JPH02142939A - Double cylinder type hydraulic shock absorber - Google Patents

Double cylinder type hydraulic shock absorber

Info

Publication number
JPH02142939A
JPH02142939A JP29727288A JP29727288A JPH02142939A JP H02142939 A JPH02142939 A JP H02142939A JP 29727288 A JP29727288 A JP 29727288A JP 29727288 A JP29727288 A JP 29727288A JP H02142939 A JPH02142939 A JP H02142939A
Authority
JP
Japan
Prior art keywords
outer cylinder
shock absorber
hydraulic shock
spring receiving
lower spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29727288A
Other languages
Japanese (ja)
Inventor
Takahiro Mizusawa
孝広 水沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP29727288A priority Critical patent/JPH02142939A/en
Publication of JPH02142939A publication Critical patent/JPH02142939A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/062Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper
    • B60G15/063Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper characterised by the mounting of the spring on the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/124Mounting of coil springs
    • B60G2204/1242Mounting of coil springs on a damper, e.g. MacPerson strut

Abstract

PURPOSE:To eliminate welding work, and thereby obtain a hydraulic shock absorber excellent in reliability at low cost by monolithically forming a suspension spring receiving projection on the circumferential wall of an outer cylinder at its out side in the radial direction. CONSTITUTION:A lower spring receiving projection 20A which supports the lower end of a coil spring acting as a suspension spring 9 is monolithically formed on the wall surface of an outer cylinder 20. The projection 20 is formed in such a way that a part of the outer cylinder 20 is projected outward in the radial direction by means of water pressure forming, squeeze forming, press forming and the like. By this constitution, it is possible to eliminate welding work, to contrive to reduce cost so as to obtain a double cylinder type hydraulic shock absorber which is excellent in wear resistance, heat radiating property and reliability.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は車両用懸架装置に用いて好適の二重筒式油圧緩
衝器に関する。
[Industrial Application Field] The present invention relates to a double-tube hydraulic shock absorber suitable for use in a vehicle suspension system.

【従来の技術】[Conventional technology]

一般に、二重筒式油圧緩衝器は、懸架装置に減衰機能を
持たせるために用いられるもので、この二重筒式油圧緩
衝器を車両用懸架装置に用いる場合、例えば第8図に示
すように装着される。この図の懸架装置は車両の後輪に
用いられているもので、図中の1はトレーリングアーム
を示し、該トレーリングアーム1の一端は車体パネル2
に回動可能に取り付けられている。トレーリングアーム
1の他端は、車輪3を駆動するアクスルシャフト4を回
転自在に支持している。5は二重筒式油圧緩衝器を示し
、該二重筒式油圧緩衝器5は、その下端部をトレーリン
グアーム1の他端部に支持され、上端部を車体パネル2
側に支持されている。 7は後述するコイルスプリング9の下側を支持する下側
ばね受けを示し、該下側ばね受け7は、近年のマルチリ
ンクサスペンション等のように懸架装置の複雑化に伴う
取付はスペースの減少に対応してスペース削減のため、
油圧緩衝器5に直接固定されている。8はコイルスプリ
ング9の上側を支持する上側ばね受けを示し、該上側ば
ね受け8は車体パネル2に固定されている。そして、9
は懸架用ばねとしてのコイルスプリングを示し、該コイ
ルスプリング9は、その上端および下端を上側ばね受け
8および下側ばね受け7に支持された状態で、油圧緩衝
器5と車体パネル2との間に取り付けられている。 そして一般に、前記二重筒式油圧緩衝器5は、第9図に
示すように、外筒lOと、該外筒10内に装着され内部
に作動油が充填された内筒11と、該内筒11内に摺動
可能に設けられ内部に減衰用バルブ(図示せず)を有す
るとともに内筒11内を上部液室11Aと下部液室11
Bとに仕切るピストン12と、一端側が該ピストン12
に固定され他端側か前記外筒10から上方へ延出したピ
ストンロッド13と、前記外筒lOと内筒11との間に
形成され内部に作動油が充填された周囲液室14と、前
記外筒10内の下端部に設けられ前記下部液室11Bと
周囲液室14との間での作動油の移動を規制するボトム
バルブ(図示せず)等とから構成されている。なお、1
5は油圧緩衝器5をトレーリングアームlに取り付ける
ための取付アイを示している。 そして、前記油圧緩衝器5のピストンロッド13の上端
部は、第8図に示すように、車体パネル2に固定された
上側ばね受け8に取付はブツシュ16を介して揺動可能
に取り付けられており、油圧緩衝器5の下端部は取付は
アイ15を介してトレーリングアームlの他端部に揺動
可能に取り付けられている。 そして、コイルスプリング9の下側を支持する下側ばね
受け7の取付は構造としては、例えば実開昭57−10
7606号公報に記載のように(第9図参照)、外筒1
0に溶接により一体的に取り付けらだものが知られてい
る(第1従来例)。 また、実開昭62−170844号公報に記載のように
(第10図参照)、外筒10′の外周に複数箇所の係合
突起17を形成し、該係合突起17に下側ばね受け7′
を圧入して取り付けたものがある(第2従来例)。 さらに、第11図に示すように、外筒10″に筒状下側
ばね受け7″を設けたものも知られている。該下側ばね
受け7″は、有蓋筒状に形成されその蓋部7″Aにピス
トンロッド13を挿入する挿入穴7″Bを有する筒部7
″Cと、該筒部7“Cの下端部に形成されたフランジ部
7−Dとからなる、いわゆるつり4型に形成されており
、前記フランジ部7“Dでコイルスプリング9の下端を
支持するように構成されている(第3従来例)。 【発明が解決しようとする課題] ところが、上述の従来技術にあっては、それぞれに問題
がある。 第1従来例の場合、下側ばね受け7を外筒10に固定す
るために溶接作業を施さなければならず、作業コストが
嵩む。さらに、溶接部は錆びやすいとともに、溶接部に
むらがあると下側ばね受け7の取付は強度が弱くなり、
耐久性の面で劣る。このため、油圧緩衝器5に対する信
頼性が悪いという問題点がある。 第2従来例の場合、外筒10′に係合突起17を形成す
る行程と、該係合突起17に下側ばね受け7′を圧入す
る行程が必要であり、場合によっては補正塗装を施さな
ければならないこともあり、作業コストが嵩む。また、
下側ばね受け7′は係合突起17に圧入されるだけなの
で、場合によっては上方へ抜けてしまうことがあるとい
う問題点がある。 第3従来例の場合、下側ばね受け7“の形状が複雑で大
きいため、この部品の製造コストが嵩むという問題点が
ある。 本発明は上述した従来技術の問題点に1みてなされたも
ので、低コストで耐久性、信頼性に優れた二重筒式油圧
緩衝器を提供することを目的とする。 〔課題を解決するための手段〕 上述した課題を解決するために本発明が採用する構成の
特徴は、外筒の周壁に、半径方向外側に突出して懸架用
ばねのばね受けとなるばね受け突起を該外筒に一体形成
したことにある。 〔作用〕 上記のように、ばね受け突起を外筒に一体形成しなので
、外筒に別部材からなるばね受けを取り付ける作業、溶
接作業等が不要となり、かつ強度が増して油圧緩衝器に
対する信頼性が向上する。 〔実施例〕 以下、本発明の実施例を第1図ないし第7図に基づいて
説明する。 本実施例の二重筒式油圧緩衝器が装着される懸架装置は
、第8図に基づいて説明した従来技術と同様であり、ま
た、二重筒式油圧緩衝器の構成も従来技術とほぼ同様で
あるため、同一部材には同一符合を付して説明を省略す
る。 先ず、第1図において、20は本実施例における外筒で
、該外筒20の周壁に、懸架用ばねとしてのコイルスプ
リング9の下端を支持する下側ばね受け突起2OAを一
体的に成形している。該下側ばね受け突起2OAは、外
筒20の一部を半径方向外側に突出させることで形成さ
れている。 この下側ばね受け突起2OAの成形方法としては、水圧
成形法、しぼり成形法、プレス成形法等がある。 まず、第2図(A)、(B)は第1の製造方法として水
圧成形法によって外筒20を成形する場合を示す。 この水圧成形法を用いる場合には、外筒20とほぼ同径
で、外筒20より長尺の管材21を使用する。 そして、水圧成形法のために、円筒上の空間を有すると
ともに下側ばね受け突起2OAの対応する部分に環状溝
22Aを有する2つ割りの外型22.22と、該外型2
2,22の上下に配設され、管材21を上下から圧縮す
る下部圧縮部材23、上部圧縮部材24とを用いる。 次に、上記材料および成形型を用いた水圧成形法を示す
。 先ず、第2図(A)に示すように、管材21を、外型2
2,22間に挿入して下部圧縮部材23上に載置する。 そして、管材21内に液体25を注入し、管材21の上
側に上部圧縮部材24を当接させる。あるいは管材21
を、下部圧縮部材23と上部圧縮部材24との間に支持
させるとともにその内部に液体25を注入させ、2つ割
りの外型22,22を管材21を囲繞するように配置す
る。 次に、第2図(B)に示すように、外型22゜22を支
持した状態で、下部圧縮部材23と上部圧縮部材24と
で管材21を上下から圧縮する。 このとき、外型22,22より長い管材21は、外型2
2,22の上下に長さり、、hl(第2図(A)参照)
だけ突出しており、この長さhl。 62分だけ管材21が外型22,22内へ押し込まれる
。これと同時に管材21内の液体25が圧縮されて高圧
になり、管材21を押し広げようとする。そして、この
圧力が管材21のうち外型22.22で外側から支持さ
れていない環状溝22Aの部分で、管材21を径方向外
方へ押し広げて、下側ばね受け突起2OAが成形される
。このとき、管材21は、環状溝22Aで押し広げられ
る分に相当する長さり、、hlが外型21内に押し込ま
れるため、管材21のうち下側ばね受け突起2OAを形
成する部分の肉厚は、他の部分の肉厚とほぼ同様の厚さ
に成形できる。 次に、第2の製造方法としてのしぼり成形法を第3図(
A)、(B)、(C)に基づいて説明する。 このしぼり成形法を用いる場合には、外筒20よりも大
径で、外筒20より長尺の管材31を使用する。 そして、しぼり成形法のために、内径t、が外筒20の
外径と同じ大きさで、上側開口部32Aが下側ばね受け
突起2OAの下側部と同形状に形成された下側しぼり型
32と、内径t2が外筒20の外径と同じ大きさで、下
側開口部33Aが下側ばね受け突起2OAの上側部と同
形状に形成され、この下側開口部33Aと下側しぼり型
32の上側開口部32Aとが整合したときに下側ばね受
け突起2OAの外径を形作る上側しぼり型33とを用い
る。 次に、上記材料および成形型を用いたしぼり成形法を示
す。 まず、第3図(A)に示すように、下側しぼり型32の
上側開口部32Aと上側しぼり型33の下側開口部33
Aとの間に管材31を装着する。 次いで、下側しぼり型32および上側しぼり型33を互
いに圧縮させて管材31をその上下からしぼり、第3図
(B)に示すように、管材31を各しぼり型32.33
内に縮径させながら最奥まで押し込んでい(。このとき
、管材31の長さLlは、下側しぼり型32のしぼり部
長さL2と上側しぼり型33のしぼり部長さL3とを合
わせた長さよりも長く形成されており、このしぼり部長
さLi、Lxより長い部分が、各しぼり型32.33の
上側開口部32Aおよび下側開口部33Aで押し広げら
れる。そして、管材31の各開口部32A、33Aで押
し広げられる部分は、第3図(C)に示すように、各し
ぼり型32゜33が互いに当接した時点で各開口部32
A。 33Aの形状に整合し、下側ばね受け突起2OAが成形
される。 なお、この場合、管材31は縮径されてその肉厚が増加
するため、これを見越した肉厚の材料を選択する。また
、本成形法では、下側ばね受け突起2OAを1段でしぼ
り成形したが、例えば、3つのしぼり型を使用して3段
階に順次探しぼりする等多段にしぼり成形してもよい。 次に、第3の製造方法としてのプレス成形法を説明する
。このプレス成形法には、分割プレス加工法と非分割プ
レス加工法とがある。 第4図に示す分割プレス加工法の場合には、平板状で下
側ばね受け突起2OAとなる部分にふくらみを持たせた
板材を使用する。 そして、上記板材を、外筒20を半割りにした状態の半
割り部材41.42を成形するプレス機を使用する。 次に、上記板材およびプレス機を用いた分割プレス加工
法を示す。 まず、ばね受け突起2OAとなる部分にふくらみを持た
せた板材をプレス機で、第4図に示すように、2つの半
割り部材41.42を成形する。 これらの半割り部材41.42は、それぞれ外筒20の
下側ばね受け突起2OAとなる部分41A、42Aと、
外筒20の下側ばね受け突起2OAを境にした上側部と
なる半割り状筒部41B、42Bと、外筒20の下側ば
ね受け突起2OAを境にした下側部となる半割り状筒部
41C,42Cとから構成される。そして、これらの半
割り部材41.42を互いに整合させ、その合わせ部を
シーム溶接等によって接合し、油圧緩衝器5の外筒20
を成形する。 次に、第4の製造方法として非分割プレス加工法を説明
する。 第5図ないし第7図に示す非分割プレス加工法の場合に
は、平板状で下側ばね受け突起2OAとなる部分に平な
ふくらみ51Aを持たせた平板材51を使用する。 そして、上記平板材51を、下側ばね受け突起2OAに
該当するふくらみを有する円筒状にしぼるためのプレス
機を使用する。 次に、上記平板材51およびプレス機を用いた非分割プ
レス加工法を示す。 まず、ばね受け突起2OAとなる部分に平なふくらみ5
1Aを持たせた平板材51を打ち抜き成形する。次いで
、平板材51の中央部(第5図(B)中の実線52)を
内側(第6図(B)および第7図(B)中の上側)へし
ぼるとともに、両側部(第5図(B)中の実線53.5
3)を外側(第6図(B)および第7図(B)中の下側
)へしぼる。そして、全体を、第5図(C)、第6図(
C)および第7図(C)のように、断面円状にしぼって
ゆき、第5図(D)、第6図(D)および第7図(D)
のように、断面円形状になるまでしぼったところでその
接合部54をシーム溶接等により接合して油圧緩衝器5
の外筒20を成形する。 か(して、本実施例の二重筒式油圧緩衝器5によれば、
外筒20の周壁を半径方向外方へ突出させて下側ばね受
け突起2OAを形成したので、従来技術の下側ばね受け
7を取り1寸けるための作業が不要となり、作業性が向
上し、コストの低減を図れるとともに、従来技術の下側
ばね受け7のように、取付は行程時の作業むら等による
取付は部の不具合の発生を確実に防止することができる
。 また、下側ばね受け突起2OAは外筒20となる筒体と
一体成形されたので、その構造上、下側ばね受け突起2
OAが脱落することはな(、耐久性に優れ、安全性が向
上する。 一方、下側ばね受け突起2OAが形成されることで、周
囲液室14の容積が増加し、その分だけ油圧緩衝器5内
の作動油量を増やすことができ、この油量増加分だけ温
度の上昇率が抑えら九る。 さらに、周囲液室14の下側ばね受け突起2OAの部分
が放熱フィンの役目を果たして作動油の冷却効率が向上
し、作動油の温度上昇を積極的に抑えることができる。 これにより、作動油の温度上昇による粘性低下を確実に
抑えることができるようになり、二重筒式油圧緩衝器5
の減衰力特性を富に良好な状態に維持することができる
ようになる。 以上により、二重筒式油圧緩衝器5に対する信頼性を大
幅に向上させることができるようになる。 なお、本実施例では、下側ばね受け突起2OAを、外筒
20の周壁を径方向外方へ円環状に突出させて形成した
が、本発明はこれに限らず、四角環状等の多角環状形あ
るいは外筒20の周囲に複数の突起を形成して、下側ば
ね受け突起20を構成してもよい。 【発明の効果] 以上詳述した通り、本発明によれば、外筒の周壁な半径
方向外方へ突出させて下側ばね受け突起を形成したので
、下側ばね受け突起を取り付けるための作業行程が不要
となり、コスト低減を図れる。さらに、下側ばね受け突
起を外筒に一体形成したので、下側ばね受けが脱落する
ことがな(、耐久性、放熱性に優れ、かつ安全性、信頼
性が向上する。
Generally, a double-tube hydraulic shock absorber is used to provide a damping function to a suspension system, and when this double-tube hydraulic shock absorber is used in a vehicle suspension system, for example, as shown in Fig. 8, will be installed on the The suspension system shown in this figure is used for the rear wheels of a vehicle, and 1 in the figure indicates a trailing arm, and one end of the trailing arm 1 is attached to a vehicle body panel 2.
is rotatably attached to. The other end of the trailing arm 1 rotatably supports an axle shaft 4 that drives wheels 3. Reference numeral 5 indicates a double-tube hydraulic shock absorber, whose lower end is supported by the other end of the trailing arm 1, and whose upper end is supported by the vehicle body panel 2.
supported on the side. Reference numeral 7 indicates a lower spring receiver that supports the lower side of a coil spring 9, which will be described later.The lower spring receiver 7 is installed due to a reduction in space as suspension systems become more complex, such as in recent multi-link suspensions. Correspondingly, to save space,
It is directly fixed to the hydraulic shock absorber 5. Reference numeral 8 indicates an upper spring receiver that supports the upper side of the coil spring 9, and the upper spring receiver 8 is fixed to the vehicle body panel 2. And 9
indicates a coil spring as a suspension spring, and the coil spring 9 is supported between the hydraulic shock absorber 5 and the vehicle body panel 2 with its upper and lower ends supported by the upper spring receiver 8 and the lower spring receiver 7. is attached to. In general, the double cylinder hydraulic shock absorber 5 includes an outer cylinder lO, an inner cylinder 11 mounted inside the outer cylinder 10 and filled with hydraulic oil, and an inner cylinder 10, as shown in FIG. It is slidably provided inside the cylinder 11 and has a damping valve (not shown) inside, and the inside of the inner cylinder 11 is connected to an upper liquid chamber 11A and a lower liquid chamber 11.
A piston 12 partitioned into B and one end side is the piston 12.
a piston rod 13 fixed to and extending upward from the outer cylinder 10 at the other end; a surrounding liquid chamber 14 formed between the outer cylinder lO and the inner cylinder 11 and filled with hydraulic oil; It is comprised of a bottom valve (not shown) provided at the lower end of the outer cylinder 10 to regulate movement of hydraulic oil between the lower liquid chamber 11B and the surrounding liquid chamber 14. In addition, 1
Reference numeral 5 indicates an attachment eye for attaching the hydraulic shock absorber 5 to the trailing arm l. As shown in FIG. 8, the upper end of the piston rod 13 of the hydraulic shock absorber 5 is swingably attached to an upper spring receiver 8 fixed to the vehicle body panel 2 via a bushing 16. The lower end of the hydraulic shock absorber 5 is swingably attached to the other end of the trailing arm l via an eye 15. The structure of the lower spring receiver 7 that supports the lower side of the coil spring 9 is, for example,
As described in Publication No. 7606 (see FIG. 9), the outer cylinder 1
There is a known device that is integrally attached to the 0 by welding (first conventional example). Further, as described in Japanese Utility Model Application No. 62-170844 (see Fig. 10), a plurality of engagement protrusions 17 are formed on the outer periphery of the outer cylinder 10', and the engagement protrusions 17 are provided with a lower spring receiver. 7′
There is one that is attached by press-fitting (second conventional example). Furthermore, as shown in FIG. 11, a device in which a cylindrical lower spring receiver 7'' is provided on the outer cylinder 10'' is also known. The lower spring receiver 7'' is formed into a cylindrical shape with a lid, and has an insertion hole 7''B into which the piston rod 13 is inserted.
``C'' and a flange portion 7-D formed at the lower end of the cylindrical portion 7''C. (Third Conventional Example). [Problems to be Solved by the Invention] However, each of the above-mentioned conventional techniques has its own problems. In the case of the first conventional example, the lower spring Welding work must be performed to fix the receiver 7 to the outer cylinder 10, which increases the work cost.Furthermore, the welded part is prone to rust, and if the welded part is uneven, the installation of the lower spring receiver 7 will be difficult. becomes weaker,
Inferior in terms of durability. Therefore, there is a problem that the reliability of the hydraulic shock absorber 5 is poor. In the case of the second conventional example, a process of forming the engagement protrusion 17 on the outer cylinder 10' and a process of press-fitting the lower spring receiver 7' into the engagement protrusion 17 are required, and in some cases correction painting may be applied. In some cases, it may be necessary to do so, which increases work costs. Also,
Since the lower spring receiver 7' is simply press-fitted into the engagement protrusion 17, there is a problem in that it may come off upward in some cases. In the case of the third conventional example, since the shape of the lower spring receiver 7'' is complicated and large, there is a problem that the manufacturing cost of this part increases.The present invention has been made in view of the problems of the above-mentioned conventional technology. An object of the present invention is to provide a double-tube hydraulic shock absorber that is low in cost and has excellent durability and reliability. [Means for Solving the Problems] The present invention is adopted to solve the above-mentioned problems. The feature of this structure is that a spring receiving protrusion that protrudes radially outward and serves as a spring receiver for the suspension spring is integrally formed on the peripheral wall of the outer cylinder. Since the receiving protrusion is integrally formed with the outer cylinder, there is no need to attach a spring receiver made of a separate member to the outer cylinder, welding work, etc., and the strength is increased, improving the reliability of the hydraulic shock absorber. [Example] Embodiments of the present invention will be described below based on FIGS. 1 to 7. The suspension system to which the double-tube hydraulic shock absorber of this embodiment is mounted is based on the prior art described based on FIG. 8. Also, since the structure of the double-tube hydraulic shock absorber is almost the same as that of the prior art, the same reference numerals are given to the same members and the explanation is omitted. First, in FIG. In the outer cylinder in this embodiment, a lower spring receiving projection 2OA that supports the lower end of the coil spring 9 as a suspension spring is integrally molded on the peripheral wall of the outer cylinder 20. 2OA is formed by protruding a part of the outer cylinder 20 outward in the radial direction. Methods for forming the lower spring receiving protrusion 2OA include a hydraulic molding method, a squeezing molding method, a press molding method, etc. First, FIGS. 2(A) and 2(B) show the case where the outer cylinder 20 is molded by the water pressure forming method as the first manufacturing method. A pipe material 21 that is longer in diameter than the outer cylinder 20 is used.For the hydroforming method, two pipe materials are used, each having a cylindrical space and an annular groove 22A in a portion corresponding to the lower spring receiving projection 2OA. The split outer mold 22.22 and the outer mold 2
A lower compression member 23 and an upper compression member 24 are disposed above and below the tubes 2 and 22 and compress the tube material 21 from above and below. Next, a hydroforming method using the above material and mold will be described. First, as shown in FIG. 2(A), the tube material 21 is placed in the outer mold 2
2 and 22 and placed on the lower compression member 23. Then, the liquid 25 is injected into the tube material 21, and the upper compression member 24 is brought into contact with the upper side of the tube material 21. Or the pipe material 21
is supported between the lower compression member 23 and the upper compression member 24, and a liquid 25 is injected into the inside thereof, and the two-split outer molds 22, 22 are arranged so as to surround the pipe material 21. Next, as shown in FIG. 2(B), the tube material 21 is compressed from above and below by the lower compression member 23 and the upper compression member 24 while supporting the outer mold 22°22. At this time, the tube material 21 that is longer than the outer molds 22, 22 is
2, the length above and below 22, hl (see Figure 2 (A))
This length is hl. The tube material 21 is pushed into the outer molds 22, 22 by 62 minutes. At the same time, the liquid 25 inside the tube 21 is compressed to a high pressure, and tries to spread the tube 21 open. Then, this pressure pushes the pipe material 21 outward in the radial direction in the portion of the annular groove 22A of the pipe material 21 that is not supported from the outside by the outer mold 22.22, and the lower spring receiving protrusion 2OA is formed. . At this time, the tube material 21 is pushed into the outer mold 21 by a length corresponding to the amount pushed and expanded by the annular groove 22A, so that the wall thickness of the portion of the tube material 21 that forms the lower spring receiving protrusion 2OA is can be molded to approximately the same thickness as the other parts. Next, the squeeze molding method as the second manufacturing method is shown in Figure 3 (
The explanation will be based on A), (B), and (C). When this squeeze forming method is used, a tube material 31 having a larger diameter than the outer cylinder 20 and longer than the outer cylinder 20 is used. Because of the squeezing molding method, a lower squeeze is formed in which the inner diameter t is the same size as the outer diameter of the outer cylinder 20, and the upper opening 32A is formed in the same shape as the lower part of the lower spring receiving projection 2OA. The mold 32 has an inner diameter t2 the same size as the outer diameter of the outer cylinder 20, and a lower opening 33A is formed in the same shape as the upper part of the lower spring receiving protrusion 2OA. An upper squeeze die 33 is used which forms the outer diameter of the lower spring receiving projection 2OA when the squeeze die 32 is aligned with the upper opening 32A. Next, a squeeze molding method using the above material and mold will be described. First, as shown in FIG. 3(A), the upper opening 32A of the lower squeeze mold 32 and the lower opening 33 of the upper squeeze mold 33
A tube material 31 is installed between the A and A. Next, the lower squeeze mold 32 and the upper squeeze mold 33 are compressed together to squeeze the tube material 31 from above and below, and as shown in FIG.
(At this time, the length Ll of the tube material 31 is the sum of the length L2 of the lower squeeze mold 32 and the length L3 of the upper squeeze mold 33. The portions longer than the squeeze lengths Li and Lx are pushed out by the upper opening 32A and the lower opening 33A of each squeeze mold 32, 33.Then, each opening of the tube 31 As shown in FIG. 3(C), the portions that are pushed apart by 32A and 33A are the openings 32 when the squeeze dies 32 and 33 come into contact with each other.
A. The lower spring receiving protrusion 2OA is molded to match the shape of 33A. Note that in this case, the diameter of the tube material 31 is reduced and its wall thickness increases, so a material with a wall thickness that takes this into account is selected. Further, in this molding method, the lower spring receiving protrusion 2OA is squeeze-molded in one stage, but it may be squeeze-molded in multiple stages, for example, by sequentially finding and squeezing in three stages using three squeeze molds. Next, a press molding method as a third manufacturing method will be explained. This press forming method includes a divided press method and a non-divided press method. In the case of the split press method shown in FIG. 4, a plate material is used which is flat and has a bulge in the portion that will become the lower spring receiving projection 2OA. Then, a press machine is used to form half members 41 and 42 in which the outer cylinder 20 is cut in half from the above-mentioned plate material. Next, a divisional press working method using the above-mentioned plate material and press machine will be described. First, as shown in FIG. 4, a plate material having a bulge in the portion that will become the spring receiving projection 2OA is molded into two half members 41 and 42 using a press machine. These half members 41 and 42 each have portions 41A and 42A that become the lower spring receiving protrusion 2OA of the outer cylinder 20,
Half-split cylinder parts 41B and 42B are the upper part of the outer cylinder 20 bordering on the lower spring receiving projection 2OA, and half-split cylinder parts 41B and 42B are the lower part of the outer cylinder 20 bordering on the lower spring receiving projection 2OA. It is composed of cylindrical parts 41C and 42C. Then, these half members 41 and 42 are aligned with each other, and the joint parts are joined by seam welding or the like, and the outer cylinder 20 of the hydraulic shock absorber 5 is assembled.
to form. Next, a non-divided press working method will be explained as a fourth manufacturing method. In the case of the non-divided press working method shown in FIGS. 5 to 7, a flat plate material 51 having a flat plate shape and having a flat bulge 51A in a portion that will become the lower spring receiving protrusion 2OA is used. Then, a press machine is used to press the flat plate material 51 into a cylindrical shape having a bulge corresponding to the lower spring receiving projection 2OA. Next, a non-dividing press working method using the flat plate material 51 and a press machine will be described. First, make a flat bulge 5 on the part that will become the spring receiving protrusion 2OA.
A flat plate material 51 having a diameter of 1A is punched and formed. Next, the center part (solid line 52 in FIG. 5(B)) of the flat plate material 51 is squeezed inward (upper side in FIGS. 6(B) and 7(B)), and both side parts (see FIG. 5(B)) are squeezed. (B) Solid line 53.5
3) Squeeze it outward (lower side in Figures 6(B) and 7(B)). Then, the whole is shown in Figures 5 (C) and 6 (
As shown in FIG. 5(D), FIG. 6(D), and FIG. 7(D),
After squeezing it until it has a circular cross section, the joint part 54 is joined by seam welding or the like, and the hydraulic shock absorber 5 is assembled.
An outer cylinder 20 is formed. (Thus, according to the double cylinder hydraulic shock absorber 5 of this embodiment,
Since the peripheral wall of the outer cylinder 20 is made to protrude outward in the radial direction to form the lower spring receiver protrusion 2OA, there is no need to remove the lower spring receiver 7 in the prior art and make it 1 inch wider, improving work efficiency. In addition to reducing costs, it is possible to reliably prevent problems caused by uneven installation work during the stroke, as in the case of the lower spring receiver 7 of the prior art. In addition, since the lower spring receiving protrusion 2OA is integrally molded with the cylindrical body that becomes the outer cylinder 20, due to its structure, the lower spring receiving protrusion 2OA is
The OA will not fall off (excellent durability and improved safety). On the other hand, by forming the lower spring receiving protrusion 2OA, the volume of the surrounding liquid chamber 14 increases, and the hydraulic shock absorber increases by that amount. The amount of hydraulic oil in the container 5 can be increased, and the rate of temperature rise can be suppressed by the increased amount of oil.Furthermore, the lower spring receiving protrusion 2OA of the surrounding liquid chamber 14 serves as a radiation fin. The cooling efficiency of the hydraulic oil improves, and the temperature rise of the hydraulic oil can be actively suppressed.This makes it possible to reliably suppress the decrease in viscosity due to the temperature rise of the hydraulic oil. Hydraulic shock absorber 5
damping force characteristics can be maintained in excellent condition. As a result of the above, the reliability of the double-tube hydraulic shock absorber 5 can be significantly improved. In this embodiment, the lower spring receiving protrusion 2OA is formed by protruding the circumferential wall of the outer cylinder 20 outward in the radial direction in an annular shape. The lower spring receiving protrusion 20 may be formed by forming a plurality of protrusions in the shape or around the outer cylinder 20. [Effects of the Invention] As detailed above, according to the present invention, the lower spring receiving protrusion is formed by protruding radially outward from the peripheral wall of the outer cylinder, so that the work for attaching the lower spring receiving protrusion is not necessary. The process becomes unnecessary and costs can be reduced. Furthermore, since the lower spring receiver protrusion is integrally formed with the outer cylinder, the lower spring receiver will not fall off (it has excellent durability and heat dissipation, and improves safety and reliability).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二重筒式油圧緩衝器を示す側面図、第
2図(A)、(B)は第1図の二重筒式油圧緩衝器の外
筒な成形するため、水圧成形法を適用した場合のそれぞ
れ異なる行程を示す縦断面図、第3図(A)、(B)、
(C)は第1図の二重筒式油圧緩衝器の外筒な成形する
ため、しぼり成形法を適用した場合のそれぞれ異なる行
程を示す縦断面図、第4図は第1図の二重筒式油圧緩衝
器の外筒を成形するため、分割プレス加工法を適用した
場合の成形状態を示す斜視図、第5図(A)、(B)、
(C)、(D)は非分割プレス加工法を適用した場合の
それぞれ異なる行程を示す正面図、第6図(A)、(B
)、(C)。 (D)はそれぞれ第5図(A)、(B)、(C)。 (D) (7)VIA−VIA、 VIB−VIB、 
VIC−VIG。 VI D −MI Dの矢視方向から見た断面図、第7
図(A)、(B)、(C)、(D)はそれぞれ第5図(
A)、(B)、(C)、(D)の■A−■A。 ■B−■B、■C−■C1■D−■Dの矢視方向から見
た断面図、第8図は従来技術による二重筒式油圧緩衝器
が取り付けられる懸架装置を示す側面図、第9図は第1
従来例を示す一部破断の断面図、第10図は第2従来例
を示す断面図、第11図は第3従来例を示す断面図であ
る。 5・・・二重筒式油圧緩衝器、9・・・懸架用ばねとし
てのコイルスプリング、11・・・内筒、12・・・ピ
ストン、13・・・ピストンロッド、20・・・外筒、
2OA・・・下側ばね受け突起。
Figure 1 is a side view showing the double-tube hydraulic shock absorber of the present invention, and Figures 2 (A) and (B) are Vertical cross-sectional views showing different processes when the molding method is applied, FIGS. 3(A) and 3(B),
(C) is a vertical cross-sectional view showing the different processes when applying the squeeze forming method to form the outer cylinder of the double-tube hydraulic shock absorber shown in Figure 1; FIGS. 5(A) and 5(B) are perspective views showing the molding state when the split press method is applied to mold the outer cylinder of the cylindrical hydraulic shock absorber;
(C) and (D) are front views showing different processes when applying the non-divided press working method, and Fig. 6 (A) and (B)
), (C). (D) is Fig. 5 (A), (B), and (C), respectively. (D) (7) VIA-VIA, VIB-VIB,
VIC-VIG. 7th cross-sectional view seen from the arrow direction of VI D - MI D
Figures (A), (B), (C), and (D) are respectively shown in Figure 5 (
A), (B), (C), (D) ■A-■A. ■B-■B, ■C-■C1 ■D-■A sectional view seen from the arrow direction of Figure 9 is the first
FIG. 10 is a partially broken sectional view showing a conventional example, FIG. 10 is a sectional view showing a second conventional example, and FIG. 11 is a sectional view showing a third conventional example. 5... Double cylinder hydraulic shock absorber, 9... Coil spring as a suspension spring, 11... Inner cylinder, 12... Piston, 13... Piston rod, 20... Outer cylinder ,
2OA...Lower spring receiving protrusion.

Claims (1)

【特許請求の範囲】[Claims] 外筒と、該外筒内に設けられた内筒と、該内筒内に摺動
可能に設けられたピストンと、一端側が該ピストンに固
定され他端側が前記外筒から延出したピストンロッドと
からなる二重筒式油圧緩衝器において、前記外筒の周壁
には、半径方向外側に突出して懸架用ばねのばね受けと
なるばね受け突起を該外筒に一体形成したことを特徴と
する二重筒式油圧緩衝器。
an outer cylinder, an inner cylinder provided within the outer cylinder, a piston slidably provided within the inner cylinder, and a piston rod having one end fixed to the piston and the other end extending from the outer cylinder. A double-tube hydraulic shock absorber comprising: a spring receiving protrusion that projects radially outward and serves as a spring receiver for a suspension spring; and a spring receiving projection is integrally formed on the peripheral wall of the outer cylinder. Double cylinder hydraulic shock absorber.
JP29727288A 1988-11-25 1988-11-25 Double cylinder type hydraulic shock absorber Pending JPH02142939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29727288A JPH02142939A (en) 1988-11-25 1988-11-25 Double cylinder type hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29727288A JPH02142939A (en) 1988-11-25 1988-11-25 Double cylinder type hydraulic shock absorber

Publications (1)

Publication Number Publication Date
JPH02142939A true JPH02142939A (en) 1990-06-01

Family

ID=17844374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29727288A Pending JPH02142939A (en) 1988-11-25 1988-11-25 Double cylinder type hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JPH02142939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181581A (en) * 2012-02-29 2013-09-12 Kyb Co Ltd Shock absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181581A (en) * 2012-02-29 2013-09-12 Kyb Co Ltd Shock absorber

Similar Documents

Publication Publication Date Title
CA2173076C (en) Process of hydroforming tubular suspension and frame components for vehicles
US5882039A (en) Hydroformed engine cradle and cross member for vehicle body and frame assembly
CN112823252B (en) Damper with two-piece housing
JP2001347814A (en) Suspension support
JPH05215167A (en) Adjustable elastomer bush
US5855137A (en) Method of manufacturing a reservoir tube
EP0230042A1 (en) Twin-tube type shock absorber with a base valve portion structure coupled by caulking
EP0907037B1 (en) Suspension damper polygonal reservoir tube
JPH02142939A (en) Double cylinder type hydraulic shock absorber
EP0902211A2 (en) Hydraulic shock absorber
JP2001182772A (en) Inverted-type hydraulic shock absorber
JP3433772B2 (en) Bottom structure of vehicle shock absorber and method of forming the same
JPH09105437A (en) Shock absorber
US5129137A (en) Method of mounting a spring seat on a hydraulic damping device
JP3602584B2 (en) Cylindrical container
JP3772535B2 (en) Mounting bracket for shock absorber
JP3581615B2 (en) Liquid filled type vibration damping device
KR950003212B1 (en) Shock absorber
EP1180441A1 (en) Weldless attachment of mounting bracket to reservoir tube of suspension strut assembly
JPH09303476A (en) Bracket for installing cylindrical member and its manufacture
CN215805951U (en) High-strength shock absorber
JP3334997B2 (en) Strut mount
JP2605795Y2 (en) Anti-vibration device
KR100452489B1 (en) Cup use in a shock absorber
JP3027459B2 (en) How to assemble a hydraulic shock absorber