JPH0214289B2 - - Google Patents

Info

Publication number
JPH0214289B2
JPH0214289B2 JP17632282A JP17632282A JPH0214289B2 JP H0214289 B2 JPH0214289 B2 JP H0214289B2 JP 17632282 A JP17632282 A JP 17632282A JP 17632282 A JP17632282 A JP 17632282A JP H0214289 B2 JPH0214289 B2 JP H0214289B2
Authority
JP
Japan
Prior art keywords
zno
present
zinc
lithium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17632282A
Other languages
Japanese (ja)
Other versions
JPS5969427A (en
Inventor
Keizo Tsukamoto
Senjo Yamagishi
Hiroaki Yanagida
Hideto Kamiaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP17632282A priority Critical patent/JPS5969427A/en
Publication of JPS5969427A publication Critical patent/JPS5969427A/en
Publication of JPH0214289B2 publication Critical patent/JPH0214289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はLi2ZnO2で表わされる二酸化亜鉛二リ
チウムなる新規物質に関する。 現在、リチウム、亜鉛および酸素より構成され
る化合物はLi4ZnO3のみが確認されているにすぎ
ない(ASTM powder diffraction file、Joint
Committe on Powder Diffraction Standards、
Swarthmore、U.S.A.Card26−1210)。 本発明者らはリチウム、亜鉛および酸素より構
成される化合物を研究し、新規な化合物Li2ZnO2
を見出し本発明に到達したものであり、本発明は
この新規物質を提供することを目的とするもので
ある。 以下に本発明物質について詳細に説明する。 本発明の化合物はリチウム、亜鉛および酸素よ
り構成される固体物質であり、その粉末は淡い黄
色味を帯びた白色を呈する。 本発明の化合物Li2ZnO2の主要X線回折パター
ンとその強度は第1図及び表1のとおりであり、
本発明の化合物Li2ZnO2は格子定数a=8.12Åお
よびc=6.73Åを有する六方晶系の構造を持つ結
晶である。
The present invention relates to a new material, dilithium zinc dioxide, represented by Li 2 ZnO 2 . Currently, only Li 4 ZnO 3 has been confirmed as a compound composed of lithium, zinc, and oxygen (ASTM powder diffraction file, Joint
Committe on Powder Diffraction Standards,
Swarthmore, USACard26−1210). The present inventors studied compounds composed of lithium, zinc and oxygen, and created a new compound Li 2 ZnO 2
This discovery led to the present invention, and the object of the present invention is to provide this new substance. The substance of the present invention will be explained in detail below. The compound of the present invention is a solid substance composed of lithium, zinc and oxygen, and its powder exhibits a pale yellowish white color. The main X-ray diffraction pattern and its intensity of the compound Li 2 ZnO 2 of the present invention are shown in FIG. 1 and Table 1,
The compound Li 2 ZnO 2 of the present invention is a crystal having a hexagonal structure with lattice constants a=8.12 Å and c=6.73 Å.

【表】 本発明による化合物Li2ZnO2は化学分析の結
果、酸化リチウムと酸化亜鉛のモル比がLi2O:
ZnO=1:1の組成であり、リチウムと亜鉛の原
子比がLi:Zn=2:1になつていることが確認
された。 JISZ−8807−76に従がい、比重ビンを用いて
本発明のLi2ZnO2の真比重を測定した結果、測定
温度20℃において3.70〜3.74の値であつた。 次に本発明のLi2ZnO2の製造例および用途例に
より具体的に説明する。 本発明の化合物Li2ZnO2の原料としてはLiO2
たは熱分解によりLiO2を生成するLiCO3、LiOH
などのリチウム化合物と亜鉛華または熱分解して
ZnOを生成する亜鉛化合物を用いることができ
る。 製造例 純度99.99%の炭酸リチウムと純度99.99%の塩
基性炭酸亜鉛とをLi2OとZnOのモル比に換算し
て1:1の割合で混合し、この混合物をメノウボ
ール入りポツトミルにて湿式混合粉砕した。得ら
れた混合物を乾燥後、円筒状に成形し、白金ルツ
ボ中10-2mmHgの減圧に保ちながら、あるいは、
H2又は不活性ガス雰囲気に保ちながら、電気炉
を用いて500℃で2時間、その後650℃にて6時
間、十分に仮焼した後、850℃で24時間焼成を行
なつた。その後減圧を保ちながら、あるいは、
H2又は不活性ガス雰囲気に保ちながら常温まで
自然放冷したものを粉砕し、淡い黄色味を帯びた
白色の粉末を得た。この粉末の真比重は3.71であ
り、化学分析の結果、Li2O:ZnOのモル比は
1:1、X線回折パターンの主要ピークは表1に
示したLi2ZnO2であつた。そのX線回折パターン
を第1図に示す。 用途例 本発明のLi2ZnO2を成形後、750℃で焼成した
焼結体は相対湿度の変化に伴ない、その電気抵抗
が変化し、感湿抵抗体としての性質を示した。感
湿抵抗体として測定した相対湿度と電気抵抗との
関係を第2図に示す(測定温度20℃)。 これで見るとその関係は指数函数的であり、こ
れによつて本発明のLi2ZnO2は感湿抵抗体として
充分使用し得るものであることが判る。
[Table] As a result of chemical analysis, the compound Li 2 ZnO 2 according to the present invention has a molar ratio of lithium oxide and zinc oxide of Li 2 O:
It was confirmed that the composition was ZnO = 1:1, and the atomic ratio of lithium and zinc was Li:Zn = 2:1. The true specific gravity of Li 2 ZnO 2 of the present invention was measured using a pycnometer according to JISZ-8807-76, and the result was a value of 3.70 to 3.74 at a measurement temperature of 20°C. Next, the present invention will be specifically explained using manufacturing examples and usage examples of Li 2 ZnO 2 . As a raw material for the compound Li 2 ZnO 2 of the present invention, LiO 2 or LiCO 3 or LiOH that generates LiO 2 by thermal decomposition is used.
Lithium compounds such as zinc oxide or thermal decomposition
Zinc compounds that produce ZnO can be used. Production example Lithium carbonate with a purity of 99.99% and basic zinc carbonate with a purity of 99.99% are mixed at a ratio of 1:1 in terms of the molar ratio of Li 2 O and ZnO, and this mixture is wet-processed in a pot mill containing an agate ball. Mixed and crushed. After drying the resulting mixture, it is formed into a cylindrical shape and placed in a platinum crucible at a reduced pressure of 10 -2 mmHg, or
While maintaining an H 2 or inert gas atmosphere, the material was sufficiently calcined using an electric furnace at 500°C for 2 hours, then at 650°C for 6 hours, and then fired at 850°C for 24 hours. Then, while maintaining reduced pressure, or
The mixture was allowed to cool naturally to room temperature while being kept in an H 2 or inert gas atmosphere, and then ground to obtain a pale yellowish white powder. The true specific gravity of this powder was 3.71, and as a result of chemical analysis, the molar ratio of Li 2 O:ZnO was 1:1, and the main peak of the X-ray diffraction pattern was Li 2 ZnO 2 shown in Table 1. The X-ray diffraction pattern is shown in FIG. Application Example A sintered body made of the Li 2 ZnO 2 of the present invention after being molded and fired at 750°C changed its electrical resistance as the relative humidity changed, and exhibited properties as a humidity-sensitive resistor. Figure 2 shows the relationship between relative humidity and electrical resistance measured as a humidity-sensitive resistor (measurement temperature 20°C). It can be seen from this that the relationship is exponential, and from this it can be seen that the Li 2 ZnO 2 of the present invention can be satisfactorily used as a moisture-sensitive resistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のLi2ZnO2のX線回折図であ
り、第2図は相対湿度と電気抵抗との関係を示す
グラフである。
FIG. 1 is an X-ray diffraction diagram of Li 2 ZnO 2 of the present invention, and FIG. 2 is a graph showing the relationship between relative humidity and electrical resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 Li2ZnO2で表わされる二酸化亜鉛二リチウ
ム。
1. Dilithium zinc dioxide, expressed as Li 2 ZnO 2 .
JP17632282A 1982-10-08 1982-10-08 Dilithium zinc dioxide Granted JPS5969427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17632282A JPS5969427A (en) 1982-10-08 1982-10-08 Dilithium zinc dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17632282A JPS5969427A (en) 1982-10-08 1982-10-08 Dilithium zinc dioxide

Publications (2)

Publication Number Publication Date
JPS5969427A JPS5969427A (en) 1984-04-19
JPH0214289B2 true JPH0214289B2 (en) 1990-04-06

Family

ID=16011551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17632282A Granted JPS5969427A (en) 1982-10-08 1982-10-08 Dilithium zinc dioxide

Country Status (1)

Country Link
JP (1) JPS5969427A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478429B (en) * 2014-12-27 2016-08-24 桂林理工大学 Temperature-stable ultralow dielectric microwave dielectric ceramic Li2znO2and preparation method thereof
CN104609851A (en) * 2015-02-02 2015-05-13 桂林理工大学 Temperature-stable ultra-low dielectric constant microwave dielectric ceramic Li2Zn4O5 and preparation method thereof

Also Published As

Publication number Publication date
JPS5969427A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
Coffeen Ceramic and dielectric properties of the stannates
Izquierdo et al. Phase equilibria in the system Li2O-TiO2
Pfaff Sol–gel synthesis of barium titanate powders of various compositions
AMIN et al. Reaction of anatase and rutile with barium carbonate
Nitta et al. Formation and properties of barium metaplumbate
CN114394827B (en) Low-dielectric-constant silicate microwave dielectric ceramic and preparation method thereof
US2908579A (en) Barium titanate insulators
US4082826A (en) Process for producing highly ion-conductive porcelain
US3704266A (en) Barium titanozirconate semiconducting ceramic compositions
Pfaff Chemical synthesis of calcium stannates from peroxo precursors
JPH0214289B2 (en)
Tateishi et al. Fabrication of lead-free semiconducting ceramics using a BaTiO3–(Bi1/2Na1/2) TiO3 system by adding CaO
JPH04275974A (en) Method for producing ion conducting ceramic material
JPH01172256A (en) Raw power for producing easy-to-sinter lead
Pfaff et al. On the preparation and sintering behaviour of barium titanate
JP3113913B1 (en) Electrically conductive cerium double oxide ceramics and its manufacturing method
JPH0352412B2 (en)
JPH0196055A (en) Superconductive ceramic composition
JPH07118061A (en) Barium titanate-based semiconductor porcelain composition
JPS63260853A (en) Superconductive material
JP2509043B2 (en) Method of manufacturing dielectric ceramics for temperature compensation and raw material composition used therefor
JP2849704B2 (en) Bismuth-vanadium oxide compound for oxide ion conductor and method for producing the same
Antolini Li2O evaporation from LixCo1− xO solid solutions at 1200° C
JPH0134556B2 (en)
JPH0220571B2 (en)