JPH02143060A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH02143060A
JPH02143060A JP29603888A JP29603888A JPH02143060A JP H02143060 A JPH02143060 A JP H02143060A JP 29603888 A JP29603888 A JP 29603888A JP 29603888 A JP29603888 A JP 29603888A JP H02143060 A JPH02143060 A JP H02143060A
Authority
JP
Japan
Prior art keywords
compressor
latent heat
heat storage
storage material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29603888A
Other languages
Japanese (ja)
Inventor
Takashi Masuda
隆司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29603888A priority Critical patent/JPH02143060A/en
Publication of JPH02143060A publication Critical patent/JPH02143060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve a start up performance when a heating operation is started as well as a performance of defrosting operation by a method wherein material capable of setting a melting temperature of a latent heat accumulative material thermally contacting with a compressor slightly lower than a temperature of the compressor when a heating operation is stabilized is used and the material is melted when the heating operation is stabilized to store heat, a latent heat is released when the operation is stopped so as to prevent a temperature of the compressor from being decreased. CONSTITUTION:As a melting temperature of a latent heat accumulation material 7 thermally contacted with a compressor 1 is selected to have a temperature slightly lower than that of a compressor 1 when a heating operation is stabilized, the latent heat accumulation material 7 is melted to keep the heat accumulated state when the heating operation is stabilized. When the heating operation is stopped, the compressor 1 is prohibited from being decreased at its temperature due to a release of condensing latent heat of the latent heat accumulation material 7 and the temperature of the compressor 1 is higher than a surrounding atmosphere temperature when the next heating operation is started and the compressor 1 is started at that higher temperature, so that a perforamnce of the compresor when the heating operation is started is improved. In addition to a thermal capacity of the compressor 1, a soldifying latent heat of the latent heat accumulation material 7 can be utilized, so that it is possible to shorten a defrosting time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ヒートポンプ式空気調和機に係り、特に、暖
房運転始動時の性能向上、除霜運転の性能向上に好適な
ヒートポンプ式空気調和機に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat pump type air conditioner, and particularly to a heat pump type air conditioner suitable for improving performance at the start of heating operation and improving performance in defrosting operation. It is related to.

[従来の技術] 従来のヒートポンプ式空気調和機は1例えば。[Conventional technology] One example is a conventional heat pump air conditioner.

特開昭60−140053号公報に記載のように。As described in JP-A-60-140053.

圧縮機、室内側熱交換器、室外側熱交換器、蓄熱槽等の
機器を、四方弁、複数個の電磁弁、減圧機端、逆止弁等
を具備する冷媒配管系により接続して、四方弁、電磁弁
を切換えることにより、通常の冷房運転、暖房運転の外
に、暖房のための蓄熱運転、蓄熱槽から吸熱する暖房運
転、除霜運転を行うものである。
Equipment such as a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a heat storage tank are connected by a refrigerant piping system equipped with a four-way valve, multiple solenoid valves, a pressure reducer end, a check valve, etc. By switching the four-way valve and the solenoid valve, in addition to normal cooling and heating operations, heat storage operation for heating, heating operation that absorbs heat from the heat storage tank, and defrosting operation are performed.

[発明が解決すようとする課題] 上記従来技術を第3図を参照して説明する。[Problem to be solved by the invention] The above conventional technique will be explained with reference to FIG.

第3図は、従来の蓄熱槽を有するヒートポンプ式空気調
和機の冷凍サイクル系統図である。
FIG. 3 is a refrigeration cycle system diagram of a conventional heat pump type air conditioner having a heat storage tank.

第3図において、1は圧縮機、2は四方弁、3は室内側
熱交換器、4は室外側熱交換器、5a。
In FIG. 3, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an outdoor heat exchanger, and 5a.

5bは減圧機構、6はアキュムレータ、9a〜9gはf
fi磁弁である。
5b is a pressure reducing mechanism, 6 is an accumulator, 9a to 9g are f
It is a fi solenoid valve.

暖房のための蓄熱運転を行う際は、電磁弁9d。When performing heat storage operation for heating, use the solenoid valve 9d.

9e、9fを開き、電磁弁9a、9b、9c、9gを閉
じることにより、圧縮機1から吐出した電圧ガス冷媒を
蓄熱槽10に導き、冷媒の凝縮潜熱により該蓄熱槽10
を加熱し減圧機構5bにより低圧液冷媒を発生させて、
室外側熱交換器4により外気から蒸発潜熱を吸熱して低
圧ガス冷媒となり圧縮機1に吸入する。
By opening valves 9e and 9f and closing electromagnetic valves 9a, 9b, 9c, and 9g, the voltage gas refrigerant discharged from the compressor 1 is guided into the heat storage tank 10, and the heat storage tank 10 is heated by the latent heat of condensation of the refrigerant.
is heated and a low pressure liquid refrigerant is generated by the pressure reducing mechanism 5b,
The outdoor heat exchanger 4 absorbs the latent heat of vaporization from the outside air and turns it into a low-pressure gas refrigerant, which is sucked into the compressor 1.

蓄熱槽10から吸熱する暖房運転を行う際は、電磁弁9
a、9b、9d、9gを開き、電磁弁9c、9g、9f
を閉じることにより、圧縮機1から吐出した高圧ガス冷
媒を室内側交換器3に導き、冷媒の凝縮潜熱を室内空気
に放熱して暖房を行い。
When performing heating operation that absorbs heat from the heat storage tank 10, the solenoid valve 9
Open a, 9b, 9d, 9g, and open solenoid valves 9c, 9g, 9f.
By closing, the high-pressure gas refrigerant discharged from the compressor 1 is guided to the indoor exchanger 3, and the latent heat of condensation of the refrigerant is radiated to indoor air to perform heating.

液化した液冷媒を蓄熱槽10で加熱してガス冷媒として
圧縮機1に吸入する。
The liquefied liquid refrigerant is heated in a heat storage tank 10 and sucked into the compressor 1 as a gas refrigerant.

上述の如き運転により、暖房運転時の吸熱源を外気から
蓄熱槽10に変更することにより、高温吸熱が可能とな
り、暖房能力の増加を図ることができるが、冷凍サイク
ルの構成が複雑になることについて配慮されていなかっ
た。
By operating as described above, by changing the heat absorption source during heating operation from the outside air to the heat storage tank 10, high temperature heat absorption becomes possible and heating capacity can be increased, but the configuration of the refrigeration cycle becomes complicated. There was no consideration given to

蓄熱槽10から吸熱する運転時間を、暖房性能の向上に
顕著な効果を得るようにして1例えば暖房始動時の暖房
能力増加等に利用する場合には、蓄熱容量が増加して蓄
熱槽10が大形になる問題があった。
When the operating time for absorbing heat from the heat storage tank 10 is used to significantly improve heating performance, for example, to increase the heating capacity at the time of starting heating, the heat storage capacity increases and the heat storage tank 10 increases. There was a problem with the size.

本発明は、上記従来技術における課題を解決するために
なされたもので、簡単な冷凍サイクル構成で、暖房始動
時の性能と除霜性能を向上しうるヒートポンプ式空気調
和機を提供することを、その目的とするものである。
The present invention has been made in order to solve the problems in the prior art described above, and aims to provide a heat pump type air conditioner that can improve performance at heating startup and defrosting performance with a simple refrigeration cycle configuration. That is the purpose.

[課題を解決するための手段] 上記目的を達成するために1本発明に係るヒートポンプ
式空気調和機の構成は、圧縮機、四方弁、室内側熱交換
器、減圧機構、および室外側熱交換器を冷媒配管系で接
続してなるヒートポンプ式空気調和機において、上記圧
縮機に熱的に接触して潜熱蓄熱材を設け、この潜熱蓄熱
材の融解温度を。
[Means for Solving the Problems] In order to achieve the above object, a heat pump air conditioner according to the present invention includes a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger. In a heat pump type air conditioner, in which a latent heat storage material is provided in thermal contact with the compressor, and the melting temperature of the latent heat storage material is adjusted.

暖房運転安定時の圧縮機温度より低温度に設定したもの
である。
The temperature is set lower than the compressor temperature during stable heating operation.

[作用コ 圧縮機と熱的に接触した潜熱蓄熱材は、その融解温度を
、暖房運転安定時の圧縮機温度より若干低温に設定でき
る材料を使用することにより、暖房運転安定時に融解し
て蓄熱し、運転停止時に凝固し潜熱を放出して圧縮機の
温度低下を防止するので、暖房始動時の立上り性能と除
霜性能を向上させることができる。
[Operation] By using a material whose melting temperature can be set slightly lower than the compressor temperature when heating operation is stable, the latent heat storage material that is in thermal contact with the compressor can melt and store heat when heating operation is stable. However, when the operation is stopped, it solidifies and releases latent heat to prevent the temperature of the compressor from decreasing, so it is possible to improve the start-up performance and defrosting performance when heating is started.

[実施例] 以下1本発明の一実施例を第1図および第2図を参照し
て説明する。
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は1本発明の一実施例に係るヒートポンプ式空気
調和機の冷凍サイクル系統図、第2図は。
FIG. 1 is a refrigeration cycle system diagram of a heat pump type air conditioner according to an embodiment of the present invention, and FIG. 2 is a system diagram of a refrigeration cycle.

第1図の圧縮機の潜熱蓄熱材取付けの一例を示す構成図
である。第2図では、潜熱蓄熱材および断熱材部のみを
断面図として示した。
FIG. 2 is a configuration diagram showing an example of attaching a latent heat storage material to the compressor of FIG. 1; In FIG. 2, only the latent heat storage material and the heat insulating material portion are shown as a cross-sectional view.

第1図において、1は圧縮機、2は四方弁、3は室内側
熱交換器、4は室外側熱交換器、5は減圧機構、6はア
キュムレータ、7は、圧縮機1に熱的に接触して設けら
れた潜熱蓄熱材を示す。
In Fig. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an outdoor heat exchanger, 5 is a pressure reduction mechanism, 6 is an accumulator, and 7 is a thermal The latent heat storage material provided in contact is shown.

圧縮機部の詳細を第2図に示す。Details of the compressor section are shown in Figure 2.

第2図において、1は圧縮機で、この圧縮機1は、ここ
では図示しないが密閉容器内に電動機部と圧縮機構部と
を取納してなる密閉形電動圧縮機である。圧縮機構部は
、ロータリ式圧縮機でもスクロール式圧縮機でも、他の
往復動式圧縮機でもよい。
In FIG. 2, reference numeral 1 denotes a compressor. Although not shown here, the compressor 1 is a hermetic type electric compressor that houses an electric motor section and a compression mechanism section in a closed container. The compression mechanism may be a rotary compressor, a scroll compressor, or another reciprocating compressor.

7は潜熱蓄熱材で1例えばポリエチレングリコールが用
いられる。ポリエチレングリコールは。
7 is a latent heat storage material 1, for example, polyethylene glycol is used. polyethylene glycol.

一般に分子量が大きいものは融点が高く1分子量が小さ
いものは融点が低く、融点は35〜55℃程度の範囲の
ものが選択できる0本実施例では、潜熱蓄熱材7の融解
温度を暖房運転安定時の圧縮機1の温度(80〜90℃
)より低い1例えば融点55℃のポリエチレングリコー
ルを選定する。
In general, those with a large molecular weight have a high melting point, and those with a small molecular weight have a low melting point.Those with melting points in the range of 35 to 55°C can be selected.In this example, the melting temperature of the latent heat storage material 7 is set to stabilize heating operation. Temperature of compressor 1 (80~90℃
) Select a polyethylene glycol with a melting point lower than 1, for example 55°C.

潜熱蓄熱材7は、それ自体が伝熱容器に充填密封された
状態となっており蓄熱材の融解、凝固時に漏洩のない構
成となっている。
The latent heat storage material 7 itself is filled and sealed in a heat transfer container, so that there is no leakage when the heat storage material is melted or solidified.

8は、前記潜熱蓄熱材7を充填した状態で圧縮機1に取
付けた断熱材容器である。すなわち、潜熱蓄熱材7は圧
縮機1の密閉容器外周に接触し凝固潜熱を伝熱しうるよ
うに熱的に接触しており。
Reference numeral 8 denotes a heat insulating material container that is filled with the latent heat storage material 7 and is attached to the compressor 1. That is, the latent heat storage material 7 is in thermal contact with the outer periphery of the closed container of the compressor 1 so as to transfer latent heat of solidification.

その潜熱蓄熱材7を覆うように断熱材容器8が圧縮機1
に固定されていて外部への放熱を防いでいる。
A heat insulating material container 8 is placed on the compressor 1 so as to cover the latent heat storage material 7.
is fixed to prevent heat radiation to the outside.

上記のような構成のヒートポンプ式空気調和機の作用を
説明する。
The operation of the heat pump type air conditioner configured as above will be explained.

冷房運転時には、圧縮機1から吐出された高温高圧の冷
媒ガスは四方弁2により室外側熱交換器4に導かれ、外
気に凝縮潜熱を放出して高圧液冷媒となり、減圧機構5
を通過して低温低圧の液冷媒となり、室内側熱交換器3
により室内空気から蒸発潜熱を吸収して室内を冷房して
低圧ガス冷媒となり、四方弁2.アキュムレータ6を経
て圧縮機1に吸入される。
During cooling operation, high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is guided to the outdoor heat exchanger 4 by the four-way valve 2, releases latent heat of condensation to the outside air, becomes high-pressure liquid refrigerant, and is transferred to the pressure reducing mechanism 5.
The refrigerant becomes a low-temperature, low-pressure liquid refrigerant and enters the indoor heat exchanger 3.
absorbs the latent heat of vaporization from the indoor air and cools the room, turning it into a low-pressure gas refrigerant, and the four-way valve 2. It is sucked into the compressor 1 through the accumulator 6.

また、暖房運転時には、圧縮機1から吐出された高温高
圧の冷媒ガスは、四方弁2により室内側熱交換器3に導
かれ、室内空気に凝縮潜熱を放出して室内を暖房し高圧
液冷媒となる8液冷媒は。
In addition, during heating operation, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is guided to the indoor heat exchanger 3 by the four-way valve 2, and releases latent heat of condensation to the indoor air to heat the room. The 8-liquid refrigerant is

減圧機構5を通過して低温低圧の液冷媒となり。It passes through the pressure reducing mechanism 5 and becomes a low-temperature, low-pressure liquid refrigerant.

室外熱交換器4において外気から蒸発潜熱を吸収して低
圧ガス冷媒となり°、四方弁2、アキュムレータ6を経
て圧縮機1に吸入され、以下同じサイクルを繰り返す。
In the outdoor heat exchanger 4, the latent heat of vaporization is absorbed from the outside air to become a low-pressure gas refrigerant.The refrigerant is sucked into the compressor 1 via the four-way valve 2 and the accumulator 6, and the same cycle is repeated thereafter.

このような冷凍サイクルにおいて、圧縮機1と熱的に接
触した潜熱蓄熱材7の融解温度を暖房運転安定時の圧縮
機1の温度より若干低温に選定すると、暖房安定時には
潜熱蓄熱材7が融解して蓄熱状態を保持することが可能
である。
In such a refrigeration cycle, if the melting temperature of the latent heat storage material 7 in thermal contact with the compressor 1 is selected to be slightly lower than the temperature of the compressor 1 during stable heating operation, the latent heat storage material 7 will melt during stable heating operation. It is possible to maintain the heat storage state by

暖房運転を停止すると、圧縮機1は潜熱蓄熱材7の凝固
潜熱の放出により温度低下が阻止され、次の暖房運転始
動時には圧縮機1の温度は外気温より高い温度から運転
されるので、始動時の室内熱交換器3の冷媒凝縮潜熱の
放出の一部が圧縮機1の有する熱容量のための温度上昇
に費される程度が少なくなり、暖房始動時の性能を向上
させる。
When the heating operation is stopped, the temperature of the compressor 1 is prevented from decreasing due to the release of the solidification latent heat of the latent heat storage material 7, and when the next heating operation is started, the compressor 1 is operated from a temperature higher than the outside air temperature, so that the temperature of the compressor 1 is higher than the outside temperature. At this time, a portion of the latent heat of condensation of the refrigerant in the indoor heat exchanger 3 is used to increase the temperature due to the heat capacity of the compressor 1, and the performance at the time of starting heating is improved.

除′M運転時は、四方弁2を切換えることにより圧縮機
1から吐出した高温高圧ガス冷媒を室外側熱交換器4に
導き、該室外側熱交換器4に暖房運転時の吸熱作用で付
着した霜を融解するが、除霜運転時の加熱源は圧縮!!
!1の温度低下に伴う熱容量と消費電力、および室内側
熱交換器3の冷媒蒸発による吸熱であるため、本実施例
によれば圧縮機1の熱容量に加えて潜熱蓄熱材7の凝固
潜熱が利用できるので、除霜時間の短縮を図ることがで
きる。
During the non-M operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is guided to the outdoor heat exchanger 4 by switching the four-way valve 2, and the refrigerant adheres to the outdoor heat exchanger 4 due to heat absorption during the heating operation. The heating source during defrosting operation is compression! !
! According to this embodiment, in addition to the heat capacity of the compressor 1, the latent heat of solidification of the latent heat storage material 7 is used. Therefore, the defrosting time can be shortened.

圧縮機に潜熱蓄熱材を熱的に接触させる手段として、第
2図に示す例では、前述のように、圧縮機1の周囲に潜
熱蓄熱材7が接するように当該潜熱蓄熱材7を充填した
断熱材容器8を圧縮機1に取付けたものを示したが、本
発明はこれに限るものではない。図示しないが、圧縮機
の周囲に、それ自体が可撓性の伝熱容器に充填密封され
ている潜熱蓄熱材を腹巻き状に接触させて配置し、この
潜熱蓄熱材の外周を覆うように断熱部材を設けても実質
的に第2図の例と同様の効果が得られる。
As a means for bringing the latent heat storage material into thermal contact with the compressor, in the example shown in FIG. Although the heat insulating material container 8 is shown attached to the compressor 1, the present invention is not limited to this. Although not shown, a latent heat storage material, which is itself filled and sealed in a flexible heat transfer container, is placed around the compressor in contact with it in a wrap-around shape, and is insulated to cover the outer periphery of the latent heat storage material. Even if the member is provided, substantially the same effect as the example shown in FIG. 2 can be obtained.

なお、他の手段として5図示しないが、密閉形電動圧縮
機の外周部を二重ケースとして潜熱蓄熱材封入ジャケッ
トを形成し、当該ジャケットすなちわ二重ケース内空間
に潜熱蓄熱材を充填しても。
As another method (not shown in Figure 5), the outer periphery of the hermetic electric compressor is made into a double case to form a latent heat storage material enclosing jacket, and the space inside the jacket, that is, the double case, is filled with the latent heat storage material. Even if I do.

先の実施例と同様の効果が期待される。The same effects as in the previous embodiment are expected.

また、密閉形電動圧縮機の密閉容器内側に潜熱蓄熱材を
配置させることも可能であり、前述と同様の効果が期待
される。しかし、これら両手段は製作上また保守上から
みて必ずしも実用的とは言えない。
It is also possible to arrange a latent heat storage material inside the hermetic container of the hermetic electric compressor, and the same effects as described above are expected. However, both of these means are not necessarily practical from the viewpoint of manufacturing and maintenance.

[発明の効果コ 以上述べたように1本発明によれば、簡単な冷凍サイク
ル構成で、暖房始動時の性能と除霜性能を向上しうるヒ
ートポンプ式空気調和機を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a heat pump air conditioner with a simple refrigeration cycle configuration that can improve the performance at the time of starting heating and the defrosting performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係るヒートポンプ式空気
調和機の冷凍サイクル系統図、第2図は。 第1図の圧縮機の潜熱蓄熱材取付けの一例を示す構成図
、第3図は、従来の蓄熱櫂を有するヒートポンプ式空気
調和機の冷凍サイクル系統図である。 1・・・圧縮機、2・・・四方弁、3・・・室内側熱交
換器、4・・・室外側熱交換器、5・・・減圧機構、7
・・・潜熱蓄熱材、8・・・断熱材容器。
FIG. 1 is a refrigeration cycle system diagram of a heat pump air conditioner according to an embodiment of the present invention, and FIG. 2 is a system diagram of a refrigeration cycle. FIG. 1 is a configuration diagram showing an example of installing a latent heat storage material in a compressor, and FIG. 3 is a refrigeration cycle system diagram of a heat pump type air conditioner having a conventional heat storage paddle. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4... Outdoor heat exchanger, 5... Pressure reduction mechanism, 7
...Latent heat storage material, 8...Insulating material container.

Claims (1)

【特許請求の範囲】 1、圧縮機、四方弁、室内側熱交換器、減圧機構、およ
び室外側熱交換器を冷媒配管系で接続してなるヒートポ
ンプ式空気調和機において、上記圧縮機に熱的に接触し
て潜熱蓄熱材を設け、この潜熱蓄熱材の融解温度を、暖
房運転安定時の圧縮機温度より低温度に設定したことを
特徴とするヒートポンプ式空気調和機。 2、特許請求の範囲第1項記載のものにおいて、圧縮機
に潜熱蓄熱材を熱的に接触させる手段として、圧縮機の
周囲に潜熱蓄熱材が接するように当該潜熱蓄熱材を充填
した断熱材容器を取付けたことを特徴とするヒートポン
プ式空気調和機。 3、特許請求の範囲第1項記載のものにおいて、圧縮機
に潜熱蓄熱材を熱的に接触させる手段として、圧縮機の
周囲に潜熱蓄熱材を接するように設け、この潜熱蓄熱材
の外周を覆うように断熱部材を設けたことを特徴とする
ヒートポンプ式空気調和機。 4、密閉容器内に電動機部と圧縮機構部とを収納してな
る密閉形電動圧縮機において、前記密閉容器の周囲に潜
熱蓄熱材を接するように設け、この潜熱蓄熱材の外周を
覆うように断熱部材を設けたことを特徴とする密閉形電
動圧縮機。
[Scope of Claims] 1. A heat pump air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reduction mechanism, and an outdoor heat exchanger are connected through a refrigerant piping system, in which heat is supplied to the compressor. A heat pump type air conditioner characterized in that a latent heat storage material is provided in contact with the air conditioner, and the melting temperature of the latent heat storage material is set to be lower than the compressor temperature during stable heating operation. 2. In the thing described in claim 1, the means for bringing the latent heat storage material into thermal contact with the compressor is a heat insulating material filled with the latent heat storage material so that the latent heat storage material is in contact with the periphery of the compressor. A heat pump air conditioner characterized by having a container attached. 3. In the device described in claim 1, as means for bringing the latent heat storage material into thermal contact with the compressor, the latent heat storage material is provided around the compressor so as to be in contact with it, and the outer periphery of the latent heat storage material is A heat pump type air conditioner characterized by having a heat insulating member provided so as to cover it. 4. In a hermetic electric compressor in which a motor part and a compression mechanism part are housed in a hermetic container, a latent heat storage material is provided around the hermetic container so as to be in contact therewith, and the outer periphery of the latent heat storage material is covered. A hermetic electric compressor characterized by being equipped with a heat insulating member.
JP29603888A 1988-11-25 1988-11-25 Heat pump type air conditioner Pending JPH02143060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29603888A JPH02143060A (en) 1988-11-25 1988-11-25 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29603888A JPH02143060A (en) 1988-11-25 1988-11-25 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH02143060A true JPH02143060A (en) 1990-06-01

Family

ID=17828299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29603888A Pending JPH02143060A (en) 1988-11-25 1988-11-25 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH02143060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195002A (en) * 2012-03-21 2013-09-30 Panasonic Corp Vehicle air conditioner
JP2014102023A (en) * 2012-11-19 2014-06-05 Toshiba Corp Air conditioner and air conditioning system
JP2014102039A (en) * 2012-11-20 2014-06-05 Toshiba Corp Heat storage device and air conditioner
JP2014211283A (en) * 2013-04-19 2014-11-13 株式会社東芝 Refrigeration cycle device
JP2014211250A (en) * 2013-04-17 2014-11-13 株式会社東芝 Refrigeration cycle device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233266A (en) * 1987-03-20 1988-09-28 松下電器産業株式会社 Heat pump type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233266A (en) * 1987-03-20 1988-09-28 松下電器産業株式会社 Heat pump type air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195002A (en) * 2012-03-21 2013-09-30 Panasonic Corp Vehicle air conditioner
JP2014102023A (en) * 2012-11-19 2014-06-05 Toshiba Corp Air conditioner and air conditioning system
JP2014102039A (en) * 2012-11-20 2014-06-05 Toshiba Corp Heat storage device and air conditioner
JP2014211250A (en) * 2013-04-17 2014-11-13 株式会社東芝 Refrigeration cycle device
JP2014211283A (en) * 2013-04-19 2014-11-13 株式会社東芝 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
KR0176303B1 (en) Refrigerator and Condenser
WO1997007368A1 (en) Refrigerator with interior mounted heat pump
JPH02143060A (en) Heat pump type air conditioner
KR100431513B1 (en) regenerative air-conditioning unit using phase change material and method for thereof
JP3307915B2 (en) Cooling device
CN207572499U (en) A kind of device controlled in real time lithium dynamical battery temperature
JP3307803B2 (en) Cooling device
JPH08285437A (en) Compact cooling apparatus
CN101338753A (en) Compressor exhaust temperature control device and its control method and applications
JP2000111190A (en) Cooler
JP2005140412A (en) Refrigerator
KR200255162Y1 (en) regenerative air-conditioning unit using phase change material
JP2000329414A (en) Hybrid refrigerating machine
JPS63156980A (en) Heat pump type air conditioner
KR100330322B1 (en) Cooling Heat Reserving Type Airconditioner
JPS62223479A (en) Enclosed compressor
KR100279904B1 (en) Outdoor heat exchanger with condensate storage structure
JPH06241674A (en) Cold heat accumulative type cooling device at heat pipe condensing part
JPH0367959A (en) Air conditioner
JPH0573428U (en) Air conditioner
JPS5872853A (en) Absorption air conditioner
JPH0445673B2 (en)
JPH02183780A (en) Cooling and heating device
KR200238393Y1 (en) Ice storage regenerator using midnight electricity
JPS5941724A (en) Space heating device utilizing solar heat