JPH02142957A - Cam ring floating vane hydraulic pump-motor type transmission - Google Patents

Cam ring floating vane hydraulic pump-motor type transmission

Info

Publication number
JPH02142957A
JPH02142957A JP29488888A JP29488888A JPH02142957A JP H02142957 A JPH02142957 A JP H02142957A JP 29488888 A JP29488888 A JP 29488888A JP 29488888 A JP29488888 A JP 29488888A JP H02142957 A JPH02142957 A JP H02142957A
Authority
JP
Japan
Prior art keywords
cam ring
motor
pump
transmission
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29488888A
Other languages
Japanese (ja)
Inventor
Mitsuo Okamoto
岡本 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29488888A priority Critical patent/JPH02142957A/en
Publication of JPH02142957A publication Critical patent/JPH02142957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydraulic Motors (AREA)

Abstract

PURPOSE:To secure such a transmission that is high in transmission efficiency and large in a shift range by moving the turning center of a motor cam ring to both directions by means of a slide screw at the outside. CONSTITUTION:A motor cam ring 8 is inset in a slide block 13 and its turning center is made shiftable to both directions by a slide screw 14 at the outside. When turning effort is added to a rotor shaft 3 of a pump from the outside, hydraulic fluid is extruded to a motor from a high-pressure oil hole 16, and then it goes back from the motor by way of a low-pressure oil hole 15 and sucked in. At this time, a rotational direction of the motor is determined by a fact that whether a cam ring 8 is decentered to either side against a rotor shaft, and when eccentricity is the maximum, rotational speed is minimum but output torque becomes maximized. When this eccentricity is zero, output also comes to zero. Thus, such a transmission that is high transmission efficiency, large in a shift range and low in manufacturing cost is secured.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はエンジンの動力を中輪に伝達するのに、回転
速度を無段階に変速する油圧式1−ランスミッションに
関づる。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a hydraulic one-rance transmission that continuously changes the rotational speed to transmit engine power to the middle wheels.

(ロ)従来の技術 従来の車輌用トランスミッションには厚+?X )i1
人が大きい為、構造か簡単なベーン式油圧ポンプ・モー
タの機構は敬遠され、ピストンか往復動する斜軸、又は
斜板式油圧ポンプ・七−タ形か一トに使われている8作
動騒音か低く出力トルクか宥定し、長期間性能劣化が少
ないという勝れた特徴かおるにもかかわらすベーン方式
か使われイ【いの(、上上記の摩擦損失の問題が克服出
来ない為である。
(b) Conventional technology Does conventional vehicle transmission have a thickness of +? X) i1
Due to the large size of the person, the simple structure of the vane type hydraulic pump/motor mechanism is avoided, and a piston, a reciprocating oblique shaft, or a swash plate type hydraulic pump/seven-torque type or one type is used.8 Operating noise Despite its superior characteristics of low output torque and low long-term performance deterioration, the vane method is not used (this is because the above-mentioned problem of friction loss cannot be overcome). .

(ハ)発明か解決しようとする問題点 ベーン式の油圧ポンプ・モータ形の1〜ランスミツシ」
ンの欠点とされるベーンとカムリングの間の摩擦損失を
機構上大きな改造をぜず、従来のものの1/10以下に
押えることを特徴とする特許(ニ)問題を解決する為の
手段 この発明を図面にもとずいて説明すると次の通りである
。第1図は断面図を示す。1はポンプのローター 2は
モータのローターでおる。ポンプのハウジング5はモー
タのハウジング6に取付けられ、ポンプのローター軸3
とモータのローター軸4は同芯上にある。ポンプのカム
リング7にはベアリング9がはまっている。又モータの
カムリング8にもベアリング10かはまっていて、それ
ぞれ自由に回転出来る様になっている。ポンプのカムリ
ング7はハウジング5の中に直接納まっているか、モー
タのカムリング8はスライドブロック13の中にはめこ
まれる。そして外側のスライドネジ14によってカムリ
ング7の回転中心が左右に移動出来る構造にする。これ
はカムリング8がローター2の軸芯に対し偏芯する量を
調節する為の機構である6、ポンプのローター軸3に外
部から矢印の方向に回転力が加えられると、作動油が高
圧油孔16からモータへ押し出され、モータから低圧油
孔15を通って戻って来る作動油を吸入する。この時モ
ータのカムリング8かローター軸4に対し右に偏芯して
いるか、又は左に偏芯しているかて、その回転方向か決
る。即ら第5図(イ)の様に左に偏芯している時は左回
転、(ロ)の様に右に偏芯している時は右回転になる。
(c) Problems to be invented or solved Vane type hydraulic pump/motor type 1~Lance Mitsushi”
This invention is characterized by reducing the friction loss between the vane and the cam ring, which is said to be a drawback of the cam ring, to 1/10 or less of the conventional one without making any major mechanical modifications. The following is an explanation based on the drawings. FIG. 1 shows a cross-sectional view. 1 is the pump rotor and 2 is the motor rotor. The pump housing 5 is attached to the motor housing 6 and the pump rotor shaft 3
and the rotor shaft 4 of the motor are coaxial. A bearing 9 is fitted into the cam ring 7 of the pump. A bearing 10 is also fitted to the cam ring 8 of the motor, allowing each to rotate freely. The cam ring 7 of the pump is fitted directly into the housing 5, or the cam ring 8 of the motor is fitted into the slide block 13. The structure is such that the rotation center of the cam ring 7 can be moved from side to side by an outer slide screw 14. This is a mechanism for adjusting the amount of eccentricity of the cam ring 8 with respect to the axis of the rotor 2.6 When a rotational force is applied from the outside to the rotor shaft 3 of the pump in the direction of the arrow, the hydraulic oil changes to high-pressure oil. Hydraulic oil that is pushed out to the motor through the hole 16 and returned from the motor through the low pressure oil hole 15 is sucked in. At this time, the direction of rotation is determined by whether the cam ring 8 of the motor is eccentric to the right or to the left with respect to the rotor shaft 4. That is, when it is eccentric to the left as shown in Figure 5 (a), it rotates to the left, and when it is eccentric to the right as shown in Figure 5 (b), it rotates to the right.

スライドブロック13が中立の位置にある時、つまりカ
ムリング8とローター2の回転中心か重なって聞忘とな
った時にはローター2には回転力は発生しないのでモー
タの出力はゼロになり、作動油の通油回路は閉じた状態
になる。ローター2の回転速度はスライドブロック13
が最大偏芯位置にある時最低となり、中立位置に向うと
共に速くなる。又出力トルクは逆に小さくなる。回転方
向を逆転する場合はポンプを停止してモータへの送油を
止めるか、油圧をカットする必要がある。モータのロー
ター2か左回転している時はスライドブロック13は油
圧によって右方向に推力を受け、右回転している時は左
方向に推力を受けろ。その為、もしポンプを作動したま
まスライドブロック13を移動する時は油圧による堆力
の影響を受けるので、回転方向変換の為のスライドブロ
ック13の移動には、その推力の発生を押える必要があ
る。推力の抑制はポンプと七−タの間の油圧回路を短絡
してモータに油圧がかからない様にする。17は短絡開
閉弁で第4図に示す様に低圧油孔15と高圧油孔16と
の間を短絡する回路の開閉をハシ1ヘル18の操作によ
って行なう。
When the slide block 13 is in the neutral position, that is, when the rotation center of the cam ring 8 and the rotor 2 overlap, no rotational force is generated in the rotor 2, so the motor output becomes zero, and the hydraulic oil level decreases. The oil circuit is closed. The rotation speed of the rotor 2 is determined by the slide block 13.
It is at its lowest when it is at the maximum eccentric position, and becomes faster as it moves toward the neutral position. Moreover, the output torque becomes smaller. If the direction of rotation is to be reversed, it is necessary to stop the pump and stop the oil supply to the motor, or to cut off the hydraulic pressure. When the rotor 2 of the motor is rotating to the left, the slide block 13 receives a thrust to the right due to hydraulic pressure, and when it is rotating to the right, it receives a thrust to the left. Therefore, if the slide block 13 is moved while the pump is operating, it will be affected by the hydraulic force, so when moving the slide block 13 to change the direction of rotation, it is necessary to suppress the generation of thrust force. . Thrust is suppressed by short-circuiting the hydraulic circuit between the pump and the motor so that no hydraulic pressure is applied to the motor. Reference numeral 17 denotes a short-circuit opening/closing valve which, as shown in FIG.

作動油の回路がグ、0絡するとスライドブロック13に
は推力が発生しないので調節ねじ14によって容易に移
動することか出来る。従ってポンプの回転を停止せずに
モータの回転方向を逆転させるには、ハンドル18の操
作で油圧をカッ1〜し調節ねじ14によってスライドブ
ロック13を反対側に移動し再びハンドル18て短絡開
閉弁17を閉じるという手順を取る。
When the hydraulic oil circuit is closed, no thrust is generated in the slide block 13, so it can be easily moved using the adjusting screw 14. Therefore, in order to reverse the rotational direction of the motor without stopping the rotation of the pump, operate the handle 18 to reduce the hydraulic pressure, move the slide block 13 to the opposite side using the adjustment screw 14, and then use the handle 18 again to open the short-circuit on/off valve. Take the procedure of closing 17.

(ホ)作用 車両用トランスミッションに必要な機能はエンジンから
加えられる回転力の速度を変えられる変速機能、回転方
向を変えられる逆転機能、回転動力の伝達を断続するク
ラッチ機能の3つの機能である。この発明の装置は、ポ
ンプを駆動する回転速度が一定でおってもハンドル14
によるスライドブロック13の移動によってモータ側の
ローラー2の回転速度を無段階に変速出来る。カムリン
グ8の偏芯早か最大の時、回転速度は最低となり、出力
トルクは最大となる。スライドブロック13を調節ねじ
14によって中心側に移動1゛ると、それに伴なって回
転速度は上るが、出力トルクは小さくなる。つまり定1
呪力作動か出来る。短絡開閉弁17は、回転動力を断続
するクラッチ機能を備えている。
(E) Function The three functions required for a transmission for a vehicle are a speed change function that can change the speed of the rotational force applied from the engine, a reverse function that can change the direction of rotation, and a clutch function that connects and disconnects the transmission of rotational power. The device of the present invention has the advantage that even if the rotational speed for driving the pump is constant, the handle 14
By moving the slide block 13, the rotation speed of the roller 2 on the motor side can be varied steplessly. When the eccentricity of the cam ring 8 is early or maximum, the rotational speed is the lowest and the output torque is the highest. When the slide block 13 is moved toward the center by the adjusting screw 14, the rotational speed increases accordingly, but the output torque decreases. In other words, constant 1
It is possible to activate a spell. The short-circuit on-off valve 17 has a clutch function that cuts off and on the rotational power.

モータの出力軸4に9荷がかかっている時、類125開
閉弁17を開くと、作動油は油圧か上らなくなるので回
転動力は伝達されない。これはクラッチが外された状態
に等しい。短絡開閉弁17を閉じると油圧は上昇し、動
力の伝達が開始されろ。即らクラッチが連結されたのと
同じ状態になる。調節ねじ14によるスライドブロック
13の移!l1機構は回転速度調節機能の外にモータの
出力軸を逆転させるは構でもある。カムリング8の偏芯
早がゼロに近ずくと、ローター2の回転速度が高速にな
りポンプの吐出圧力か異常な高圧となり、作動が不支定
になるので逆転時には短絡開閉弁17によって回路の油
流を短絡して無夕i重の状態で逆転操作をする。
When a load is applied to the output shaft 4 of the motor, if the class 125 on-off valve 17 is opened, the hydraulic oil will no longer rise above the hydraulic pressure, so rotational power will not be transmitted. This is equivalent to the clutch being disengaged. When the short-circuit on-off valve 17 is closed, the oil pressure increases and power transmission begins. In other words, the state is the same as when the clutch is engaged. Moving the slide block 13 using the adjustment screw 14! In addition to the function of adjusting the rotational speed, the l1 mechanism also functions to reverse the output shaft of the motor. When the eccentricity of the cam ring 8 approaches zero, the rotational speed of the rotor 2 becomes high and the pump discharge pressure becomes abnormally high, making the operation unstable. During reverse rotation, the short-circuit on-off valve 17 shuts off the oil flow in the circuit. Short-circuit the power supply and perform a reverse operation without any interruption.

この操作は機械式トランスミッションのクラッチとチェ
ンジ操作の場合と同じであるが、短絡開閉弁17の開開
催作は緩急自在にコントロール出来るので、動力の断続
もl?i賊式クラッチより操作がしやすい。
This operation is the same as the clutch and change operation of a mechanical transmission, but since the opening/closing operation of the short-circuit on-off valve 17 can be controlled freely, slowly or quickly, the power can be switched on and off as well. Easier to operate than the i-type clutch.

(へ)実施例 第6図はポンプ側か可変容量形、モータ側が固定容量方
式の場合を示す。この場合はポンプ側の最大吐出量かモ
ータ側の固定容量とほぼ同じになる。これは車が高速運
転の状態にある時は、トランスミッションへの入力側と
、出力側との回転比かほぼ!:1になる為である。
(F) Embodiment FIG. 6 shows a case where the pump side is a variable displacement type and the motor side is a fixed displacement type. In this case, the maximum discharge amount on the pump side will be approximately the same as the fixed capacity on the motor side. This is approximately the rotation ratio between the input side to the transmission and the output side when the car is driving at high speed! : This is because it becomes 1.

ポンプ側の構造は第1図のモータ側の構造をそのまま使
い、モータ側の構造は第1図のポンプ側の構造をそのま
ま使う。従って速度調節用のスライド20はモータ側に
つくが、短絡開閉弁17その仙の門構は同じになる。
The pump side structure uses the motor side structure shown in FIG. 1 as is, and the motor side structure uses the pump side structure shown in FIG. 1 as it is. Therefore, the slide 20 for speed adjustment is placed on the motor side, but the gate structure of the short-circuit on-off valve 17 is the same.

(1へ〉効果 ベーン油圧ポンプ・七〜りの機構は非常にコンバクh 
’J F+’)計が出来る。そして従来この機M4の実
用化の最大の障害であったベーンとカムリングの闇の摩
擦1n失の問題か解決され、高速作動に耐えられる様に
なったので、エンジンの出力軸と直結することが可能に
なった。その為高い伝達効率と大ぎな変速範囲か19ら
れ、同じ機能を機械的方式で作る場合と比較すると、構
成部品数は1/10以下で成り立ち、製造コストを大き
く玉げることか可能になった。
(Go to 1) The mechanism of the effect vane hydraulic pump and seven is very compact.
'J F+') can be calculated. The problem of the loss of 1n of friction between the vane and cam ring, which was the biggest obstacle to the practical application of this machine M4, has been solved, and it has become able to withstand high-speed operation, so it can be directly connected to the output shaft of the engine. It's now possible. As a result, it has high transmission efficiency and a large shift range19, and compared to manufacturing the same function mechanically, the number of components can be reduced to less than 1/10, making it possible to significantly increase manufacturing costs. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縦断面図。第2図は、第1図のへ一へ面の断面
図。第3図は、第1図のB−B而の断面図。第4図は、
第′1図のC−C断面図。第5図(イ)と(ロ)はスラ
イドブロックが、ローターに対し左右に偏芯した場合の
位置関係を示V断面図。第6図は可変容量形ポンプと定
容量形七−タの組み合わせ断面図。 1、ポンプのローター 2.モータの1−ター3、ポン
プのローター[Nl 4.モータのローター@ 5.ポ
ンプのハウジング 6.モータのハウジング 7.ポン
プのカムリング 8.モータのカムリング 9.ポンプ
のベアリング 10モータのベアリング 11.ポンプ
のベーン 12゜モータのベーン 13.スライドブロ
ック ]4゜スライドネジ 15.低圧油孔 16.高
圧油孔17、短絡開閉弁 18.ハンドル 1つ、ベー
ンバネ 20.スライドブロック
Figure 1 is a longitudinal cross-sectional view. FIG. 2 is a cross-sectional view taken from the bottom of FIG. 1. FIG. 3 is a sectional view taken along line BB in FIG. Figure 4 shows
A sectional view taken along the line C-C in FIG.'1. FIGS. 5(A) and 5(B) are V sectional views showing the positional relationship when the slide block is eccentric to the left and right with respect to the rotor. FIG. 6 is a cross-sectional view of a combination of a variable displacement pump and a constant displacement pump. 1. Pump rotor 2. Motor 1-tor 3, pump rotor [Nl 4. Motor rotor @5. Pump housing 6. Motor housing 7. Pump cam ring 8. Motor cam ring 9. Pump bearing 10 Motor bearing 11. Pump vane 12° Motor vane 13. Slide block] 4° slide screw 15. Low pressure oil hole 16. High pressure oil hole 17, short circuit on/off valve 18. 1 handle, vane spring 20. slide block

Claims (2)

【特許請求の範囲】[Claims] (1)カムリングの外側にベアリングをはめ、ハウジン
グに対し自由に回転出来る様にした定容量形のベーン式
油圧ポンプと、同じく外周にベアリングをはめたカムリ
ングをスライドブロックに収め、それを外部よりの操作
で横にスライドさせて、ローターとカムリングの偏芯距
離、及び偏芯の位置関係を変えて、無段階変速や、回転
方向の逆転を行なうことが出来る様にした可変容量形の
ベーン式油圧モータとを一体に組込んだベーン油圧ポン
プ・モータ形トランスミッション。
(1) A fixed displacement vane type hydraulic pump with a bearing fitted on the outside of the cam ring so that it can rotate freely relative to the housing, and a cam ring with a bearing fitted on the outer periphery are housed in a slide block, and it is installed from the outside. A variable displacement vane type hydraulic system that can be slid sideways to change the eccentric distance between the rotor and cam ring, as well as the positional relationship between the eccentrics, allowing for stepless speed change and reversal of the rotational direction. A vane hydraulic pump/motor type transmission that incorporates a motor.
(2)入力側にカムリング浮動式の可変容量形ベーンポ
ンプを使い、出力側にカムリング浮動式の定容量形ベー
ンポンプを使って、トランスミッションとしての機能を
持たせた特許請求の範囲第1項記載のカムリング浮動式
ベーン油圧ポンプ・モータ形トランスミッション。
(2) The cam ring according to claim 1, which uses a cam ring floating variable displacement vane pump on the input side and a cam ring floating constant displacement vane pump on the output side to function as a transmission. Floating vane hydraulic pump/motor type transmission.
JP29488888A 1988-11-22 1988-11-22 Cam ring floating vane hydraulic pump-motor type transmission Pending JPH02142957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29488888A JPH02142957A (en) 1988-11-22 1988-11-22 Cam ring floating vane hydraulic pump-motor type transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29488888A JPH02142957A (en) 1988-11-22 1988-11-22 Cam ring floating vane hydraulic pump-motor type transmission

Publications (1)

Publication Number Publication Date
JPH02142957A true JPH02142957A (en) 1990-06-01

Family

ID=17813552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29488888A Pending JPH02142957A (en) 1988-11-22 1988-11-22 Cam ring floating vane hydraulic pump-motor type transmission

Country Status (1)

Country Link
JP (1) JPH02142957A (en)

Similar Documents

Publication Publication Date Title
US2706384A (en) Direct drive variable ratio hydraulic transmission of the automatic or manual type
US6039666A (en) Hydraulic and mechanical transmission apparatus
US4967556A (en) Hydrostatically operated continuously variable transmission
US4046029A (en) Hydromechanical transmission
US4914914A (en) Hydrostatically operated continuously variable transmission
US3171255A (en) Hydrostatic transmission
US4951469A (en) Hydrostatic continuously variable transmission
US4938024A (en) Hydrostatic continuously variable transmission
JPH0313588Y2 (en)
US5485725A (en) Continuously variable transmission
JPH02142957A (en) Cam ring floating vane hydraulic pump-motor type transmission
JPH06193548A (en) Hydromechanical type driving unit
US5928098A (en) Continuously variable transmission for vehicles
US3153909A (en) Automatic hydraulic transmission
US3511111A (en) Hydrostatic-mechanic transmissions,pumps,motors
JP2001200907A (en) Power transmitting device
USRE24317E (en) Direct drive variable ratio hydraulic transmission
WO2006025519A1 (en) Hydraulic drive device ana speed change method in hydraulic drive device
JPH10252638A (en) Hydraulic driving device
BE1009171A3 (en) GEAR WITH VARIABLE ratio.
JPH0424585B2 (en)
JP5423436B2 (en) Hydraulic control device
JP3090087B2 (en) Continuously variable transmission
JPH10132050A (en) Continuously variable transmission
JP2709933B2 (en) Hydrostatic continuously variable transmission