JPH0214291B2 - - Google Patents

Info

Publication number
JPH0214291B2
JPH0214291B2 JP57156003A JP15600382A JPH0214291B2 JP H0214291 B2 JPH0214291 B2 JP H0214291B2 JP 57156003 A JP57156003 A JP 57156003A JP 15600382 A JP15600382 A JP 15600382A JP H0214291 B2 JPH0214291 B2 JP H0214291B2
Authority
JP
Japan
Prior art keywords
oxygen
powder
atmosphere
heat treatment
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57156003A
Other languages
Japanese (ja)
Other versions
JPS5855337A (en
Inventor
Berunaa Pauru
Deyuuberu Yurugen
Hoofuman Yurugen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of JPS5855337A publication Critical patent/JPS5855337A/en
Publication of JPH0214291B2 publication Critical patent/JPH0214291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/01Oxides; Hydroxides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、酸化数+4〜+6の微粉状ウラン化
合物を酸素含有雰囲気中常圧で強熱処理すること
により結晶の大きさ40〜90μmのU3O8粉末をを簡
単かつ経済的に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of easily and easily producing U 3 O 8 powder with a crystal size of 40 to 90 μm by igniting a finely powdered uranium compound with an oxidation number of +4 to +6 at normal pressure in an oxygen-containing atmosphere. Concerning an economical method of manufacturing.

材料試験炉(MTR)を運転する際に燃料の高
濃縮度からU−235の低濃縮度に転換する研究が
なされている。しかし低濃縮度燃料でMTR原子
炉を運転する際に燃料密度を高めなければなら
ず、これは有利に40〜90μmである固有の結晶の
大きさの酸化物のウラン燃料を使用することによ
り可能である。従来、この種の燃料の生成には工
業的にロスが多くかつ高価な方法が適用されてい
た。
Research is underway to convert from high enrichment fuel to low enrichment U-235 when operating materials testing reactors (MTRs). However, when operating an MTR reactor with low enrichment fuel, the fuel density has to be increased, which is advantageously possible by using uranium fuel in oxides with a specific crystal size of 40 to 90 μm. It is. Conventionally, this type of fuel has been produced using industrially lossy and expensive methods.

それ故、例えば西ドイツ国特許公開第3024634
号明細書から、結晶の大きさ40〜90μmのU3O8
末を焼結性U3O8粉末を圧縮成形し、焼結し、破
砕しかつ微粒分を篩分けることにより製造するこ
とが知られている。次いで、篩上に残留した大き
な粒子を用いて同じ工程を再び繰返す。この方法
では、大きさが40〜90μmである粒子の収率は比
較的低く、主要割合のU3O8粉末は利用できない
微粒子として生じる。
Therefore, for example, West German Patent Publication No. 3024634
From the specification, U 3 O 8 powder with a crystal size of 40 to 90 μm can be produced by compression molding sinterable U 3 O 8 powder, sintering, crushing, and sieving the fine particles. Are known. The same process is then repeated again with the large particles remaining on the sieve. In this method, the yield of particles with a size of 40-90 μm is relatively low and the major proportion of U 3 O 8 powder occurs as unusable fine particles.

更に、破砕する際に破砕機の摩耗が起り、これ
が不純物としてU3O8粉末中に含まれかつその品
質を低下させ得る。この方法の他の欠点としては
破砕する際に惹起される粉塵発生が挙げられ、こ
れは相応して包封された方法を必要としかつ排気
浄化系における二次廃棄物生成を惹起する。更
に、硝酸ウラニル水溶液から出発し、これにテト
ラヒドロフルフリルアルコールを添加混合してゲ
ル状溶液を生成することが公知である。このゲル
状溶液を一定の周波数で振動するノズルヘツドを
用いて拡散させる。ノズルヘツドから噴出する球
状のゲル滴はNH3雰囲気の降下区間、次いで
NH3水溶液で充填されたカラムを通過し、その
カラムの底で、ウランを二ウラン酸アンモニウム
の形で含有する黄色の粒子、所謂核種として捕集
される。この核種をイソプロパノール/水混合物
で洗い、次いで真空中で乾燥させ、その後焼成す
る。次の焼結工程で粒子の成長が起る。篩い分け
により所定の大きさ40〜90μmの結晶が収率70〜
80%で得られる。その際微粒子及び粗粒子は廃棄
しかつ後処理しなければならない。それ故、この
方法は装置上のロスが非常に大きくかつ方法工程
数が多い。更に、この方法では二次廃棄物が水性
のかつイソプロパノール含有硝酸アンモニウム溶
液の形で生じる。
Moreover, during crushing, wear of the crusher occurs, which can be included as impurities in the U 3 O 8 powder and reduce its quality. Other disadvantages of this method include the dust generation caused during the crushing, which requires a correspondingly encapsulated process and leads to the formation of secondary waste in the exhaust gas purification system. Furthermore, it is known to start from an aqueous uranyl nitrate solution and add and mix tetrahydrofurfuryl alcohol thereto to produce a gel-like solution. This gel-like solution is diffused using a nozzle head that vibrates at a constant frequency. The spherical gel droplet ejected from the nozzle head flows through the descending section of the NH 3 atmosphere, and then
It passes through a column filled with an aqueous NH 3 solution, and at the bottom of the column it is collected as yellow particles containing uranium in the form of ammonium diuranate, so-called nuclides. The seeds are washed with an isopropanol/water mixture, then dried in vacuo and then calcined. Grain growth occurs in the subsequent sintering step. By sieving, the yield of crystals with a predetermined size of 40 to 90 μm is 70 to
Obtained at 80%. Fine and coarse particles must then be disposed of and worked up. Therefore, this method has a very large equipment loss and a large number of process steps. Furthermore, this process produces secondary waste in the form of an aqueous and isopropanol-containing ammonium nitrate solution.

更に、U3O8粉末を酸化数+4〜+6のウラン
化合物から酸素含有雰囲気中で強熱処理すること
により製造し、その際雰囲気として空気を使用し
かつ強熱処理を1100℃を下回る温度で行なうこと
は知られている。結晶の大きさが40〜90μmであ
り、更に可能な限り無孔であるU3O8粉末はこの
方法で製造することはできない。
Furthermore, U 3 O 8 powder is produced from a uranium compound with an oxidation number of +4 to +6 by ignition treatment in an oxygen-containing atmosphere, using air as the atmosphere and performing the ignition treatment at a temperature below 1100°C. is known. U 3 O 8 powders with a crystal size of 40 to 90 μm and, moreover, as non-porous as possible cannot be produced in this way.

それ故、本発明の課題は、経済的であり、二次
廃棄物の生成が可能な限り僅少でありかつ可能な
限り無孔の結晶を供与する。酸化数+4〜+6の
微粉状ウラン化合物を酸素含有雰囲気中常圧で強
熱処理することにより結晶の大きさ40〜90μmの
U3O8粉末を製造する方法を開示することであつ
た。
The object of the invention is therefore to provide crystals that are economical, generate as little secondary waste as possible, and are as pore-free as possible. By igniting a finely powdered uranium compound with an oxidation number of +4 to +6 at normal pressure in an oxygen-containing atmosphere, crystals with a crystal size of 40 to 90 μm are produced.
The objective was to disclose a method for producing U 3 O 8 powder.

本発明によりこの課題は、ウラン化合物を30容
量%より多い酸素を含む雰囲気中で1250℃以上の
温度で強熱処理することにより解決された。
According to the present invention, this problem has been solved by igniting a uranium compound at a temperature of 1250° C. or higher in an atmosphere containing more than 30% by volume of oxygen.

殊に、熱処理を1250〜1550℃で、有利には酸素
40〜100容量%を含有する雰囲気中で行なう。純
粋な酸素を使うと最も有利であることが明らかに
なつた。強熱処理を10〜30時間維持すると最良の
結果が得られる。
In particular, the heat treatment is carried out at 1250-1550°C, preferably with oxygen.
It is carried out in an atmosphere containing 40-100% by volume. The use of pure oxygen proved to be most advantageous. Best results are obtained if the ignition treatment is maintained for 10 to 30 hours.

例えば、原子炉純度を有すべきだが、任意に微
粒状であつてよい任意の酸化数>2種の酸化ウラ
ンを酸化アルミニウム製シヤーレ上に置きかつマ
ツフル炉中に配置する。このマツフル炉は酸素ビ
ンと接続しており、酸素流中1500℃に加熱しかつ
原料酸化ウランの細度に応じてこの温度に約10〜
30時間放置する。
For example, uranium oxide of any oxidation number >2, which should have reactor purity but may optionally be in finely divided form, is placed on an aluminum oxide shear tray and placed in a Matsufuru reactor. This Matsufuru furnace is connected to an oxygen bottle, heated to 1500℃ in an oxygen stream, and heated to this temperature for about 10 to 10 minutes depending on the fineness of the raw material uranium oxide.
Leave for 30 hours.

このようにして製造したU3O8結晶は無孔であ
り、BET表面積<0.1m2/gを有し、かつトルエ
ン密度8.32〜8.34g/cm3を有し、一方理論密度は
8.39g/cm3であるので、ほぼ達成される。
The U 3 O 8 crystals produced in this way are non-porous, have a BET surface area <0.1 m 2 /g and a toluene density of 8.32-8.34 g/cm 3 , while the theoretical density is
Since it is 8.39g/cm 3 , it is almost achieved.

本発明方法では稜の長さ40〜90μmのU3O8結晶
の収率が特に高く、80%を上回り、殆んどの場合
90%より高い。非常に大きな結晶と微粒子分は篩
により分離して更に加工することができる。僅少
量の非常に大きな結晶は大きさ40〜90μmに機械
的に破砕した後直接燃料生成物流に加えることが
できかつ微粒子分は再び直接製造工程に供給する
ことができるので最終的には本方法は二次廃棄物
の形成もなくほぼ定量的収率で操作することがで
きる。
In the method of the present invention, the yield of U 3 O 8 crystals with a ridge length of 40 to 90 μm is particularly high, exceeding 80%, and in most cases
Higher than 90%. Very large crystals and fine particles can be separated by sieving and further processed. A small amount of very large crystals can be added directly to the fuel product stream after being mechanically crushed to a size of 40 to 90 μm, and the fine particulate fraction can be fed directly back into the manufacturing process, so that the final result of this method is can be operated with almost quantitative yields without the formation of secondary wastes.

本発明方法は、一工程法で操作しかつ多大な投
資或いは酸素を除いて化学品の消費を必要としな
いので特に簡単でありかつ経済的である。
The process of the invention is particularly simple and economical, since it operates in one step and does not require large investments or consumption of chemicals, except for oxygen.

純粋な酸素雰囲気の代りに、熱処理を不活性ガ
スと共に酸素少なくとも30容量%を含有する雰囲
気中で行なうこともできるが、この場合長時間の
熱処理を必要とし、これはこの別法を純粋な酸素
雰囲気中に比べて時間的ロスが大きいため不経済
にする。
Instead of a pure oxygen atmosphere, the heat treatment can also be carried out in an atmosphere containing at least 30% by volume of oxygen together with an inert gas, but this requires a longer heat treatment, which makes this alternative It is uneconomical because the time loss is greater than in the atmosphere.

本発明方法によりU3O8結晶を製造するに当り、
任意に小さい原料結晶の大きさの酸化ウラン及び
酸化数+4〜+6のすべてのウランを使用できる
ことは特に驚異的である。
In producing U 3 O 8 crystals by the method of the present invention,
It is particularly surprising that uranium oxide with arbitrarily small raw material crystal sizes and all uranium with an oxidation number of +4 to +6 can be used.

このように生成したU3O8粉末を用いて同じ結
晶の大きさ40〜90μmのUO2粉末も製造すること
ができる。このためには、粒径40〜90μmのU3O8
結晶をモリブデンシヤーレ上に施しかつ連続押出
炉(Durchstopofen)中、殊に水素雰囲気中で
850〜1700℃の熱処理に約8〜20時間供する。
Using the U 3 O 8 powder thus produced, UO 2 powder with the same crystal size of 40 to 90 μm can also be produced. For this purpose, U 3 O 8 with a particle size of 40-90 μm is used.
The crystals are deposited on a molybdenum Schare and in a continuous extrusion furnace (Durchstopofen), especially in a hydrogen atmosphere.
Heat treatment at 850-1700°C for about 8-20 hours.

この処理法によりその外観がU3O8結晶と同一
でありかつ同様に無孔であるUO2結晶が得られ
る。
This treatment method yields UO 2 crystals whose appearance is identical to U 3 O 8 crystals and which are likewise non-porous.

Claims (1)

【特許請求の範囲】 1 酸化数+4〜+6の微粉状ウラン化合物を酸
素含有雰囲気中常圧で強熱処理することにより結
晶の大きさ40〜90μmのU3O8粉末を製造する方法
において、ウラン化合物を1250℃以上の温度で30
容量%より多量の酸素を含む雰囲気中で強熱処理
することを特徴とするU3O8粉末の製法。 2 熱処理を1250〜1550℃で行なう特許請求の範
囲第1項記載の方法。 3 熱処理を純粋な酸素中で行なう特許請求の範
囲第1項又は第2項記載の方法。 4 熱処理を10〜30時間行なう特許請求の範囲第
1項〜第3項のいずれか1項に記載の方法。
[Claims] 1. A method for producing U 3 O 8 powder with a crystal size of 40 to 90 μm by igniting a finely powdered uranium compound having an oxidation number of +4 to +6 at normal pressure in an oxygen-containing atmosphere, 30 at temperatures above 1250℃
A method for producing U 3 O 8 powder, characterized by ignition treatment in an atmosphere containing oxygen in an amount greater than % by volume. 2. The method according to claim 1, wherein the heat treatment is carried out at 1250 to 1550°C. 3. The method according to claim 1 or 2, wherein the heat treatment is performed in pure oxygen. 4. The method according to any one of claims 1 to 3, wherein the heat treatment is performed for 10 to 30 hours.
JP57156003A 1981-09-12 1982-09-09 Manufacture of u3o8 powder Granted JPS5855337A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3136302.4 1981-09-12
DE3136302A DE3136302C2 (en) 1981-09-12 1981-09-12 Method of making U 3 O 8 powder

Publications (2)

Publication Number Publication Date
JPS5855337A JPS5855337A (en) 1983-04-01
JPH0214291B2 true JPH0214291B2 (en) 1990-04-06

Family

ID=6141546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156003A Granted JPS5855337A (en) 1981-09-12 1982-09-09 Manufacture of u3o8 powder

Country Status (6)

Country Link
US (1) US4483806A (en)
JP (1) JPS5855337A (en)
CA (1) CA1190721A (en)
DE (1) DE3136302C2 (en)
FR (1) FR2512800B1 (en)
GB (1) GB2106487B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128871A (en) * 1990-09-20 1992-04-30 Nec Kagoshima Ltd Fluorescent display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655467B1 (en) * 1989-12-05 1994-02-25 Pechiney Uranium PROCESS FOR OBTAINING COMBUSTIBLE UO2 PELLETS FROM METAL, WITHOUT PRODUCTION OF EFFLUENT.
JP4085520B2 (en) * 1999-06-16 2008-05-14 三菱マテリアル株式会社 Deteriorated UF6 treatment facility and treatment method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140151A (en) * 1959-11-12 1964-07-07 James R Foltz Method of reprocessing uo2 reactor fuel
US3167388A (en) * 1961-04-26 1965-01-26 Kerr Mc Gee Oil Ind Inc Massive crystals of uo
US3382066A (en) * 1965-07-23 1968-05-07 Mallory & Co Inc P R Method of making tungsten-copper composites
US3761547A (en) * 1970-07-17 1973-09-25 Gen Electric Process for controlling surface area of ceramic powders
US3790493A (en) * 1971-04-06 1974-02-05 Gen Electric Post oxidation process for uranium dioxide rich compositions
US3803273A (en) * 1971-08-27 1974-04-09 Gen Electric Ceramic fuel fabrication process providing controlled density and grain size
US4077816A (en) * 1973-07-30 1978-03-07 Scm Corporation Dispersion-strengthened metals
US4201738A (en) * 1978-08-24 1980-05-06 The United States Of America As Represented By The United States Department Of Energy Preparation of U3 O8
DE3024634C2 (en) * 1980-06-30 1985-05-15 Nukem Gmbh, 6450 Hanau Process for the production of uranium oxide sintered particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128871A (en) * 1990-09-20 1992-04-30 Nec Kagoshima Ltd Fluorescent display device

Also Published As

Publication number Publication date
FR2512800A1 (en) 1983-03-18
CA1190721A (en) 1985-07-23
FR2512800B1 (en) 1986-09-05
JPS5855337A (en) 1983-04-01
GB2106487B (en) 1984-10-24
US4483806A (en) 1984-11-20
DE3136302C2 (en) 1983-08-04
GB2106487A (en) 1983-04-13
DE3136302A1 (en) 1983-03-24

Similar Documents

Publication Publication Date Title
US4643873A (en) Fabrication of nuclear fuel pellets
US2761776A (en) Process for the manufacture of particulate metallic niobium
JPH0214291B2 (en)
RU2081063C1 (en) Method of preparing fuel uranium pellets (versions)
EP0277708B1 (en) Pellet fabrication
US3623838A (en) Process for the production of lead oxides
JPS6323517B2 (en)
US3477830A (en) Production of sinterable uranium dioxide
KR940006544B1 (en) Uo2 pellet fabrication process
KR840002150B1 (en) Method of improving the green strengh of nuclear fuel pellets
JP3071671B2 (en) Method of controlling grain size of UO2 sintered pellet
JPH0717716A (en) Production of uranyl fluoride
US3479228A (en) Process for the preparation of electrode material from nickel salt and boron containing compound
JP3071516B2 (en) Method for producing powdery uranium-containing compound
US3100686A (en) Method for preparation of sinterable beryllium oxide
JP4051732B2 (en) Method for producing nuclear fuel particles
JPH0225401B2 (en)
JPH10251714A (en) Production of silver powder for powder metallurgy
DE3415326A1 (en) METHOD FOR PRODUCING SINTERABLE POWDER FROM LITHIUM ORTHOSILICATE LI (DOWN ARROW) 4 (DOWN ARROW) SIO (DOWN ARROW) 4 (DOWN ARROW) AND THE USE THEREOF
US3010825A (en) Production of neutron source material
JPH10332861A (en) Method for preparing uranium mononitride
DE102021126701A1 (en) Process for the production of silicon pellets and for melting the pellets produced
JPH03100492A (en) Nuclear fuel and method of manufacturing the same
RU2145741C1 (en) Method for producing plutonium metal powder from solid plutonium metal
JPS63214693A (en) Manufacture of nuclear fuel sintered body