JPH0214246A - Thermoplastic liquid crystal polymer composition and production thereof - Google Patents

Thermoplastic liquid crystal polymer composition and production thereof

Info

Publication number
JPH0214246A
JPH0214246A JP16522488A JP16522488A JPH0214246A JP H0214246 A JPH0214246 A JP H0214246A JP 16522488 A JP16522488 A JP 16522488A JP 16522488 A JP16522488 A JP 16522488A JP H0214246 A JPH0214246 A JP H0214246A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal polymer
composition
thermotropic liquid
potassium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16522488A
Other languages
Japanese (ja)
Other versions
JP2648745B2 (en
Inventor
Takio Tasaka
田坂 多希雄
Akiyoshi Kawaguchi
河口 明義
Yosaburo Tsujikawa
辻川 洋三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP16522488A priority Critical patent/JP2648745B2/en
Publication of JPH0214246A publication Critical patent/JPH0214246A/en
Application granted granted Critical
Publication of JP2648745B2 publication Critical patent/JP2648745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermoplastic liquid crystal polymer composition having improved impact resistance and long-term heat-resistance by compounding a specific amount of a specific potassium 6-titanate fiber. CONSTITUTION:The objective composition is produced by compounding (A) a thermoplastic liquid crystal polymer having a weight-average molecular weight of 5,000-200,000 [e.g., wholly aromatic (co)polyester or wholly aromatic (co) polyester amide] with (B) 5-60wt.% of potassium titanate fiber having a pH of 6-8, preferably 6.5-7.5, exhibiting a half-value width of <=0.1, preferably <=0.05 in a characteristic peak of an X-ray diffraction chart at 2theta=13.8 deg. and optionally surface-treated with at least one kind of compound selected from gamma-mercapto- propyl trimethoxysilane, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サーモトロピック液晶ポリマー組成物及びそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermotropic liquid crystal polymer composition and a method for producing the same.

従来の技術及びその問題点 サーモトロピック液晶ポリマーは、樹脂単独でもその分
子構造(剛直鎖状分子)の故に、成形時にその結晶構造
が配向し易く、流れ方向の機械的強度が大で、流動性に
優れ、また流れ方向の成形収縮率が極めて小さいという
特徴を有する熱可塑性樹脂として注目され、種々の利用
分野にその用途が期待されているものである。
Conventional technology and its problems Thermotropic liquid crystal polymers are easily oriented during molding due to their molecular structure (rigid linear molecules) even when used as a resin alone, and have high mechanical strength in the flow direction and low fluidity. It is attracting attention as a thermoplastic resin that has excellent properties such as excellent molding shrinkage in the flow direction and extremely low molding shrinkage in the machine direction, and is expected to be used in a variety of fields.

しかしながら、斯かるサーモトロピック液晶ポリマーは
、ポリマー鎖が成形加工時に配向し易いために、流れ方
向とその直角方向での強度差及び成形収縮率に大きな差
が生じ(以下これを「異方性」という)、その結果成形
品の形状設計が難となり、その利用分野を狭めている。
However, in such thermotropic liquid crystal polymers, because the polymer chains are easily oriented during molding, there is a large difference in strength and molding shrinkage in the flow direction and in the direction perpendicular to the flow direction (hereinafter referred to as "anisotropy"). As a result, it has become difficult to design the shape of molded products, narrowing the field of application.

また多くの利用分野においては、該ポリマーの特長であ
る難燃性、耐薬品性、成形加工性等を維持しながら、更
に耐熱性、各種機械的強度乃至剛性に優れた材料が求め
られているのが実情である。
In addition, in many application fields, materials are required that maintain the characteristics of the polymer, such as flame retardancy, chemical resistance, and moldability, while also having excellent heat resistance, various mechanical strengths, and rigidity. That is the reality.

そこで、近年、上記ポリマーに炭酸カルシウム、マイカ
、ガラスピーズ等の粉末状もしくは薄片状の充填剤を配
合して該ポリマーの異方性を改善する試み、並びに該ポ
リマーにガラス繊維等の繊維状強化剤を配合して該ポリ
マーの耐熱性、強度及び剛性を改善する試みがなされて
いる。しかるに、前者の試みでは、該ポリマーの耐衝撃
性が大幅に低下して該ポリマーが非常に脆くなるという
致命的な欠点が生ずるし、また後者の試みでは、該ポリ
マーの異方性の改善効果が乏しい上に、加工機械や金型
との接触面を摩耗させたり、成形品表面にガラス繊維の
浮出し模様が現れる等、液晶ポリマーの特徴である表面
平滑性を損い外観を悪くさせるという重大な欠点を生ず
る。
Therefore, in recent years, attempts have been made to improve the anisotropy of the polymer by adding powdered or flaky fillers such as calcium carbonate, mica, and glass peas to the polymer, and to add fibrous reinforcement such as glass fiber to the polymer. Attempts have been made to improve the heat resistance, strength and stiffness of the polymer by incorporating agents into it. However, the former approach has the fatal drawback of significantly reducing the impact resistance of the polymer and making it extremely brittle, while the latter approach has the effect of improving the anisotropy of the polymer. In addition, it causes abrasion of the contact surface with processing machines and molds, and the appearance of embossed glass fiber patterns on the surface of the molded product, impairing the surface smoothness that is characteristic of liquid crystal polymers and worsening the appearance. This results in a serious drawback.

このような観点から、サーモトロピック液晶ポリマーの
耐熱性、強度及び剛性度を向上させると共に、良好な表
面外観を維持し、異方性が小さく、成形加工機及び金型
の摩耗の少ないサーモトロピック液晶ポリマー組成物が
開発されている(例えば特開昭61−195156号公
報、特開昭62−81448号公報等参照)。前者の組
成物は、サーモトロピック液晶ポリマーの1品種である
全芳香族コポリエステルに、ミクロファイバーであるチ
タン酸カリウム繊維(以下これをrPTW」という)、
殊に遊離カリウム含有世が0.025%以下のPTWを
5〜70重量%配合した組成物である。また後者の組成
物は、サーモトロピック液晶ポリマーにPTWを5〜7
0重量%配合した組成物である。
From this point of view, we aim to improve the heat resistance, strength and rigidity of thermotropic liquid crystal polymers, maintain good surface appearance, have low anisotropy, and reduce wear on molding machines and molds. Polymer compositions have been developed (see, for example, JP-A-61-195156, JP-A-62-81448, etc.). The former composition consists of fully aromatic copolyester, which is a type of thermotropic liquid crystal polymer, potassium titanate fiber (hereinafter referred to as rPTW), which is a microfiber;
In particular, it is a composition containing 5 to 70% by weight of PTW containing 0.025% or less of free potassium. In addition, the latter composition contains 5 to 7 PTW in a thermotropic liquid crystal polymer.
This is a composition containing 0% by weight.

しかしながら、これらの組成物には、特にノツチ付きア
イゾツト衝撃強度が低く (即ち耐衝撃性に乏しく)、
脆いという致命的欠点があり、特に後者の組成物は長期
耐熱性にも劣っており、このような欠点の解決が切望さ
れているのが現状である。
However, these compositions have particularly low notched isot impact strength (i.e., poor impact resistance);
They have a fatal drawback of being brittle, and the latter composition in particular has poor long-term heat resistance, and there is currently a strong desire to resolve these drawbacks.

問題点を解決するための手段 本発明の目的は、従来のPTW強化材料では到底予期で
きない程、耐衝撃性が大幅に改善され、また長期耐熱性
が改善されたサーモトロピック液晶ポリマー樹脂組成物
及びその製造方法を提供することにある。
Means for Solving the Problems It is an object of the present invention to provide thermotropic liquid crystal polymer resin compositions and thermotropic liquid crystal polymer resin compositions that have significantly improved impact resistance and long-term heat resistance that could never be expected with conventional PTW reinforced materials. The object of the present invention is to provide a manufacturing method thereof.

即ち、本発明は、pH6〜8、X線回折チャート2θ=
13,8°の特性ピークにおける半値幅が0.1以下の
6−チタン酸カリウム繊維を5〜60重回%含有するこ
とを特徴とするサーモトロピック液晶ポリマー組成物に
係る。
That is, in the present invention, pH 6 to 8, X-ray diffraction chart 2θ=
The present invention relates to a thermotropic liquid crystal polymer composition characterized by containing 5 to 60 times % of 6-potassium titanate fibers having a half value width of 0.1 or less at a characteristic peak of 13.8 degrees.

本発明において、サーモトロピック液晶ポリマーとは、
溶融状態において液晶性(分子の方向が揃っている)で
あるポリマーをいう。本発明で用いられるサーモトロピ
ック液晶ポリマーとしては、従来公知のものを広く使用
でき、例えば全芳香族(コ)ポリエステル、全芳香族(
コ)ポリエステルアミド、芳香族−脂肪族コポリエステ
ル、芳香族ポリアゾメチン、芳香族ポリエステルカーボ
ネート等が挙げられ、これらは1種単独で又は2種以上
混合して使用され得る。
In the present invention, thermotropic liquid crystal polymer is
A polymer that is liquid crystalline (molecules aligned in the same direction) in a molten state. As the thermotropic liquid crystal polymer used in the present invention, a wide variety of conventionally known thermotropic liquid crystal polymers can be used, such as wholly aromatic (co)polyester, wholly aromatic (co)polyester,
Co) Polyesteramides, aromatic-aliphatic copolyesters, aromatic polyazomethines, aromatic polyester carbonates, etc. may be mentioned, and these may be used alone or in a mixture of two or more.

全芳香族(コ)ポリエステル及び全芳香族(コ)ポリエ
ステルアミドとは、ポリマー鎖を構成するどのモノマー
成分にも少なくとも1個の芳香環を有することから、全
芳香族と称され、分子構造が剛直となるが故に、ポリマ
ーは溶融相において液品性を示すことが可能となる。こ
のようなモノマー成分としては、ハイドロキノン、レゾ
ルシン、4.4′−ジヒドロキシジフェニル、4.4′
ジヒドロキシジフエニルエーテル、4.4’ −ジヒド
ロキシジフェニルメタン、4,4′−ジヒドロキシベン
ゾフェノン、4,4′ −ジヒドロキシジフェニルスル
フィド、4.4’ −ジヒドロキシジフェニルスルホン
、2,6−シヒドロキシナフトイル等の芳香族ジオール
、p−フェニレンジアミン、m−フェニレンジアミン、
p−キシリレンジアミン、m−キシリレンジアミン、4
,4′ジアミノジフエニル、4,4′−ジアミノジフェ
ニルエーテル、4.4′−ジアミノジフェニルメタン、
4,4′−ジアミノベンゾフェノン、4゜4′−ジアミ
ノジフェニルスルフィド、4,4′−ジアミノジフエニ
ルスルホン等の芳香族ジアミン、テレフタル酸、イソフ
タル酸、4,4′−ジカルボキシジフェニル、4.4’
 −ジカルボキシジフェニルエーテル、2,6−ジカル
ボキシナフトイル等の芳香族ジカルボン酸、p−ヒドロ
キシ安息香酸、m−ヒドロキシ安息香酸、6−ヒドロキ
シ−2−ナフトエ酸、4−ヒドロキシ桂皮酸等の芳香族
ヒドロキシカルボン酸、p−アミノ安息香酸、6−アミ
ノ−2−ナフトエ酸等の芳香族アミノカルボン酸等を例
示できるが、これらに限定されるものではない。
Totally aromatic (co)polyester and wholly aromatic (co)polyester amide are called fully aromatic because each monomer component that makes up the polymer chain has at least one aromatic ring, and the molecular structure is Due to its rigidity, the polymer can exhibit liquid properties in the molten phase. Such monomer components include hydroquinone, resorcinol, 4.4'-dihydroxydiphenyl, 4.4'
Aromatic aromas such as dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 2,6-dihydroxynaphthoyl, etc. group diol, p-phenylenediamine, m-phenylenediamine,
p-xylylene diamine, m-xylylene diamine, 4
, 4'-diaminodiphenyl, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane,
Aromatic diamines such as 4,4'-diaminobenzophenone, 4°4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfone, terephthalic acid, isophthalic acid, 4,4'-dicarboxydiphenyl, 4.4 '
- Aromatic dicarboxylic acids such as dicarboxydiphenyl ether and 2,6-dicarboxynaphthoyl; aromatic acids such as p-hydroxybenzoic acid, m-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 4-hydroxycinnamic acid; Examples include aromatic aminocarboxylic acids such as hydroxycarboxylic acid, p-aminobenzoic acid, and 6-amino-2-naphthoic acid, but are not limited thereto.

全芳香族(コ)ポリエステル及び全芳香族(コ)ポリエ
ステルアミドは、これらモノマー成分から常法に従い容
易に製造される。全芳香族(コ)ポリエステルは、例え
ば特開昭56−104932号公報や特開昭57−44
622号公報に開示されている方法に従い、また全芳香
族(コ)ポリエステルアミドは、例えば米国特許第41
82842号明細書に開示されている方法に従い、それ
ぞれ製造される。
A wholly aromatic (co)polyester and a wholly aromatic (co)polyester amide can be easily produced from these monomer components according to conventional methods. Fully aromatic (co)polyesters are disclosed in, for example, JP-A-56-104932 and JP-A-57-44.
According to the method disclosed in US Pat.
Each is manufactured according to the method disclosed in No. 82842.

芳香族−脂肪族(コ)ポリエステルの具体例としてはポ
リエチレンテレフタレートとp−ヒドロキシ安息香酸と
の共重合体を例示できる。
A specific example of the aromatic-aliphatic (co)polyester is a copolymer of polyethylene terephthalate and p-hydroxybenzoic acid.

芳香族ポリアゾメチンの具体例としては、ポリにトリロ
ー2−メチル−1,4−フェニレンニトリロメチリジン
−1,4−フェニレンメチリジン)、ポリにトリロー2
−メチル−1,4−フェニレンニトリロメチリジン−1
,4−フェニレンメチリジン)、ポリにトリロー2−ク
ロロ−1,4−フェニレンニトリロメチリジン−1,4
フエニレンメチリジン)等を例示できる。
Specific examples of the aromatic polyazomethine include polytrilow 2-methyl-1,4-phenylenenitrilomethylidine-1,4-phenylenemethylidine), polytrilow 2-methyl-1,4-phenylenenitrilomethylidine-1,4-phenylenemethylidine)
-Methyl-1,4-phenylenenitrilomethylidine-1
, 4-phenylene methylidine), polytrilow 2-chloro-1,4-phenylene nitrilomethylidine-1,4
(phenylene methylidine), etc.

芳香族ポリエステルカーボネートとしては、例えば米国
特許第4107143号明細書、同4284757号明
細書等に開示されているものが広く用いられる。
As the aromatic polyester carbonate, those disclosed in, for example, US Pat. No. 4,107,143 and US Pat. No. 4,284,757 are widely used.

本発明で用いられるサーモトロピック液晶ポリマーは、
ゲルパーミェーションクロマトグラフィーにて測定した
重量平均分子量が約5千〜約20万、特に約1万〜約5
万であるのが好適である。
The thermotropic liquid crystal polymer used in the present invention is
The weight average molecular weight measured by gel permeation chromatography is about 5,000 to about 200,000, especially about 10,000 to about 5
Preferably, it is 10,000.

サーモトロピック液晶ポリマーの重量平均分子量が小さ
過ぎると、得られる樹脂組成物の機械物性が低下する傾
向となり、一方該ボリマーの重量平均分子量が大き過ぎ
ると、斯かるポリマーの製造が困難である上に、該ポリ
マーの溶融粘度が高くなり、そのため得られる樹脂組成
物の成形加工性が困難になる傾向が生ずるので、いずれ
も好ましくない。
If the weight average molecular weight of the thermotropic liquid crystal polymer is too small, the mechanical properties of the resulting resin composition tend to deteriorate; on the other hand, if the weight average molecular weight of the polymer is too large, it is difficult to produce such a polymer, and Both are unfavorable since the melt viscosity of the polymer increases, which tends to make the resulting resin composition difficult to mold.

本発明の組成物に配合されるチタン酸カリウム繊維は、
K2O・6TiO□なる化学式を有し、p)Iが6〜8
、望ましくは6.5〜7.5であり、X線回折チャート
2θ=13.8°の特性ピークにおける半値幅が0.1
以下、望ましくは0.05以下の高結晶性6−チタン酸
カリウム繊維(6−PTW)である。ここでpHとは、
PTWの1重量%懸濁水溶液(脱イオン水使用)を10
分間攪拌後、20℃で測定した値をいう。またX線回折
チャート2θ=13.8°の特性ピーりにおける半値幅
とは、2θ=13.8’におけるピーク高さをH11/
2Hでのピーク幅をWとすると、W/Hで表わされる値
をいう。後者の値は、PTWの結晶化度を示す指標とな
り、半値幅が小さい程結晶化度が大きいことを示すもの
である。
The potassium titanate fibers blended into the composition of the present invention are:
It has the chemical formula K2O.6TiO□, and p)I is 6 to 8.
, preferably 6.5 to 7.5, and the half width at the characteristic peak at 2θ = 13.8° in the X-ray diffraction chart is 0.1.
Hereinafter, highly crystalline potassium 6-titanate fiber (6-PTW) with a particle size of 0.05 or less is preferred. What is pH here?
1% by weight suspension of PTW in water (using deionized water)
This refers to the value measured at 20°C after stirring for a minute. In addition, the half-width at the characteristic peak at 2θ = 13.8° in the X-ray diffraction chart means the peak height at 2θ = 13.8' by H11/
When the peak width at 2H is W, it is a value expressed as W/H. The latter value is an index indicating the degree of crystallinity of PTW, and the smaller the half width, the greater the degree of crystallinity.

本発明で使用される上記特性値を有する6−PTWは、
例えば下記に示す方法に従い製造される。
The 6-PTW having the above characteristic values used in the present invention is
For example, it is manufactured according to the method shown below.

即ち、K2O1に2CO3等のに20成分及びTiO2
、TiO2含有化合物等のT i 02成分から水熱法
、フラックス法、焼成法、溶融法等の従来公知の方法に
従って6− P TWを製造し、次にこれを700℃以
上の高温で熱処理して2θ=13.8°の特性ピークに
おける半値幅が0.1以下、望ましくは0.05以下の
高結晶化上とした後、酸処理及び水洗により結晶系(6
−PTW)を変えることなく、pH6〜8の微酸性〜微
アルカリ性の所謂中性領域に調整された6−PTWとす
ることができる。
That is, 20 components such as 2CO3 and TiO2 are added to K2O1.
, 6-P TW is produced from Ti02 components such as TiO2-containing compounds according to conventionally known methods such as hydrothermal method, flux method, calcination method, melting method, etc., and then heat-treated at a high temperature of 700 ° C. or higher. After that, the characteristic peak at 2θ = 13.8° is highly crystallized with a half width of 0.1 or less, preferably 0.05 or less, and then acid treatment and water washing make the crystal system (6
-PTW) can be adjusted to a so-called neutral range of slightly acidic to slightly alkaline pH of 6 to 8 without changing 6-PTW.

本発明で用いられる6 −P TWのpHが8を越える
と、サーモトロピック液晶ポリマーが熱溶融時(配合混
練時及び成形加工時)に分子鎖切断(熱分解)を受は易
くなり、成形品の機械的強度、殊にアイゾツト衝撃強度
の低下が顕著になり、本発明の所期の目的が達成できな
くなる。一方、pHが6より小さいと、6− P TW
に残存している酸の影響により成形品の外観及び機械敵
強度が悪くなるのみならず加工機械や金型の腐食を引き
起こすことになるので、不都合である。
When the pH of the 6-P TW used in the present invention exceeds 8, the thermotropic liquid crystal polymer easily undergoes molecular chain scission (thermal decomposition) during thermal melting (during blending and kneading and molding), resulting in molded products. The mechanical strength, especially the Izot impact strength, is significantly reduced, making it impossible to achieve the intended purpose of the present invention. On the other hand, when the pH is less than 6, 6-P TW
This is inconvenient because the acid remaining in the molded product not only deteriorates in appearance and mechanical strength but also causes corrosion of processing machines and molds.

また本発明で用いられる6−PTWの上記半値幅が0.
1を越えると、5− P TWの合成段階で酸処理によ
りpHを8以下に調整しても、結晶化度が低いために6
−PTW中のに20成分が6−PTWの表面に移行し易
くなり、その故サーモトロピック液晶ポリマーへの混練
時には該ポリマーに含まれる微量の水分に溶は出し、p
Hが8を越えるアルカリ性となり、その結果数ポリマー
を溶融させる高温では該ポリマーの分子鎖を加水分解す
ることになり、従って6− P TWの補強効果を充分
に発現し得なくなるので、不適当である。
Further, the half width of 6-PTW used in the present invention is 0.
If the pH exceeds 1, even if the pH is adjusted to 8 or less by acid treatment during the synthesis stage of 5-P TW, the crystallinity will be low and the pH will be lower than 6.
-The 20 component in PTW easily migrates to the surface of 6-PTW, and therefore, when kneaded into a thermotropic liquid crystal polymer, it is dissolved in the trace amount of water contained in the polymer, and the p
It is unsuitable because it becomes alkaline with H exceeding 8, and as a result, the molecular chains of the polymer are hydrolyzed at high temperatures where several polymers are melted, and therefore the reinforcing effect of 6-P TW cannot be fully expressed. be.

上記特性値を有する6 −P TWを使用すれば、従来
補強効果が大きいとされていた高デイメンジョンのガラ
ス繊維よりも補強効果が大きく、特にノツチ付きアイゾ
ツト衝撃強さにおいては、従来rPTW強化品はGF強
強化上りかなり大幅にアイゾツト衝撃値が劣り、脆い」
という化学常識を覆す結果となることが見い出された。
If 6-P TW with the above characteristic values is used, the reinforcing effect will be greater than that of high dimension glass fibers, which were conventionally considered to have a large reinforcing effect. Although the product is GF reinforced, its Izotsu impact value is significantly inferior and it is brittle.
It was discovered that this result overturns the chemical common sense.

本発明で用いられる6 −P TWの繊維径及び繊維長
は、特に限定されるものではないが、繊維径は通常0.
01〜2μm程度、好ましくは0.05〜1μm程度が
、また繊維長は通常2〜500μm程度、好ましくは5
〜100μm程度で、アスペクト比(繊維長/繊維径)
が10以上が適当である。
The fiber diameter and fiber length of 6-P TW used in the present invention are not particularly limited, but the fiber diameter is usually 0.
The fiber length is usually about 0.01 to 2 μm, preferably about 0.05 to 1 μm, and the fiber length is usually about 2 to 500 μm, preferably 5
~100μm, aspect ratio (fiber length/fiber diameter)
It is appropriate that the value is 10 or more.

本発明で使用される6−PTWは、表面処理剤で処理さ
れていなくてもよいが、表面処理剤で表面処理されたも
のであるのが望ましい。斯かる表面処理剤としては、γ
−メルカプトプロピルトリメトキシシラン、β−(3,
4−エポキシシクロヘキシル)エチルトリメトキシシラ
ン及びN−フェニル−γ−アミノプロピルトリメトキシ
シランからなる群から選ばれた少なくとも1種が好適で
ある。斯かる表面処理剤で処理された6−PTWを用い
ると、後に行なわれる溶融混合機への供給が容易になる
という利点を有している。
The 6-PTW used in the present invention does not need to be treated with a surface treatment agent, but is preferably surface treated with a surface treatment agent. As such a surface treatment agent, γ
-Mercaptopropyltrimethoxysilane, β-(3,
At least one selected from the group consisting of 4-epoxycyclohexyl)ethyltrimethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane is preferred. The use of 6-PTW treated with such a surface treatment agent has the advantage that it can be easily fed to a melt mixer which is carried out later.

本発明において、上記6−PTWの配合量としては、サ
ーモトロピック液晶ポリマーと該6−PTWとの合計量
に対して6−PTWが5〜60重量%、好ましくは10
〜50重量%程度となるようにするのがよい。6− P
 TWの配合量が5重世%未満である場合には、得られ
る組成物の機械的強度及び剛性(曲げ弾性率)の改良が
不充分となる。一方、6− P TWの配合量が60重
量%を越えると、6− P TW自体が非常に嵩高い(
見掛密度0.05〜0. 2g/ee)ために、溶融混
合機への供給が困難となるので、実用的ではない。
In the present invention, the blending amount of the 6-PTW is 5 to 60% by weight, preferably 10% by weight, based on the total amount of the thermotropic liquid crystal polymer and the 6-PTW.
It is preferable that the amount is about 50% by weight. 6-P
If the blending amount of TW is less than 5 times %, the mechanical strength and rigidity (flexural modulus) of the resulting composition will not be sufficiently improved. On the other hand, when the amount of 6-P TW exceeds 60% by weight, 6-P TW itself becomes very bulky (
Apparent density 0.05~0. 2g/ee), which makes it difficult to feed to a melt mixer, which is not practical.

本発明のサーモトロピック液晶ポリマー組成物には、本
発明の目的を損わない範囲内で、酸化防止剤、熱安定剤
、紫外線吸収剤、滑剤、離型剤、顔料等の着色剤、難燃
剤、難燃助剤、帯電防止剤、ケッチエンブラック等の導
電性付与剤、炭酸カルシウム等の粉末状乃至マイカ等の
薄片(鱗片)状充填剤、ガラス繊維、炭素繊維等の強化
材等を適宜配合することもできる。
The thermotropic liquid crystal polymer composition of the present invention contains antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, mold release agents, colorants such as pigments, and flame retardants, within the range that does not impair the purpose of the present invention. , flame retardant aids, antistatic agents, conductivity imparting agents such as Ketchen Black, fillers in the form of powders such as calcium carbonate or flakes such as mica, reinforcing materials such as glass fibers and carbon fibers, etc., as appropriate. It can also be blended.

本発明の組成物を製造するに当っては、配合手段は特に
限定されず、サーモトロピック液晶ポリマーと6.−P
TWとを予めヘンシェルミキサータンブラ−ミキサー等
を利用して予備混合してから、或はそれぞれ別々に溶融
混合機に供給して溶融混練すればよい。特に射出成形機
等の成形加工機械に定量性のよい均一形状のペレットを
製造するには、ロータリータイプのミストカット方式に
従うのがよい。該方式は、サーモトロピック液晶ポリマ
ーと6− P TWとを溶融混合機で均一に混合後、ミ
ストカットペレタイザーにてペレット化を行なう方法で
ある。より具体的には、上記液晶ポリマーと6− P 
TWとを溶融混合機で均一に溶融混練後、ストランド状
に押出したダイ部に直交するように高速回転するロータ
リーカッターを配置し、且つ一端に設けたノズルから水
とエアーを混合して発生したミストをカッティングチャ
ンバーに充満させた状態でホットカットを行なえばよい
。本発明者の研究によれば、通常行なわれている方法で
一旦ストランド状に溶融物を引き取り、水槽で冷却後、
一般的なペレタイザーでペレット化しても、サーモトロ
ピック液晶ポリマーが押出方向に結晶化して完全に固化
している状態のところに剪断力が加わってもストランド
が砕けてワラクズ状となり、通常の熱可塑性樹脂で得ら
れるようなベレットを製造することは困難であった。
In producing the composition of the present invention, the blending means is not particularly limited, and the thermotropic liquid crystal polymer and 6. -P
TW may be premixed in advance using a Henschel mixer, tumbler mixer, or the like, or each may be separately supplied to a melt mixer and melt-kneaded. In particular, in order to produce uniformly shaped pellets with good quantitative properties for a molding machine such as an injection molding machine, it is preferable to follow a rotary type mist cutting method. In this method, a thermotropic liquid crystal polymer and 6-PTW are uniformly mixed in a melt mixer and then pelletized in a mist cut pelletizer. More specifically, the liquid crystal polymer and 6-P
After uniformly melting and kneading TW with a melt mixer, a rotary cutter that rotates at high speed is arranged perpendicular to the die section that extrudes it into a strand shape, and water and air are mixed from a nozzle provided at one end. Hot cutting can be performed with the cutting chamber filled with mist. According to the research of the present inventor, the melted material is first collected in the form of a strand using a conventional method, and after cooling in a water tank,
Even if the thermotropic liquid crystal polymer is pelletized using a general pelletizer, even if shearing force is applied to the completely solidified state where the thermotropic liquid crystal polymer crystallizes in the extrusion direction, the strands will break and become crumb-like, which is not the case with ordinary thermoplastic resins. It was difficult to produce pellets such as those obtained in

発明の効果 本発明によれば、従来のPTW強化材料では到底予期で
きない程、耐衝撃性が大幅に改善され、また長期耐熱性
が改善されたサーモトロピック液晶ポリマー樹脂組成物
が提供される。しかも本発明の組成物は、サーモトロピ
ック液晶ポリマーの耐熱性、強度及び剛性度を向上させ
ると共に、良好な表面外観を維持し、異方性が小さく、
成形加工機及び金型の摩耗の少ないものである。
Effects of the Invention According to the present invention, a thermotropic liquid crystal polymer resin composition is provided, which has significantly improved impact resistance and long-term heat resistance, which could never be expected with conventional PTW reinforced materials. Moreover, the composition of the present invention improves the heat resistance, strength, and rigidity of the thermotropic liquid crystal polymer, maintains a good surface appearance, has small anisotropy, and
There is less wear on the molding machine and mold.

実  施  例 以下に実施例を掲げて本発明をより一層明らかにする。Example Examples are given below to further clarify the present invention.

実施例1〜3 サーモトロピック液晶ポリマーとして全芳香族ポリエス
テル系のベクトラA950 [ヘキストセラニーズ社製
〕を使用した。
Examples 1 to 3 Fully aromatic polyester Vectra A950 [manufactured by Hoechst Celanese] was used as a thermotropic liquid crystal polymer.

またチタン酸カリウム繊維としてpH6,8、X線回折
チャート2θ=13,8°の特性ピークにおける半値幅
が0.02である6−PTW(平均繊維径0.3μm、
平均繊維長15μm〕を使用した。尚、この6−PTW
は、チタン酸カリウム繊維の供給性をよくし、またサー
モトロピック液晶ポリマーとの濡れ性をよくするために
、β−(3,4−エポキシシクロヘキシル)エチルトリ
メトキシシランを6− P TW重口の1重量%添加し
て表面処理されている(表面処理後のpH値は7.1)
In addition, as potassium titanate fiber, 6-PTW (average fiber diameter 0.3 μm,
An average fiber length of 15 μm] was used. Furthermore, this 6-PTW
In order to improve the supply of potassium titanate fibers and the wettability with the thermotropic liquid crystal polymer, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane was added to 6-P TW heavy weight. Surface treated by adding 1% by weight (pH value after surface treatment is 7.1)
.

下記第1表の実施例1〜3の割合となるように、ベクト
ラA950及び6− P TWを、二軸押出機(PCM
45、池貝鉄工■製〕のメインホッパー及びサイドフィ
ーダーから別々に供給し、シリンダー温度300℃にて
溶融混練した後、ミストカットペレタイザー[PHR−
100、池貝鉄工■製〕を使用してダイの循環オイル温
度320℃にてベレット化後、脱水乾燥して、小豆状の
卵白色の均一なベレットを得た。
Vectra A950 and 6-P TW were heated in a twin screw extruder (PCM
45, manufactured by Ikegai Tekko ■] from the main hopper and side feeder, and after melting and kneading at a cylinder temperature of 300°C, the mist cut pelletizer [PHR-
100, manufactured by Ikegai Tekko ■] at a circulating oil temperature of 320° C., and then dehydrated and dried to obtain a uniform bean-like egg white pellet.

得られたペレットを射出成形機[FS−15ON、日清
樹脂工業■製]にてシリンダー温度290℃、金型温度
80°Cにて射出成形して各試験片を得た。
The obtained pellets were injection molded using an injection molding machine [FS-15ON, manufactured by Nisshin Jushi Kogyo ■] at a cylinder temperature of 290°C and a mold temperature of 80°C to obtain each test piece.

引張特性、曲げ特性、アイゾツト衝撃強度(ノツチ付き
)及び熱変形温度は、それぞれASTMD−638、D
−790、D−256、D−648に準拠して測定した
。またシリンダー温度290℃の射出成形機に15分間
滞留させた後の試験片と滞留前の試験片との色差ΔEを
測色色差計[z−1001DP型、日本重色工業■製〕
を用いて測定し、各実施例で得られる試験片の熱安定性
を評価した。
The tensile properties, bending properties, isot impact strength (notched), and heat distortion temperature were determined according to ASTM D-638, D, respectively.
-790, D-256, and D-648. In addition, the color difference ΔE between the test piece after being retained in an injection molding machine with a cylinder temperature of 290°C for 15 minutes and the test piece before being retained was measured using a colorimeter [Model Z-1001DP, manufactured by Nippon Heavy Industries Ltd.].
The thermal stability of the test pieces obtained in each example was evaluated.

これらの結果を下記第1表に示す。These results are shown in Table 1 below.

比較例1〜3及び参考例1 比較例1では、ベクトラA950をそのまま射出成形し
た。比較例2及び3では、実施例1〜3と同様の方法で
、ベクトラA950と下記に示すチタン酸カリウム繊維
とを70:30(重量比)の割合で溶融混練後、ペレッ
ト化して同様の射出成形試験片を得た。
Comparative Examples 1 to 3 and Reference Example 1 In Comparative Example 1, Vectra A950 was injection molded as it was. In Comparative Examples 2 and 3, in the same manner as in Examples 1 to 3, Vectra A950 and potassium titanate fibers shown below were melt-kneaded at a ratio of 70:30 (weight ratio), pelletized, and subjected to the same injection process. A molded test piece was obtained.

比較例2で用いられるチタン酸カリウム繊維:pH9,
2、X線回折チャート2θ= L3.8’の特性ピークにおける半値幅が0.113で
ある6−PTW(繊維径及び繊維長は実施例1〜3のも
のと同じ)であって、実施例1〜3と同じシランカップ
リング剤で表面処理したもの(表面処理後のpH値は9
.8である)。
Potassium titanate fiber used in Comparative Example 2: pH 9,
2. X-ray diffraction chart 6-PTW (fiber diameter and fiber length are the same as those of Examples 1 to 3) with a half-value width of 0.113 at the characteristic peak of 2θ = L3.8', and Surface treated with the same silane coupling agent as 1 to 3 (pH value after surface treatment is 9)
.. 8).

比較例3で用いられるチタン酸カリウム繊維:特開昭6
1−19515号公報に記載されているHT−200(
平均繊維径0.45μm1平均繊維長22.5μm、p
H8,2、半値幅0.03の6− P TWであって、
実施例1〜3と同じシランカップリング剤で表面処理し
たもの(表面処理後のpH値は8.5である)。
Potassium titanate fiber used in Comparative Example 3: JP-A-6
HT-200 (described in Publication No. 1-19515)
Average fiber diameter 0.45 μm 1 average fiber length 22.5 μm, p
H8,2, 6-P TW with half width 0.03,
Surface treated with the same silane coupling agent as in Examples 1 to 3 (pH value after surface treatment is 8.5).

比較例1〜3の各射出成形試験片につき、上記実施例と
同様の物性を測定した。
The same physical properties as in the above examples were measured for each injection molded test piece of Comparative Examples 1 to 3.

また参考のため、ガラス繊維30重量%充填の市販ペレ
ット〔ベクトラA−130、ポリプラスチックス社製〕
を上記と同様に射出成形し、同様の物性を測定した。
For reference, commercially available pellets filled with 30% glass fiber [Vectra A-130, manufactured by Polyplastics]
was injection molded in the same manner as above, and the same physical properties were measured.

結果を下記第1表に併せて示す。The results are also shown in Table 1 below.

上記第1表から、次のことが明らかである。即ち、実施
例2の成形品は、比較例2及び3のそれに比し高機械強
度を示す。殊にノツチ付きアイゾツト衝撃強度では、従
来公知のPTW強化品化上〜10倍と驚異的であり、ま
た参考例1のガラス繊維強化界と比較しても倍以上の高
衝撃性を有している。
From Table 1 above, the following is clear. That is, the molded article of Example 2 exhibits higher mechanical strength than those of Comparative Examples 2 and 3. In particular, the notched isot impact strength is amazingly 10 times higher than that of conventionally known PTW reinforced products, and it also has more than double the high impact strength compared to the glass fiber reinforced product of Reference Example 1. There is.

実施例4 サーモトロピック液晶ポリマーとして芳香族−脂肪族ポ
リエステル系のロッドランLC500〔ユニチカ■製〕
を使用した。
Example 4 Aromatic-aliphatic polyester Rodlan LC500 (manufactured by Unitika) as a thermotropic liquid crystal polymer
It was used.

またチタン酸カリウム繊維として実施例1〜3と同じも
のを使用した。
Moreover, the same potassium titanate fibers as in Examples 1 to 3 were used.

ロッドランLC500及び6−PTWを70=30(重
量比)の割合で混合し、実施例1〜3と同様にしてペレ
ットを得、次にこれから射出成形試験片を作成して物性
評価を行なった。
Rodlan LC500 and 6-PTW were mixed at a ratio of 70=30 (weight ratio) to obtain pellets in the same manner as in Examples 1 to 3. Next, injection molded test pieces were prepared from the pellets and physical properties were evaluated.

比較例4 チタン酸カリウム繊維として比較例2で使用したチタン
酸カリウム繊維を用いる以外は、実施例4と同様にして
射出成形試験片を得、物性を評価した。
Comparative Example 4 An injection molded test piece was obtained in the same manner as in Example 4, except that the potassium titanate fiber used in Comparative Example 2 was used as the potassium titanate fiber, and the physical properties were evaluated.

実施例4の試験片及び比較例4の試験片につき、各種物
性を下記に示す。
Various physical properties of the test piece of Example 4 and the test piece of Comparative Example 4 are shown below.

上記結果から、本発明の6− P TWを用いると、得
られる成形品が高機械物性となり、アイゾツト衝撃強さ
も大で、また成形加工時の滞留による熱変色も少なくな
ることが判る。
The above results show that when the 6-P TW of the present invention is used, the resulting molded product has high mechanical properties, high Izot impact strength, and less thermal discoloration due to retention during molding.

Claims (4)

【特許請求の範囲】[Claims] (1)pH6〜8、X線回折チャート2θ=13.8゜
の特性ピークにおける半値幅が 0.1以下の6−チタン酸カリウム繊維を5〜60重量
%含有することを特徴とするサーモトロピック液晶ポリ
マー組成物。
(1) A thermotropic product characterized by containing 5 to 60% by weight of 6-potassium titanate fibers with a pH of 6 to 8 and a characteristic peak at 2θ = 13.8° in an X-ray diffraction chart whose half-width is 0.1 or less. Liquid crystal polymer composition.
(2)チタン酸カリウム繊維がpH6.5〜7.5、X
線回折チャート2θ=13.8゜の特性ピークにおける
半値幅が0.05以下である請求項1記載の組成物。
(2) Potassium titanate fiber has a pH of 6.5 to 7.5,
2. The composition according to claim 1, wherein the half-width at a characteristic peak at 2θ=13.8° in a line diffraction chart is 0.05 or less.
(3)チタン酸カリウム繊維の表面がγ−メルカプトプ
ロピルトリメトキシシラン、β−(3,4−エポキシシ
クロヘキシル)エチルトリメトキシシラン及びN−フェ
ニル−γ−アミノプロピルトリメトキシシランなる群か
ら選ばれた少なくとも一種で処理されている請求項(1
)又は(2)記載の組成物。
(3) The surface of the potassium titanate fiber was selected from the group consisting of γ-mercaptopropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and N-phenyl-γ-aminopropyltrimethoxysilane. Claims treated with at least one type of claim (1)
) or the composition described in (2).
(4)請求項(1)記載の6−チタン酸カリウム繊維及
びサーモトロピック液晶ポリマーを、溶融混合機で均一
に溶融混練後、ミストカットペレタイザーにてペレット
化することを特徴とするサーモトロピック液晶ポリマー
組成物の製造方法。
(4) A thermotropic liquid crystal polymer characterized in that the 6-potassium titanate fiber and the thermotropic liquid crystal polymer according to claim (1) are uniformly melt-kneaded using a melt mixer and then pelletized using a mist cut pelletizer. Method for producing the composition.
JP16522488A 1988-07-01 1988-07-01 Thermotropic liquid crystal polymer composition and method for producing the same Expired - Lifetime JP2648745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16522488A JP2648745B2 (en) 1988-07-01 1988-07-01 Thermotropic liquid crystal polymer composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16522488A JP2648745B2 (en) 1988-07-01 1988-07-01 Thermotropic liquid crystal polymer composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0214246A true JPH0214246A (en) 1990-01-18
JP2648745B2 JP2648745B2 (en) 1997-09-03

Family

ID=15808215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16522488A Expired - Lifetime JP2648745B2 (en) 1988-07-01 1988-07-01 Thermotropic liquid crystal polymer composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2648745B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246532A (en) * 1992-03-03 1993-09-24 Kikiyouya:Kk Aligning machine for rice-cake-form cake
US5427712A (en) * 1992-04-08 1995-06-27 Toray Industries, Inc. Liquid crystal polymer composition
CN100349992C (en) * 2004-12-22 2007-11-21 上海凯林新技术实业公司 Composition and application of crystal whisker of hexa potassium titanate, hot spraying microspheres, manufacturing method, equipment and application
JP2008120978A (en) * 2006-11-15 2008-05-29 Otsuka Chemical Co Ltd Thermotropic liquid crystal polymer resin composition for molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246532A (en) * 1992-03-03 1993-09-24 Kikiyouya:Kk Aligning machine for rice-cake-form cake
US5427712A (en) * 1992-04-08 1995-06-27 Toray Industries, Inc. Liquid crystal polymer composition
CN100349992C (en) * 2004-12-22 2007-11-21 上海凯林新技术实业公司 Composition and application of crystal whisker of hexa potassium titanate, hot spraying microspheres, manufacturing method, equipment and application
JP2008120978A (en) * 2006-11-15 2008-05-29 Otsuka Chemical Co Ltd Thermotropic liquid crystal polymer resin composition for molding

Also Published As

Publication number Publication date
JP2648745B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JPH01146955A (en) Polyphenylene sulfide resin composition and its production
KR20070007068A (en) Halogen-free flame-retarded polyester composition
KR101685761B1 (en) 3d printer filament using biodegradable resin composition having improved whiteness and mechanical properties
US5028649A (en) Polyethylene terephthalate molding compounds with sodium stearate and polyester amides
JPS6057464B2 (en) Polyamide resin composition
WO2001025332A1 (en) Flame-retardant polyester resin composition, molded article thereof, and method of molding the same
JPH0214246A (en) Thermoplastic liquid crystal polymer composition and production thereof
KR20150032246A (en) Process for preparing amine-modified polyester resins with improved melt flow
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
KR101812884B1 (en) Polylactic acid composition of filament for improving printing speed
JP2001026719A (en) Recycled resin composition and its use
JP3355061B2 (en) Thermoplastic resin composition, injection molding method and injection molded article thereof
JPS61195156A (en) Wholly aromatic copolyester resin composition
KR101834697B1 (en) Polylactic acid composition of filament for improving printing speed
JPS63202655A (en) Resin composition
JPS60248775A (en) Resin composition
JPH0264159A (en) Polyphenylene sulfide resin composition
JP2761563B2 (en) Polyetherimide resin composition
CN113831694B (en) Flame-retardant PET material and preparation method thereof
JP2918283B2 (en) Reinforced resin composition
JPH0395265A (en) Resin composition
JPS5996158A (en) Resin composition
JPS6251981B2 (en)
JPH0453868A (en) Polyester resin composition
JP3504056B2 (en) Mica composite polyester resin composition and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12