JPH0214180B2 - - Google Patents

Info

Publication number
JPH0214180B2
JPH0214180B2 JP15224580A JP15224580A JPH0214180B2 JP H0214180 B2 JPH0214180 B2 JP H0214180B2 JP 15224580 A JP15224580 A JP 15224580A JP 15224580 A JP15224580 A JP 15224580A JP H0214180 B2 JPH0214180 B2 JP H0214180B2
Authority
JP
Japan
Prior art keywords
resin
gas barrier
container
multilayer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15224580A
Other languages
Japanese (ja)
Other versions
JPS5775826A (en
Inventor
Jinichi Yazaki
Kozaburo Sakano
Sadao Hirata
Kichiji Maruhashi
Masao Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP15224580A priority Critical patent/JPS5775826A/en
Priority to DE8181305102T priority patent/DE3173472D1/en
Priority to GB8132465A priority patent/GB2090219B/en
Priority to EP81305102A priority patent/EP0051443B1/en
Priority to US06/315,952 priority patent/US4393106A/en
Priority to CA000388989A priority patent/CA1169719A/en
Publication of JPS5775826A publication Critical patent/JPS5775826A/en
Publication of JPH0214180B2 publication Critical patent/JPH0214180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3074Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3074Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating
    • B29C2949/3076Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多層2軸延伸成形容器の製造法に関
し、より詳細には、ガスバリヤー性と層間接着性
との組合せに優れた多層2軸延伸成形容器の製造
法に関する。 ポリプロピレン、ポリエチレンテレフタレート
のような延伸により配向可能な熱可塑性プラスチ
ツクを2軸延伸すると、透明性等の外観、剛性等
の機械的性質、寸法安定性等が向上することが知
られており、この2軸延伸を容器の成形に利用す
ることも古く行われている。この容器の成形に利
用することも古く行われている。この容器の製造
に際しては、押出成形或いは射出成形により前述
した熱可塑性プラスチツクを無底或いは有底の円
筒状体、即ちパリソンに成形し、このパリソンを
軸方向に延伸する操作とパリソンを周方向に流体
吹込みで膨張させる操作とを、同時に或いは逐次
的に行うことによつて、容器壁が2軸方向に分子
配向した成形容器とする。 この2軸延伸成形容器は、前述した透明性、剛
性、耐衝撃性、寸法安定性等に優れているとして
も、ガスバリヤー性において未だ十分満足し得る
ものではない。例えば、ポリプロピレン、ポリエ
チレンテレフタレート等の2軸延伸可能なプラス
チツクは延伸後においても、例えばエチレン−酢
酸ビニル共重合体ケン化物や塩化ビニリデン樹脂
のような高ガスバリヤー性樹脂に比して酸素透過
係数が桁違いに大きく、一方、高ガスバリヤー性
樹脂は概して2軸延伸成形が困難であるという問
題がある。 2軸延伸成形容器のガスバリヤー性、特に酸素
バリヤー性を改善するために、酸素バリヤー性樹
脂を前記配向性熱可塑性プラスチツクと組合せて
多層2軸延伸成形容器とすることも既に知られて
おり、例えば本発明者等の提案に係る特開昭53−
21674号公報には、配向性樹脂の融点乃至は軟化
点と酸素バリヤー性樹脂の融点乃至は軟化点とを
それらの差が一定の範囲となるように選択し、且
つ成形を特定の温度で行うことにより、耐層間剥
離性を向上させることが開示されている。 しかしながら、この提案では使用し得る樹脂の
組合せに、融点上からの制約を受け、更に用いる
酸素バリヤー性樹脂も配向性樹脂と共に溶融押出
可能なものでなければならないという制約を受け
る。のみならず、多層パリソンを延伸成形する場
合には、両樹脂層の層間界面に応力や歪が生じ易
く、前述した成形容器では製造直後においては比
較的良好な剥離強度を示すとしても、落下衝撃が
反復して加えられる場合には、剥離強度が急速に
低下することが認められる。 本発明者等は、配向性熱可塑性樹脂の予備成形
物に、接着性とガスバリヤー性樹脂の溶液乃至は
エマルジヨンを塗布し、この塗布面を調温し、該
塗布面に配向性熱可塑性樹脂を更に射出によつて
設けて多層パリソンを形成し、この多層パリソン
を2軸延伸ブロー成形に賦するときには、ガスバ
リヤー性樹脂を溶液乃至はエマルジヨンの形で施
しながら、ガスバリヤー性の著しい向上がもたら
されると共に、落下衝撃を反復して加えた場合に
も剥離強度の低下傾向の実質的にない高ガスバリ
ヤー性の多層2軸延伸成形容器が得られることを
見出した。 即ち、本発明の目的は熱成形不能乃至は熱成形
困難なガスバリヤー性樹脂を中間層に備え、しか
もガスバリヤー性の湿度依存性も小さい多層2軸
延伸成形容器の製造方法を提供するにある。 本発明の他の目的は、ガスバリヤー性と層間接
着性との組合せに優れ、特に衝撃を反復して加え
たときの剥離強度の低下傾向が顕著に改善された
多層2軸延伸成形容器の製造法を提供するにあ
る。 本発明の他の目的は、接着性とガスバリヤー性
とを兼ね備え、しかも溶液乃至はエマルジヨンと
して施用した樹脂、特に熱成形不能乃至は熱成形
困難な樹脂を中間層として備えた多層2軸延伸成
形容器の製造法を提供するにある。 本発明の更に他の目的は、2段の射出成形とそ
の間のコーテイングとの組合せで得られる多層パ
リソンを用いる2軸延伸成形容器の製造法を提供
するにある。 本発明によれば、熱成形可能な配向性熱可塑性
重合体から成る有底予備成形物の一方の表面に、
熱成形不能乃至は熱成形困難な接着性を有するガ
スバリヤー性樹脂の溶液乃至はエマルジヨンを塗
布乾燥してガスバリヤー性樹脂の被覆を形成させ
る工程と、得られる塗布応予備成形物を40乃至70
℃の温度に調製して二次射出金型にセツトする工
程と、該予備成形物の塗布面に熱成形可能な配向
性熱可塑性重合体を射出して有底多層パリソンを
形成する工程と、該多層パリソンを、内表面側及
び外表面側の少なくとも一方の熱可塑性重合体の
分子配向が生ずる温度条件下において、軸方向に
延伸すると共に吹込みにより周方向に延伸する工
程とから成ることを特徴とする多層2軸延伸成形
容器の製法が提供される。 本発明による多層2軸延伸成形容器1を示す第
1図において、この容器は、蓋体(図示せず)を
締結するための機構(例えば、ネジ、ビード等)
を備えた口部2、該口部に連なる胴壁部3及び該
胴壁部に連なる底壁部4から成つており、この底
壁部4はパリソンのピンチオフにより形成された
継目5を有していても、或いは無継目であつても
よい。 この容器壁は、第1図の断面部分から明らかな
通り、熱成形可能な配向性熱可塑性重合体で各々
形成された内表面層6及び外表面層7を備えてお
り、これらの両表面層6及び7の間に、接着性と
ガスバリヤー性とを兼ね備えしかも溶液乃至はエ
マルジヨンとして施される樹脂層8を設けたこと
が本発明の顕著な特徴である。 ガスバリヤー性に優れた樹脂は、一般に水酸
基、ハロゲン原子或いはニトリル基の如き極性基
を高濃度で含有する重合体であり、これらの樹脂
は強い水素結合を有するために溶融することが困
難であり、溶融することが可能であるとしても、
溶融温度と熱分解温度とが近接しているため、成
形に際しては多くの制約を受け、特に他の配向性
樹脂との共押出は多くの困難に伴なう。かくし
て、従来の多層延伸成形容器においては、ガスバ
リヤー性樹脂として、エチレン−酢酸ビニル共重
合体ケン化物のように、ガスバリヤー性をむしろ
低下させるが熱成形性を向上させるような成分
(例えばエチレン)を共重合させるか、或いは熱
成形性を向上させるような樹脂成分をブレンドす
るか、或いは可塑剤を配合するかして、熱成形を
可能としてものを使用しているのである。 これに対して、本発明は熱成形不能乃至は熱成
形困難な高度にガスバリヤー性の樹脂を有底多層
パリソンに使用するものである。 即ち本発明は、このようなガスバリヤー性に優
れているが熱成形不能乃至は困難なガスバリヤー
性樹脂も、溶媒に可溶なものは溶液の形で使用
し、また溶媒に不溶なものでもエマルジヨン、即
ちラテツクスの形で使用することにより、配向性
樹脂の熱成形温度に無関係に多層パリソンに中間
層として組込み、ガスバリヤー性を一層向上させ
ることに成功したものである。 ここで注意すべきことは、ガスバリヤー性樹脂
を溶液乃至エマルジヨンとして施す場合に生じる
重要な問題は、形成される樹脂層が機械的乃至は
物理的な原因でガスバリヤー性に劣つたものが得
られ易いということである。例えば、エマルジヨ
ン粒子の形で施されたガスバリヤー性樹脂層に
は、粒子間の間隙が残存する傾向があり、この間
隙がガスの通路となつて本来のガスバリヤー性が
失われることになる。また、このような液でコー
テイングする場合には、概してピンホール等が発
生しやすいことも、ガスバリヤー性低下の原因と
なる。 これに対して、本発明によれば、有底の配向性
樹脂の予備成形物にガスバリヤー性樹脂を溶液乃
至はエマルジヨンとして塗布乾燥した後、該塗布
予備成形物を40乃至70℃の温度に調整することに
より、上記の様な粒子間間隙は消失し、ガスバリ
ヤー性樹脂が一次射出配向性樹脂の周囲に均一且
つ密に塗布されることとなる。 即ち、塗布予備成形物を40℃乃至70℃で調温す
ることが重要である。 ガスバリヤー性樹脂及び被覆予備成形物を40乃
至70℃の温度範囲に調温して二次射出金型にセツ
トすると、熱可塑性重合体の二次射出に際して金
型内での重合体の冷却を遅延させ、これによりガ
スバリヤー性樹脂被覆面への重合体のつきまわり
性を向上させること及び、調温が70℃より高い場
合には、折角形成されたガスバリヤー性被覆樹脂
が二次射出される重合体で軟化され削り取られて
所定のガスバリヤー性が得られないという傾向が
ある。後述する実施例1〜4、表2及び表3に示
すように、塗布予備成形物を調温しなかつた場合
には、塗膜への二次射出樹脂のつきまわりが不十
分で(100%未満)シヨートモールドを発生する
のに対して、塗布予備成形物を40℃〜70℃に調温
する場合には100%のつきまわりが得られる。そ
して、塗布予備成形物を70℃より高い温度、例え
ば80℃に調温した場合には、樹脂の二次射出に際
して塗膜の削れ、ダブリ等を発生し、この多層パ
リソンを延伸ブロー成形すると、塗膜切れによる
ガスバリヤー性の低下を生ずるのに対して調温の
範囲を40℃〜70℃の範囲に定めると、二次射出時
の塗膜の削れ等が防止されてガスバリヤー性に優
れた延伸ブロー成形体が得られる。 本発明による多層2軸延伸成形容器において
は、酸素バリヤー性樹脂層8自体が内外表面層に
強固に接着しており、この接着強度(剥離強度)
が衝撃を反復した場合にも低下する傾向が著しく
少ないという付加点な利点を有している。即ち、
同時押出により形成した多層パリソンを延伸中空
成形に賦するときには、層間に応力や歪が集中し
易く、これが接着力低下の大きな原因となること
は既に前述した。これに対して、本発明におい
て、中間層として施される酸素バリヤー性樹脂
は、溶液乃至はエマルジヨンの形で施され、その
完全な造膜はむしろ延伸成形時に生ずることか
ら、接着剤としても作用するバリヤー性樹脂には
内部歪がむしろ少なくなるものと信じられる。か
くして、本発明によれば、単に製造直後の層間接
着性に優れた多層容器が得られるばかりではな
く、落下衝撃を反復した場合にも剥離強度の低下
の少ない多層容器が得られるものである。 本発明において、配向性樹脂の内表面層6及び
外表面層7の少なくとも一方、好適には両方は、
延伸ブロー成形により、面方向、即ち軸方向と容
器周方向との両方向に顕著に分子配向されている
が、中間層8は多くの場合、殆んど未配向であ
る。中間層8の厚みは、溶液乃至はエマルジヨン
の形で塗布され、且つその後延伸成形されること
に関連して著しく肉薄であり、一般に3乃至30ミ
クロン、特に5乃至15ミクロンの範囲にある。一
方、内外表面層6及び7の厚みは、樹脂の種類や
用途とによつても相違するが、各々500乃至40ミ
クロン、特に250乃至60ミクロンの範囲にあるの
がよい。 本発明において、ガスバリヤー性樹脂として
は、熱成形不能乃至は熱成形困難でしかもガスバ
リヤー性と接着性とを兼ね備えたもの、特に水酸
基、ハロゲン原子(塩素原子)、或いはニトリル
基を有する樹脂が使用される。その適当な例は次
の通りである。 (1) 水酸基含有重合体 ポリビニルアルコール、ポリビニルアルコー
ル部分アセタール化物、ポリ酢酸ビニル部分ケ
ン化物、ポリ酢酸ビニル部分ケン化部分アセタ
ール化物、部分架橋ポリビニルアルコール、不
飽和カルボン酸グラフトポリビニルアルコー
ル;不飽和カルボン酸グラフトデンプン、不飽
和カルボン酸グラフトデキストリン、エチルセ
ルロース、メチルセルロース、ヒドロキシエチ
ルセルロース、シアノエチル化デンプン等の水
溶性多糖類高分子;ヒドロキシエチルアクリレ
ート/アクリル酸エチル共重合体等の水酸基含
有アクリル樹脂等。 (2) ハロゲン含有重合体 ポリ塩化ビニリデン、ポリ塩化ビニル、塩化
ビニル/塩化ビニリデン共重合体、塩化ビニ
ル/酢酸ビニル共重合体等。 (3) ニトリル基含有重合体 ポリアクリロニトリル、アクリロニトリル/
ブタジエン共重合体、アクリロニトリル/スチ
レン共重合体、アクリロニトリル/メチルメタ
クリレート共重合体等。 上に例示した重合体は単に例示の目的のための
ものであり、多くの他の共重合体を使用し得るこ
とが理解されるべきである。本発明で使用する好
適なガスバリヤー性樹脂は、水酸基、ハロゲン原
子及びニトリル基から成る群より選択された極性
基を重合体100g当り120乃至1400meq(ミリイク
イバンレント)の濃度で含有する重合体である。
これらの重合体は極性基を多く含むことに関連し
て接着性にも優れている。 これらの樹脂は単独でも2種以上の組合せでも
使用し得る。更に接着力を増強する目的で、カル
ボキシメチルセルロース、ポリアクリレートのよ
うなカルボキシル基、カルボン酸エステル基等の
他の官能基を有する樹脂類を前記樹脂当り50重量
%以下の量で配合することができる。しかしなが
ら、ガスバリヤー性を低下させる可塑剤の配合は
避けるべきである。 熱成形可能な配向性熱可塑性重合体としては、
この要件を満足するものであれば何れでもよく、
好適なものとして、ポリプロビレン、ポリブテン
−1、ポリスチレン等のポロオレフイン;ポロエ
チレンテレフタレート等のポロエステル;ナイロ
ン6、ナイロン6、6等のポリアミド;可塑化ポ
リ塩化ビニル;可塑化ニトリル重合体;ポロメチ
ルメタクリレート;ポリカーボネート等を挙げる
ことができる。これらの重合体の分子量はフイル
ム形成範囲にあればよい。 容器を構成する内外表面層は同一の樹脂でも異
なるものでもよく、用いる中間層樹脂の接着性の
みを考慮して種々の樹脂の組合せが可能なことが
本発明の顕著な利点である。 本発明の方法の工程を第2図を用いて説明す
る。 内層用射出機12より熱可塑性樹脂を内層用射
出金型13内に射出して有底1次成形物11を成
形する。該1次成形物11の首部をネツクホルダ
ーにて保持して次工程の塗布ポツト14まで移送
して該塗布ポツト14内に浸漬し、コーテイング
剤を1次成形物の該表面に塗布した後、乾燥部1
6にて塗布溶液の溶剤乃至はラテツクス中の水を
乾燥除去し、温度調整部17にて加熱又は冷却を
して塗布成形物15の温度調整を行う。塗布後の
樹脂層を乾燥した後、40乃至70℃の温度に調整し
た塗装成形物を2段目の射出成形に賦して多層パ
リソンとする。 受け渡し部18より送られてきた塗布成形物1
5の首部を保持チヤツク19にて保持して、外層
用射出金型21内にセツトし、塗布成形物15の
外表面に外層用射出機20より樹脂を射出して多
層パリソン22を成形する。成形された多層パリ
ソン22を加熱ポツト23にて内層樹脂又は外層
樹脂の延伸可能な温度に加熱し、次の延伸ブロー
成形部24にて多層延伸成形容器を成形し、成形
された多層延伸成形容器は、コンベア等から成る
取り出し部25より放出され次のキヤツピング工
程、函詰工程へと導かれる。 本発明においては、また配向性樹脂の有底一次
成形物を使用し、この表面にガスバリヤー性樹脂
のコーテイングを行うことが重要である。 従来、ポリエステル管の表面にポリビニルアル
コール(PVA)の被覆を形成し、必要によりこ
の被覆の上に耐湿性樹脂の被覆を設けた多層管を
用い、これを延伸吹込でボルトを形成することが
既に知られている(特開昭54−117565号公報)。
しかしながら、この多層管を用いる延伸吹込さ
れ、ガスバリヤー性の顕著な向上がもたらされる
ものである。しかも、有底多層パリソンの形で延
伸中空成形を行うことにより、軸方向延伸と周方
向ブロー延伸とがバランス良く行われ、中間バス
ガリヤー性樹脂層の破断やクラツク等の発生も防
止されるものである。 酸素バリヤー性樹脂のコーテイングは、浸漬、
スプレー塗装、制電塗装、ロールコート、ハケ塗
り等により施こすことができる。樹脂液の濃度
は、一般に樹脂固形分として、20乃至60重量%の
範囲粘度は100乃至10000センチポイズの範囲とす
ることができる。溶媒としては、水或いは有機溶
媒或いはこれらの組み合せが使用されるが、配向
性樹脂への悪影響を避けるためには、溶媒として
水を用いることが好ましく、水不溶性樹脂の場合
には、エマルジヨン、即ちラテツクスの形で使用
するのが望ましい。 多層パリソンの軸方向延伸及び周方向膨張は、
配向性樹脂の分子配向が有効に生ずる温度で行わ
れる。これらの延伸成形温度や延伸倍率もそれ自
体周知のものであり、本発明も周知の条件で行な
う。 本発明において、面内配向係数(l+m)が
0.3以上、特に0.4以上となるように内外表面層樹
脂に分子配向を与えれば、透明性、剛性、耐衝撃
性に関して満足すべき結果が得られる。 本発明を次の例で説明する。 実施例 1 長さ110m/m、外径が25φ、肉厚が1.5m/m
のポリエステル樹脂(固有粘度0.7)の1次成形
物を、射出成形し、80℃位迄に冷却された1次成
形物を、50℃のポバール(クラレ117)の水溶液
中に浸し、100℃の熱風乾燥を行い次の外層樹脂
を設けるために1次成形物の温度を50〜70℃に調
整し、外層用射出成形機にてポリエステルコポリ
マー(PET.Gコダツク社製)を、外層部に射出
し、100℃の加熱を行い、延伸ロツドでタテ2.0倍
の延伸を行い、ブロー成形し、多層2軸延伸ブロ
ー500c.c.の容器を得た。 得られた容器の各層の平均肉厚は、内面より
300μ、10μ、280μで、内外層の配向度は内層がl
=0.17、m=0.35、外層がl=0.20、m=0.40で
あつた。 この容器の酸素ガス透過度は、1.7c.c./day・
atm・37℃、各層間の接着力は1.1Kg/15m/m、
10回繰り返し落下后の剥離強度は1.0Kg/15m/
m巾、透明性はHaze値で2.1%で表面傷もつきに
くく、外観及び保存性の良い容器であつた。比較
の為に成形した溶液状中間層のない同厚みの容器
では、酸素透過度55c.c./day・atm・37℃、層間
接着力0.05Kg/15m/m、10回繰り返し落下后の
剥離強度は、0.01Kg/15m/m巾であつた。 尚、調温条件のみ変えて、1次成形物の調温温
度を15〜20℃としたもの(表−1及び2のサンプ
ルNo.1−A)及び80℃としたもの(サンプルNo.1
−C)を比較例とし、プリホームの成形状態及び
成形体の評価を行つた。結果を表−1及び2に示
した。 実施例 2 長さ110m/m、外径が25φ、肉厚が1.5m/m
のポリメチルメタアクリレート(PMMA、MI=
2)の1次成形物を、射出成形し、30℃の多糖水
溶性高分子プルランR林原生物研究所の溶液中に
浸し、98℃の熱風乾燥を行い、次の外層樹脂を設
けるために1次成形物の温度を40〜50℃に調整
し、外層用射出成形機にてポリスチレン(MI=
6)を外層部に射出し、120℃の加熱を行い、延
伸ロツドでタテ1.8倍の延伸を行い、ブロー成形
し、多層2軸延伸ブロー500c.c.の容器を得た。 得られた容器の各層の平均肉厚は、内面より
320μ、8μ、300μで、内外層の配向度は内層がl
=0.15、m=0.35、外層がl=0.28、m=0.41で
あつた。 この容器の酸素ガス透過度は9.5c.c./day・
atm・37℃、各層間の接着力は0.9Kg/15m/m、
10回繰り返し落下后の剥離強度は0.85Kg/15m/
m、透明性はHaze値で1.8%で、表面傷もつきに
くく、外観及び保存性の良い容器であつた。比較
の為に成形した溶液状中間層のない同厚みの容器
では、酸素透過度400c.c./day・atm・37℃、層間
接着力0.01Kg/15m/m、繰り返し落下后の剥離
強度は、1回目で剥離してしまい、測定出来なか
つた。 尚、調温条件のみ変えて、1次成形物の調温温
度を15〜20℃としたもの(表−1及び2のサンプ
ルNo.2−A)及び80℃としたもの(サンプルNo.2
−C)を比較例とし、プリホームの成形状態及び
成形体の評価を行つた。結果を表−1及び2に示
した。 実施例 3 長さ150m/m、外径が25φ、肉厚が1.5m/m
PVC(P=800、MBS3部)の1次成形物を射出
成形し、30℃の塩化ビニリデン90%、塩化ビニル
10%の共重合ラテツクス(固形分55%、粘度
150cps、粒径0.2μ)溶液中に浸し、90℃の熱風乾
燥を行い、次の外層樹脂を設けるために1次成形
物温度を50〜55℃に調整し、外層用射出成形機に
て上記PVCを外層部に射出し、105℃の加熱を行
い、延伸ロツドでタテ1.3倍の延伸を行い、ブロ
ー成形し、多層2軸延伸ブロー500c.c.の容器を得
た。 得られた容器平均肉厚は、内面より320μ、8μ、
310μで、内外層の配向度は内層がl=0.25、m=
0.41、外層がl=0.29、m=0.46であつた。 この容器の酸素ガス透過度は2.5c.c./day・
atm・37℃、各層間の接着力は2.5Kg/15m/m、
10回繰り返し落下后の剥離強度は、2.0Kg/15
m/m、透明性はHaze値で3.5%、で表面傷もつ
きにくく、外観及び保存性の良い容器であつた。
比較の為に成形した溶液状中間層のない同厚みの
容器では、酸素透過度35c.c./day・atm・37℃、
層間接着力0.8Kg/15m/m、10回繰り返し落下
后の剥離強度は、0.4Kg/15m/mであつた。 尚、調温条件のみ変えて、1次成形物の調温温
度を15〜20℃としたもの(表−1及び2のサンプ
ルNo.3−A)及び80℃としたもの(サンプルNo.3
−C)を比較例として、プリホームの成形状態及
び成形体の評価を行つた。結果を表−1及び2に
示した。 実施例 4 長さ110m/m、外径が25φ、肉厚が1.5m/m
ポリエステル樹脂(固有粘度0.7)の1次成形物
を、射出成形し、50℃のアクリロニトリルラテツ
クス(固形分45%、粘度400cps、粒径0.3μ)溶液
中に浸し、120℃の熱風乾燥を行い、次の外層樹
脂を設けるために1次成形物の温度を50〜70℃に
調整し、外層用射出成形機にてアクリロニトリル
樹脂(モンサント社製、バーレツクス210)を外
層部に射出し、102℃の加熱を行い、延伸ロツド
でタテ1.8倍の延伸を行い、ブロー成形し、多層
2軸延伸ブロー500c.c.の容器を得た。 得られた容器平均肉厚は、内面より300μ、
15μ、250μで、内外層の配向度は内層がl=0.17、
m=0.35、外層がl=0.25、m=0.39であつた。 この容器の酸素ガス透過度は2.1c.c./day・
atm・37℃、各層間の接着力は1.5Kg/15m/m、
10回繰り返し落下后の剥離強度は、1.2Kg/15
m/m、透明性はHaze値で3.8%、で表面傷もつ
きにくく、外観及び保存性の良い容器であつた。
比較の為に成形した溶液状中間層のない同厚みの
容器では、酸素透過度35c.c./day・atm・37℃、
層間接着力0.01Kg/15m/m、繰り返し落下后の
剥離強度は、1回目で剥離してしまい、測定出来
なかつた。 尚、調温条件のみ変えて、1次成形物の調温温
度を15〜20℃としたもの(表−1及び2のサンプ
ルNo.4−A)及び80℃としたもの(サンプルNo.4
−C)を比較例として、プリホームの成形状態及
び成形体の評価を行つた。結果を表−1及び2に
示した。 比較例 長さ110m/m、外径が25φ、肉厚が2.8m/m
ポリエステル樹脂(固有粘度0.7)の1次成形物
を、射出成形し、80℃位迄に冷却された1次成形
物を、50℃のポバール(クラレ177)の水溶液中
に浸し、100℃の熱風乾燥を行い、そのまま延伸
ロツドでタテ2倍の延伸を行い、ブロー成形し
500c.c.の容器を得た。 得られた容器の酸素ガス透過度は、4.5c.c./
day・atm・37℃、層間の接着力は0.05Kg/15
m/m巾で、表面キズもつき易く、保存性の悪い
容器であつた。実施例2〜5に対しても比較とし
て、外層樹脂のない延伸ブロー容器を作つて評価
したところ、比較例1と同様、酸素ガス透過度及
び接着強度の悪い容器しか得られなかつた。
The present invention relates to a method for manufacturing a multilayer biaxially stretched molded container, and more particularly to a method for manufacturing a multilayered biaxially stretched molded container that has an excellent combination of gas barrier properties and interlayer adhesiveness. It is known that biaxial stretching of thermoplastic plastics that can be oriented by stretching, such as polypropylene and polyethylene terephthalate, improves appearance such as transparency, mechanical properties such as rigidity, dimensional stability, etc. Axial stretching has also been used for a long time to form containers. It has also been used to mold containers for a long time. In manufacturing this container, the above-mentioned thermoplastic plastic is formed into a bottomless or bottomed cylindrical body, that is, a parison, by extrusion molding or injection molding, and the parison is stretched in the axial direction and the parison is stretched in the circumferential direction. By performing the operation of inflating by blowing fluid simultaneously or sequentially, a molded container having a container wall with molecules oriented in biaxial directions is formed. Although this biaxially stretched molded container is excellent in the transparency, rigidity, impact resistance, dimensional stability, etc. described above, it is still not fully satisfactory in terms of gas barrier properties. For example, biaxially stretchable plastics such as polypropylene and polyethylene terephthalate have lower oxygen permeability coefficients than high gas barrier resins such as saponified ethylene-vinyl acetate copolymers and vinylidene chloride resins even after stretching. On the other hand, there is a problem in that high gas barrier resins are generally difficult to biaxially stretch. In order to improve the gas barrier properties, particularly the oxygen barrier properties, of a biaxially stretched molded container, it is already known to combine an oxygen barrier resin with the above-mentioned oriented thermoplastic to form a multilayer biaxially stretched molded container. For example, Japanese Unexamined Patent Publication No. 53-1971 proposed by the present inventors, etc.
Publication No. 21674 discloses that the melting point or softening point of the oriented resin and the melting point or softening point of the oxygen barrier resin are selected so that the difference between them is within a certain range, and the molding is performed at a specific temperature. It is disclosed that the delamination resistance can be improved by this. However, in this proposal, the combination of resins that can be used is limited by the melting point, and furthermore, the oxygen barrier resin used must be melt-extrudable together with the alignment resin. In addition, when stretch-molding a multilayer parison, stress and strain are likely to occur at the interlayer interface between both resin layers, and even though the molded container described above exhibits relatively good peel strength immediately after manufacture, it is susceptible to drop impact. It is observed that when is repeatedly applied, the peel strength decreases rapidly. The present inventors applied a solution or emulsion of an adhesive and gas barrier resin to a preform of an oriented thermoplastic resin, controlled the temperature of the coated surface, and applied the oriented thermoplastic resin to the coated surface. is further applied by injection to form a multilayer parison, and when this multilayer parison is subjected to biaxial stretching blow molding, the gas barrier properties are significantly improved while applying the gas barrier resin in the form of a solution or emulsion. It has also been found that a multilayer biaxially stretched molded container having high gas barrier properties and substantially no tendency to decrease in peel strength even when subjected to repeated drop impacts can be obtained. That is, an object of the present invention is to provide a method for manufacturing a multilayer biaxially stretched molded container, which has an intermediate layer containing a gas barrier resin that cannot be thermoformed or is difficult to thermoform, and in which the humidity dependence of the gas barrier property is small. . Another object of the present invention is to produce a multilayer biaxially stretched molded container that has an excellent combination of gas barrier properties and interlayer adhesion properties, and in particular has a markedly improved tendency to decrease in peel strength when repeatedly subjected to impact. It is in providing the law. Another object of the present invention is to form a multilayer biaxially stretched resin having adhesive properties and gas barrier properties, and further comprising a resin applied as a solution or emulsion, especially a resin that cannot be thermoformed or is difficult to thermoform, as an intermediate layer. To provide a method for manufacturing containers. Still another object of the present invention is to provide a method for manufacturing a biaxially stretched molded container using a multilayer parison obtained by a combination of two stages of injection molding and a coating between them. According to the present invention, on one surface of a bottomed preform made of a thermoformable oriented thermoplastic polymer,
A step of applying and drying a solution or emulsion of a gas barrier resin having adhesive properties that cannot be thermoformed or difficult to thermoform, forming a coating of the gas barrier resin;
℃ and setting it in a secondary injection mold; and injecting a thermoformable oriented thermoplastic polymer onto the coated surface of the preform to form a bottomed multilayer parison. The multilayer parison is stretched in the axial direction and stretched in the circumferential direction by blowing under temperature conditions that cause molecular orientation of the thermoplastic polymer on at least one of the inner surface side and the outer surface side. A method for producing a multilayer biaxially stretched molded container characterized by the following features is provided. In FIG. 1 showing a multilayer biaxially stretched container 1 according to the present invention, this container has a mechanism (for example, screws, beads, etc.) for fastening the lid (not shown).
It consists of a mouth part 2 with a parison, a body wall part 3 connected to the mouth part, and a bottom wall part 4 connected to the body wall part, and this bottom wall part 4 has a seam 5 formed by pinching off the parison. It may be seamless or seamless. As can be seen from the cross-section in FIG. 1, the container wall comprises an inner surface layer 6 and an outer surface layer 7 each formed of a thermoformable oriented thermoplastic polymer, both surface layers. A distinctive feature of the present invention is that a resin layer 8, which has both adhesion and gas barrier properties and is applied as a solution or emulsion, is provided between layers 6 and 7. Resins with excellent gas barrier properties are generally polymers containing a high concentration of polar groups such as hydroxyl groups, halogen atoms, or nitrile groups, and these resins have strong hydrogen bonds and are difficult to melt. , even if it is possible to melt
Since the melting temperature and the thermal decomposition temperature are close to each other, there are many restrictions on molding, and in particular coextrusion with other oriented resins is accompanied by many difficulties. Thus, in conventional multilayer stretch-molded containers, ingredients such as saponified ethylene-vinyl acetate copolymers that improve thermoformability but degrade gas barrier properties are used as gas barrier resins (e.g., ethylene). ), or by blending a resin component that improves thermoformability, or by adding a plasticizer to make thermoforming possible. In contrast, the present invention uses a highly gas-barrier resin that cannot be thermoformed or is difficult to thermoform, for the bottomed multilayer parison. In other words, the present invention uses gas barrier resins that are excellent in gas barrier properties but cannot be thermoformed or are difficult to be thermoformed. By using it in the form of an emulsion, ie, a latex, it can be incorporated into a multilayer parison as an intermediate layer, regardless of the thermoforming temperature of the oriented resin, and the gas barrier properties can be further improved. It should be noted here that an important problem that arises when applying a gas barrier resin as a solution or emulsion is that the resin layer formed may have poor gas barrier properties due to mechanical or physical reasons. This means that it is easy to get injured. For example, in a gas barrier resin layer applied in the form of emulsion particles, gaps between the particles tend to remain, and these gaps become gas passages and the original gas barrier properties are lost. Furthermore, when coating with such a liquid, pinholes and the like are generally likely to occur, which also causes a decrease in gas barrier properties. On the other hand, according to the present invention, after coating a gas barrier resin as a solution or emulsion on a bottomed oriented resin preform and drying, the coated preform is heated to a temperature of 40 to 70°C. By adjusting, the above-mentioned interparticle gaps disappear, and the gas barrier resin is uniformly and densely applied around the primary injection alignment resin. That is, it is important to control the temperature of the coated preform at 40°C to 70°C. By controlling the temperature of the gas barrier resin and the coating preform to a temperature range of 40 to 70°C and setting it in the secondary injection mold, cooling of the polymer within the mold is possible during the secondary injection of the thermoplastic polymer. In order to improve the spreading of the polymer to the surface coated with gas barrier resin, and when the temperature is higher than 70°C, the gas barrier coating resin that has been carefully formed is subjected to secondary injection. There is a tendency for the polymer to be softened and scraped off, making it impossible to obtain the desired gas barrier properties. As shown in Examples 1 to 4, Tables 2 and 3 below, if the temperature of the coated preform was not controlled, the coverage of the secondary injection resin to the coating film was insufficient (100%). 100% coverage can be obtained when the temperature of the coated preform is controlled between 40°C and 70°C, whereas a shot mold is generated. If the temperature of the coated preform is adjusted to a temperature higher than 70°C, for example 80°C, the coating film may be scraped or doubled during the secondary injection of the resin, and when this multilayer parison is stretch-blow molded, Gas barrier properties deteriorate due to paint film breakage, but setting the temperature range between 40℃ and 70℃ prevents coating film scraping during secondary injection, resulting in excellent gas barrier properties. A stretch blow molded article is obtained. In the multilayer biaxially stretched molded container according to the present invention, the oxygen barrier resin layer 8 itself is firmly adhered to the inner and outer surface layers, and this adhesive strength (peel strength)
It has the additional advantage that it has a significantly lower tendency to deteriorate even after repeated impacts. That is,
It has already been mentioned above that when a multilayer parison formed by coextrusion is subjected to stretch blow molding, stress and strain tend to concentrate between the layers, which is a major cause of a decrease in adhesive strength. In contrast, in the present invention, the oxygen barrier resin applied as the intermediate layer is applied in the form of a solution or emulsion, and its complete film formation occurs during stretch molding, so it also acts as an adhesive. It is believed that the barrier resin that does this will have less internal strain. Thus, according to the present invention, not only can a multilayer container with excellent interlayer adhesion immediately after production be obtained, but also a multilayer container whose peel strength does not deteriorate even when subjected to repeated drop impacts. In the present invention, at least one, preferably both, of the inner surface layer 6 and outer surface layer 7 of the oriented resin,
Although the molecules are significantly oriented in the plane direction, that is, in both the axial direction and the circumferential direction of the container due to stretch blow molding, the intermediate layer 8 is mostly unoriented in many cases. The thickness of the intermediate layer 8 is very thin due to the fact that it is applied in the form of a solution or emulsion and is subsequently stretched and is generally in the range from 3 to 30 microns, in particular from 5 to 15 microns. On the other hand, the thicknesses of the inner and outer surface layers 6 and 7 are preferably in the range of 500 to 40 microns, particularly 250 to 60 microns, although they vary depending on the type of resin and the intended use. In the present invention, the gas barrier resin includes a resin that cannot be thermoformed or is difficult to thermoform and has both gas barrier properties and adhesive properties, particularly a resin having a hydroxyl group, a halogen atom (chlorine atom), or a nitrile group. used. A suitable example is: (1) Hydroxyl group-containing polymer polyvinyl alcohol, partially acetalized polyvinyl alcohol, partially saponified polyvinyl acetate, partially saponified partially acetalized polyvinyl acetate, partially crosslinked polyvinyl alcohol, unsaturated carboxylic acid grafted polyvinyl alcohol; unsaturated carboxylic acid Water-soluble polysaccharide polymers such as grafted starch, unsaturated carboxylic acid grafted dextrin, ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and cyanoethylated starch; hydroxyl group-containing acrylic resins such as hydroxyethyl acrylate/ethyl acrylate copolymer, etc. (2) Halogen-containing polymers Polyvinylidene chloride, polyvinyl chloride, vinyl chloride/vinylidene chloride copolymer, vinyl chloride/vinyl acetate copolymer, etc. (3) Nitrile group-containing polymer polyacrylonitrile, acrylonitrile/
Butadiene copolymer, acrylonitrile/styrene copolymer, acrylonitrile/methyl methacrylate copolymer, etc. It should be understood that the polymers exemplified above are for illustrative purposes only and that many other copolymers may be used. The gas barrier resin suitable for use in the present invention is a polymer containing a polar group selected from the group consisting of a hydroxyl group, a halogen atom, and a nitrile group at a concentration of 120 to 1400 meq (milliquibanlent) per 100 g of the polymer. It is.
These polymers also have excellent adhesive properties because they contain a large amount of polar groups. These resins can be used alone or in combination of two or more. Furthermore, for the purpose of enhancing adhesive strength, resins having other functional groups such as carboxymethyl cellulose and polyacrylate, such as carboxyl groups and carboxylic acid ester groups, can be blended in an amount of 50% by weight or less based on the resin. . However, the inclusion of plasticizers that reduce gas barrier properties should be avoided. As a thermoformable oriented thermoplastic polymer,
Anything that satisfies this requirement is fine.
Suitable examples include poloolefins such as polypropylene, polybutene-1, and polystyrene; poloesters such as polyethylene terephthalate; polyamides such as nylon 6, nylon 6, 6; plasticized polyvinyl chloride; plasticized nitrile polymers; Methacrylate; polycarbonate, etc. can be mentioned. The molecular weight of these polymers may be within the film-forming range. The inner and outer surface layers constituting the container may be made of the same resin or different ones, and it is a significant advantage of the present invention that various resin combinations can be made by considering only the adhesiveness of the intermediate layer resin used. The steps of the method of the present invention will be explained using FIG. A thermoplastic resin is injected from an inner layer injection machine 12 into an inner layer injection mold 13 to form a bottomed primary molded product 11. After holding the neck part of the primary molded product 11 with a neck holder and transporting it to the coating pot 14 for the next step and immersing it in the coating pot 14 to apply the coating agent to the surface of the primary molded product, Drying section 1
At step 6, the solvent of the coating solution or the water in the latex is removed by drying, and the temperature of the coated molded article 15 is adjusted by heating or cooling at a temperature adjusting section 17. After drying the coated resin layer, the coated molded product adjusted to a temperature of 40 to 70°C is subjected to second stage injection molding to form a multilayer parison. Coated molded product 1 sent from delivery section 18
5 is held by a holding chuck 19 and set in an injection mold 21 for outer layer, and resin is injected onto the outer surface of the coated molding 15 from an injection machine 20 for outer layer to form a multilayer parison 22. The molded multilayer parison 22 is heated in a heating pot 23 to a temperature at which the inner layer resin or outer layer resin can be stretched, and then a multilayer stretch molded container is molded in the next stretch blow molding section 24, thereby producing a molded multilayer stretch molded container. are discharged from a take-out section 25 consisting of a conveyor or the like and guided to the next capping process and boxing process. In the present invention, it is also important to use a bottomed primary molded product of an oriented resin, and to coat the surface of this primary molded product with a gas barrier resin. Conventionally, it has already been possible to form bolts by stretch-blowing a multi-layered pipe in which a polyvinyl alcohol (PVA) coating is formed on the surface of a polyester pipe, and a moisture-resistant resin coating is provided on top of this coating if necessary. It is known (Japanese Unexamined Patent Publication No. 117565/1983).
However, stretch blowing using this multilayered pipe provides a significant improvement in gas barrier properties. Moreover, by carrying out stretch hollow molding in the form of a bottomed multilayer parison, axial stretching and circumferential blow stretching are performed in a well-balanced manner, and the occurrence of breakage or cracks in the intermediate bath galactic resin layer is also prevented. be. Oxygen barrier resin coating can be applied by dipping,
It can be applied by spray painting, antistatic painting, roll coating, brush painting, etc. The concentration of the resin liquid generally ranges from 20 to 60% by weight as resin solids, and the viscosity may range from 100 to 10,000 centipoise. As the solvent, water, an organic solvent, or a combination thereof is used. In order to avoid an adverse effect on the alignment resin, it is preferable to use water as the solvent. In the case of a water-insoluble resin, an emulsion, i.e. Preferably used in latex form. Axial stretching and circumferential expansion of the multilayer parison
The process is carried out at a temperature at which effective molecular orientation of the alignment resin occurs. These stretch forming temperatures and stretching ratios are also well known per se, and the present invention is also carried out under well known conditions. In the present invention, the in-plane orientation coefficient (l+m) is
By giving the inner and outer surface layer resins a molecular orientation of 0.3 or more, particularly 0.4 or more, satisfactory results can be obtained in terms of transparency, rigidity, and impact resistance. The invention is illustrated by the following example. Example 1 Length 110m/m, outer diameter 25φ, wall thickness 1.5m/m
A primary molded product of polyester resin (intrinsic viscosity 0.7) was injection molded, and the primary molded product was cooled to about 80°C and immersed in an aqueous solution of Poval (Kuraray 117) at 50°C. Dry with hot air and adjust the temperature of the primary molded product to 50 to 70℃ to form the next outer layer resin, and inject polyester copolymer (manufactured by PET.G Kodatsu Co., Ltd.) into the outer layer using an injection molding machine for the outer layer. Then, it was heated to 100°C, stretched 2.0 times vertically using a stretching rod, and then blow molded to obtain a multilayer biaxially stretched 500 c.c. container. The average wall thickness of each layer of the resulting container is
300μ, 10μ, 280μ, the degree of orientation of the inner and outer layers is l
= 0.17, m = 0.35, and the outer layer had l = 0.20, m = 0.40. The oxygen gas permeability of this container is 1.7cc/day・
ATM, 37℃, adhesive strength between each layer is 1.1Kg/15m/m,
Peeling strength after 10 repeated drops is 1.0Kg/15m/
The container had a width of m width, a transparency value of 2.1% in terms of haze value, was resistant to surface scratches, and had good appearance and storage stability. For comparison, a container of the same thickness without a solution-like intermediate layer was molded with an oxygen permeability of 55c.c./day・atm・37℃, interlayer adhesion strength of 0.05Kg/15m/m, and peeling after repeated dropping 10 times. The strength was 0.01Kg/15m/m width. In addition, only the temperature control conditions were changed, and the temperature control temperature of the primary molded product was set to 15 to 20°C (Sample No. 1-A in Tables 1 and 2) and 80°C (Sample No. 1).
-C) was used as a comparative example, and the molded state of the preform and the molded product were evaluated. The results are shown in Tables 1 and 2. Example 2 Length 110m/m, outer diameter 25φ, wall thickness 1.5m/m
polymethyl methacrylate (PMMA, MI=
The primary molded product from 2) was injection molded, immersed in a solution of polysaccharide water-soluble polymer Pullulan R Hayashihara Biological Research Institute at 30°C, and dried with hot air at 98°C. Next, adjust the temperature of the molded product to 40 to 50℃, and use the injection molding machine for the outer layer to make polystyrene (MI=
6) was injected into the outer layer, heated to 120°C, stretched 1.8 times vertically using a stretching rod, and blow molded to obtain a multilayer biaxially stretched 500 c.c. container. The average wall thickness of each layer of the resulting container is
320μ, 8μ, 300μ, the degree of orientation of the inner and outer layers is l
= 0.15, m = 0.35, and the outer layer had l = 0.28, m = 0.41. The oxygen gas permeability of this container is 9.5cc/day・
ATM/37℃, adhesive strength between each layer is 0.9Kg/15m/m,
Peeling strength after 10 repeated drops is 0.85Kg/15m/
The container had a transparency of 1.8% in haze value, was resistant to surface scratches, and had good appearance and storage stability. For comparison, a container of the same thickness without a solution-like intermediate layer was molded with an oxygen permeability of 400c.c./day・atm・37℃, an interlayer adhesion strength of 0.01Kg/15m/m, and a peel strength after repeated dropping. However, it peeled off at the first try and could not be measured. In addition, only the temperature control conditions were changed, and the temperature control temperature of the primary molded product was set to 15 to 20 °C (Sample No. 2-A in Tables 1 and 2) and 80 °C (Sample No. 2).
-C) was used as a comparative example, and the molded state of the preform and the molded product were evaluated. The results are shown in Tables 1 and 2. Example 3 Length 150m/m, outer diameter 25φ, wall thickness 1.5m/m
The primary molding of PVC (P = 800, 3 parts MBS) is injection molded, and 90% vinylidene chloride and vinyl chloride are used at 30℃.
10% copolymer latex (55% solids, viscosity
150cps, particle size 0.2μ) solution, dry with hot air at 90℃, adjust the temperature of the primary molded product to 50 to 55℃ to form the next outer layer resin, and use the injection molding machine for the outer layer to form the above molded product. PVC was injected into the outer layer, heated to 105°C, stretched 1.3 times vertically with a stretching rod, and blow molded to obtain a multilayer biaxially stretched 500 c.c. container. The average wall thickness of the container obtained was 320μ, 8μ, and
310μ, the degree of orientation of the inner and outer layers is l = 0.25, m =
0.41, and the outer layer had l=0.29 and m=0.46. The oxygen gas permeability of this container is 2.5cc/day・
ATM, 37℃, adhesive strength between each layer is 2.5Kg/15m/m,
Peel strength after repeated dropping 10 times is 2.0Kg/15
m/m, transparency was 3.5% in Haze value, the container was hard to get scratches on the surface, and had good appearance and storage stability.
For comparison, a container of the same thickness without a solution-like intermediate layer had an oxygen permeability of 35c.c./day・atm・37℃,
The interlayer adhesive strength was 0.8 kg/15 m/m, and the peel strength after repeated dropping 10 times was 0.4 kg/15 m/m. In addition, only the temperature control conditions were changed, and the temperature control temperature of the primary molded product was set to 15 to 20°C (Sample No. 3-A in Tables 1 and 2) and 80°C (Sample No. 3).
-C) was used as a comparative example to evaluate the molding state of the preform and the molded product. The results are shown in Tables 1 and 2. Example 4 Length 110m/m, outer diameter 25φ, wall thickness 1.5m/m
A primary molded product of polyester resin (intrinsic viscosity 0.7) was injection molded, immersed in a solution of acrylonitrile latex (solid content 45%, viscosity 400 cps, particle size 0.3μ) at 50°C, and dried with hot air at 120°C. In order to provide the next outer layer resin, the temperature of the primary molded product was adjusted to 50 to 70℃, and acrylonitrile resin (manufactured by Monsanto, Burlex 210) was injected into the outer layer using an injection molding machine for the outer layer, and the temperature was heated to 102℃. The mixture was heated, stretched 1.8 times vertically using a stretching rod, and then blow molded to obtain a multilayer biaxially stretched 500 c.c. container. The average wall thickness of the container obtained was 300μ from the inner surface.
15μ and 250μ, the degree of orientation of the inner and outer layers is l = 0.17 for the inner layer,
m=0.35, and the outer layer had l=0.25 and m=0.39. The oxygen gas permeability of this container is 2.1cc/day・
ATM, 37℃, adhesive strength between each layer is 1.5Kg/15m/m,
Peeling strength after repeated dropping 10 times is 1.2Kg/15
m/m, transparency was 3.8% in Haze value, the container was hard to get scratches on the surface, and had good appearance and storage stability.
For comparison, a container of the same thickness without a solution-like intermediate layer had an oxygen permeability of 35c.c./day・atm・37℃,
The interlayer adhesive strength was 0.01 Kg/15 m/m, and the peel strength after repeated drops could not be measured because it peeled off the first time. In addition, only the temperature control conditions were changed, and the temperature control temperature of the primary molded product was set to 15 to 20°C (Sample No. 4-A in Tables 1 and 2) and 80°C (Sample No. 4).
-C) was used as a comparative example to evaluate the molding state of the preform and the molded product. The results are shown in Tables 1 and 2. Comparative example: length 110m/m, outer diameter 25φ, wall thickness 2.8m/m
A primary molded product of polyester resin (intrinsic viscosity 0.7) is injection molded, and the primary molded product cooled to about 80°C is immersed in an aqueous solution of Poval (Kuraray 177) at 50°C and heated with hot air at 100°C. After drying, it is stretched twice vertically using a stretching rod and then blow molded.
A container of 500 c.c. was obtained. The oxygen gas permeability of the obtained container was 4.5cc/
day・atm・37℃, interlayer adhesion strength is 0.05Kg/15
The container was m/m wide, easily scratched on the surface, and had poor storage stability. As a comparison for Examples 2 to 5, stretch-blown containers without an outer layer resin were made and evaluated. As in Comparative Example 1, only containers with poor oxygen gas permeability and adhesive strength were obtained.

【表】 *1…多糖体
[Table] *1…Polysaccharide

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多層2軸延伸成形容器の
側断面図、第2図は、多層有底パリソンの製造及
びそれより多層2軸延伸成形容器製造を示す工程
図、であつて、 引照数字1は多層2軸延伸成形容器、6は内表
面層、7は外表面層、8はガスバリヤー性兼接着
性樹脂層、12は内層用射出機、14は塗布ポツ
ト、16は乾燥部、20は外層用射出機、23は
加熱ポツト、24は延伸ブロー成形部、22は多
層ブリフオームを夫々示す。
FIG. 1 is a side sectional view of a multilayer biaxially stretched molded container according to the present invention, and FIG. 2 is a process diagram showing the production of a multilayer bottomed parison and the multilayered biaxially stretched molded container from the same, with reference numerals. 1 is a multilayer biaxially stretched molded container, 6 is an inner surface layer, 7 is an outer surface layer, 8 is a gas barrier/adhesive resin layer, 12 is an injection machine for the inner layer, 14 is a coating pot, 16 is a drying section, 20 2 shows an injection machine for the outer layer, 23 a heating pot, 24 a stretch blow molding section, and 22 a multilayer brief form.

Claims (1)

【特許請求の範囲】[Claims] 1 熱成形可能な配向性熱可塑性重合体から成る
有底予備成形物の一方の表面に、熱成形不能乃至
は熱成形困難な接着性を有するガスバリヤー性樹
脂の溶液乃至はエマルジヨンを塗布乾燥してガス
バリヤー性樹脂の被覆を形成させる工程と、得ら
れる塗布予備成形物を40乃至70℃の温度に調製し
て二次射出金型にセツトする工程と、該予備成形
物の塗布面に熱成形可能な配向性熱可塑性重合体
を射出して有底多層パリソンを形成する工程と、
該有底多層パリソンを、内表面側及び外表面側の
少なくとも一方の熱可塑性重合体の分子配向が生
ずる温度条件下において、軸方向に延伸すると共
に吹込みにより周方向に延伸する工程とから成る
ことを特徴とする多層2軸延伸成形容器の製法。
1 A solution or emulsion of a gas barrier resin having adhesive properties that cannot be thermoformed or is difficult to thermoform is applied to one surface of a bottomed preform made of a thermoformable oriented thermoplastic polymer and dried. a step of forming a gas barrier resin coating, a step of adjusting the obtained coated preform to a temperature of 40 to 70°C and setting it in a secondary injection mold, and a step of applying heat to the coated surface of the preform. injecting a moldable oriented thermoplastic polymer to form a bottomed multilayer parison;
Stretching the bottomed multilayer parison in the axial direction and circumferentially by blowing under temperature conditions that cause molecular orientation of the thermoplastic polymer on at least one of the inner surface side and the outer surface side. A method for producing a multilayer biaxially stretched container characterized by the following.
JP15224580A 1980-10-31 1980-10-31 Multilayer biaxial oriented molded vessel and manufacture Granted JPS5775826A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15224580A JPS5775826A (en) 1980-10-31 1980-10-31 Multilayer biaxial oriented molded vessel and manufacture
DE8181305102T DE3173472D1 (en) 1980-10-31 1981-10-28 Laminated plastic container and process for preparation thereof
GB8132465A GB2090219B (en) 1980-10-31 1981-10-28 Coated plastics containers
EP81305102A EP0051443B1 (en) 1980-10-31 1981-10-28 Laminated plastic container and process for preparation thereof
US06/315,952 US4393106A (en) 1980-10-31 1981-10-28 Laminated plastic container and process for preparation thereof
CA000388989A CA1169719A (en) 1980-10-31 1981-10-29 Laminated plastic container and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15224580A JPS5775826A (en) 1980-10-31 1980-10-31 Multilayer biaxial oriented molded vessel and manufacture

Publications (2)

Publication Number Publication Date
JPS5775826A JPS5775826A (en) 1982-05-12
JPH0214180B2 true JPH0214180B2 (en) 1990-04-06

Family

ID=15536264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15224580A Granted JPS5775826A (en) 1980-10-31 1980-10-31 Multilayer biaxial oriented molded vessel and manufacture

Country Status (1)

Country Link
JP (1) JPS5775826A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158232A (en) * 1983-02-28 1984-09-07 Toyo Seikan Kaisha Ltd Preparaton of multi-layered stretched polyester bottle
JPS62193940A (en) * 1986-02-21 1987-08-26 株式会社吉野工業所 Gas barrier-property multilayer vessel and manufacture thereof
JP2007137506A (en) * 2005-11-22 2007-06-07 Aicello Chemical Co Ltd Multi-layer plastic container

Also Published As

Publication number Publication date
JPS5775826A (en) 1982-05-12

Similar Documents

Publication Publication Date Title
JPS59158232A (en) Preparaton of multi-layered stretched polyester bottle
US4731266A (en) Water-resistant polyvinyl alcohol film and its application to the preparation of gas-impermeable composite articles
US5360670A (en) Multilayered structure containing an ethylene-vinyl alcohol layer
JPS58208046A (en) Plastic vessel with oriented coating and its manufacture
MXPA03008153A (en) Packaging films containing coextruded polyester and nylon layers.
JPH0420784B2 (en)
EP0076366B1 (en) Multilayer tubular body with uncentered barrier layer
EP0239092B1 (en) Multilayered structure using ethylene-vinyl alcohol copolymer
JPS6211644A (en) Laminate having excellent gas permeability resistance
WO1996016799A1 (en) Heat sealable multilayer film containing polyvinyl alcohol layer
JPH09193189A (en) Manufacture of exterior automotive part
EP0118227B1 (en) Process for drawing plastic laminates
JPH0118849B2 (en)
US6764751B2 (en) Coated multilayer polyethylene film
JPH0214180B2 (en)
JPH0486260A (en) Plastic container of mat-shaped appearance
JPH1052893A (en) Co-extruded multilayer laminated sheet made of plastic and method for manufacturing molding using it
JPS59184627A (en) Manufacture of bottle made of multilayer orientation polypropylene
WO2008030202A1 (en) Non-oriented barrier polymeric films for in-mould (iml) applications
CA2053767A1 (en) Metallized polypropylene film and process for manufacture
JPH09193237A (en) Production of car exterior member
JPH1058618A (en) Plastic coextrusion multi-layer laminated sheet and manufacture of molded item employing this
JP2892766B2 (en) Resin composition and laminate
JPH0460830B2 (en)
JPS5816825A (en) Manufacture of biaxial-oriented hollow body made of thermoplastic resin with gas impermeable waterproof coating and hollow body obtained through said method