector is projected onto an arbitrary plane, and the flow within the plane can be detected by the projected vector, and the velocity in a direction perpendicular to the plane can be detected. Since the components are displayed in the same plane, there is an effect that the flow velocity vector can be grasped three-dimensionally while observing the flow in the plane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は本発明の
他の実施例の説明図、第3図は本発明のさらに他の実施
例の説明図、第4図は従来例の説明図、第5図(a) 
、 (b)は他の従来例の説明図である。 ■は流速ベクトル、vxyは投影ベクトルである。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of another embodiment of the present invention, Fig. 3 is an explanatory diagram of yet another embodiment of the invention, and Fig. 4 is an explanatory diagram of a conventional embodiment. Example illustration, Figure 5(a)
, (b) is an explanatory diagram of another conventional example. (2) is a flow velocity vector, and vxy is a projection vector.

Claims (3)

【特許請求の範囲】[Claims] (1) 3次元的な流速ベクトルを任意の平面に投影し
た2次元的な投影ベクトルを平面上に表示し、投影面と
は垂直な方向の速度成分を投影面内の速度成分とは区別
して同一面上に表示することを特徴とする流速ベクトル
表示方式。
(1) A two-dimensional projection vector obtained by projecting a three-dimensional flow velocity vector onto an arbitrary plane is displayed on the plane, and the velocity component in the direction perpendicular to the projection plane is distinguished from the velocity component within the projection plane. A flow velocity vector display method characterized by displaying them on the same plane.
(2) 投影面とは垂直な方向の速度成分における速度
の大きさを、投影ベクトルの線分又は矢印の色調、濃淡
又は太さ、若しくは矢印の大きさ又は開き角度で表示す
ることを特徴とする請求項1記載の流速ベクトル表示方
式。
(2) It is characterized by displaying the magnitude of the velocity in the velocity component in the direction perpendicular to the projection plane by the color tone, shading or thickness of the line segment of the projection vector or the arrow, or the size or opening angle of the arrow. 2. The flow velocity vector display method according to claim 1.
(3) 投影面とは垂直な方向の速度成分における速度
の大きさを、投影ベクトルとは色調又は線種の異なるベ
クトルで表示することを特徴とする請求項1記載の流速
ベクトル表示方式。
(3) The flow velocity vector display method according to claim 1, wherein the magnitude of velocity in a velocity component in a direction perpendicular to the projection plane is displayed as a vector having a different color tone or line type from the projection vector.
JP29728288A 1988-11-25 1988-11-25 Flow velocity vector display system Pending JPH02143167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29728288A JPH02143167A (en) 1988-11-25 1988-11-25 Flow velocity vector display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29728288A JPH02143167A (en) 1988-11-25 1988-11-25 Flow velocity vector display system

Publications (1)

Publication Number Publication Date
JPH02143167A true JPH02143167A (en) 1990-06-01

Family

ID=17844502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29728288A Pending JPH02143167A (en) 1988-11-25 1988-11-25 Flow velocity vector display system

Country Status (1)

Country Link
JP (1) JPH02143167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730384B2 (en) 2017-09-19 2023-08-22 Fujifilm Corporation Fluid analysis apparatus, method for operating fluid analysis apparatus, and fluid analysis program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730384B2 (en) 2017-09-19 2023-08-22 Fujifilm Corporation Fluid analysis apparatus, method for operating fluid analysis apparatus, and fluid analysis program

Similar Documents

Publication Publication Date Title
US4855939A (en) 3D Dimensioning in computer aided drafting
Lombardo et al. Real-time collision detection for virtual surgery
ATE201520T1 (en) METHOD AND APPARATUS FOR DISPLAYING AT LEAST A PART OF THE HUMAN BODY WITH A MODIFIED APPEARANCE
CN100429676C (en) Interactive controlling method for selecting 3-D image body reconstructive partial body
KR950024108A (en) Texture mapping method and device
EP0714057B1 (en) Method and apparatus for displaying a cursor along a two dimensional representation of a computer generated three dimensional surface
JPS5998277A (en) Design system
JPH02143167A (en) Flow velocity vector display system
US5418712A (en) Manipulation performance evaluating apparatus for evaluating manipulation performance of a commodity having operating parts
JPH04128877A (en) Crt display device
Baba et al. Computer-aided stereographic representation of an object reconstructed from micrographs of serial thin sections
JP3011254B2 (en) 3D measuring instrument with unlimited measurement range
JPS62137038A (en) Three-dimensional display apparatus
JPH0973476A (en) Three-dimensional shape information input device
EP0364243A2 (en) Three-dimensional geometry processing method and apparatus therefor
JPH09258954A (en) Cursor for three-dimensional display
EP0530364A4 (en) Interactive numerical controller.
JP2000113214A (en) Method for processing polygon data
Beecher Computer graphics and shape diagnostics
Yamashita et al. An interactive observation tool for time-varying physical values distributed in 3D fields
JPH01320583A (en) Plotting editor
JP2616132B2 (en) Image display device
JPH07141525A (en) Method and device for three-dimensional image generation
JPS5931707B2 (en) How to display pattern occurrence
JPS63211070A (en) Display device for structure analysis and calculation result