JPH02141424A - Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle - Google Patents

Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle

Info

Publication number
JPH02141424A
JPH02141424A JP29357088A JP29357088A JPH02141424A JP H02141424 A JPH02141424 A JP H02141424A JP 29357088 A JP29357088 A JP 29357088A JP 29357088 A JP29357088 A JP 29357088A JP H02141424 A JPH02141424 A JP H02141424A
Authority
JP
Japan
Prior art keywords
zirconium
fine
particles
fine particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29357088A
Other languages
Japanese (ja)
Other versions
JPH0476334B2 (en
Inventor
Toshiro Otani
敏郎 大谷
Yoshihiko Nawa
義彦 名和
Atsuo Watanabe
敦夫 渡辺
Mitsutoshi Nakajima
光敏 中嶋
Hiroshi Nabeya
浩志 鍋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP29357088A priority Critical patent/JPH02141424A/en
Publication of JPH02141424A publication Critical patent/JPH02141424A/en
Publication of JPH0476334B2 publication Critical patent/JPH0476334B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce fine Zr particles having uniform and small particle size and to produce a stable dynamic film deposited with the fine Zr particles on a porous base body by adding a specified proportion of SO4 ion to an aq. soln. of Zr salt having a specified concn. of Zr and aging the mixture. CONSTITUTION:SO4 ions are added to an aq. soln. of Zr salt such as ZrCl2, ZrOCl2, etc., (10<-4>-10<-2>mol/liter Zr concn.) adjusting a ratio of the concn. of Zr to 1:0.5-1:100, and the mixture is aged at 20-75 deg.C for >=1hr, usually at 50 deg.C for 1-2hr, to obtain thus fine Zr particles having uniform particle size (<=300nm, usually <=100nm particle size). A colloidal soln. contg. the fine particles dispersed therein is passed through a porous base body (for example, an aluminous ceramic cylinder having 10mm outside diameter, 8mm inside diameter, 550mm length, and about 0.5mm pore size) at 15-35 deg.C and 0.1-1.0MPa pressure at 1-3m/sec flow rate. Thus, a dynamic film such as ultrafilter, reverse osmotic membrane, etc., is obtd. by depositing fine ZrO2 particles laminatingly to the surface of the porous base body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は小径で且つ粒径が揃ったジルコニウム微粒子の
製法と、当該ジルコニウム微粒子を用いたダイナミック
膜の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing zirconium fine particles having a small diameter and uniform particle size, and a method for producing a dynamic membrane using the zirconium fine particles.

〔従来の技術〕[Conventional technology]

0.01μm〜10μmの無機コロイド粒子を調製する
方法として、塩溶液に酸又はアルカリを添加する方法が
■広信社「表面」にVol、 25 N0. 3(19
87)にも記載されるように一般的な手法イナミック膜
の製法として、セラミックス製の多孔質支持体にオキシ
塩化ジルコニウム(ZrOCl2)の溶液を加圧下で還
流せしめ、支持体表面にオキシ塩化ジルコニウムをコロ
イド層として付着させる方法が知られている。
As a method for preparing inorganic colloidal particles of 0.01 μm to 10 μm, a method of adding acid or alkali to a salt solution is described in ■ Koshinsha "Surface" Vol. 25 No. 0. 3 (19
As described in 87), as a general method for producing dynamic membranes, a solution of zirconium oxychloride (ZrOCl2) is refluxed under pressure on a porous ceramic support, and zirconium oxychloride is deposited on the surface of the support. A method of depositing it as a colloidal layer is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来法によって得たダイナミック膜のコロイド
層は物理的及び化学的に不安定で、再現性良くダイナミ
ック膜を形成できず、また連続した使用もできない。ダ
イナミック膜としての性能を高めるには、ジルコニウム
微粒子を最密充填に近く堆積させることが必要であり、
このためには、粒子径が小さく且つ揃っていることが条
件となるが、上述した一般的な無機コロイド粒子の鯛製
法では満足な結果が得られない。
The colloidal layer of the dynamic film obtained by the above-mentioned conventional method is physically and chemically unstable, making it impossible to form a dynamic film with good reproducibility and also making it impossible to use it continuously. In order to improve the performance as a dynamic membrane, it is necessary to deposit zirconium particles close to close-packed.
For this purpose, the particle diameter must be small and uniform, but the above-mentioned general method for producing sea bream using inorganic colloid particles does not give satisfactory results.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決すべく第1発明にあっては、ジルコニウ
ム濃度が10−’moffi/ j!〜10−”moj
2/ 1である希薄なジルコニウム塩水溶液を調製し、
この水溶液にジルコニウムに対する濃度比が1:0.5
〜1 : 100となるように硫酸イオンを添加し、こ
の後上記の水溶液を所定の条件で熟成(エージング)す
るぼことによりジルコニウム微粒子を沈澱せしめるよう
にし、また第2発明にあっては第1発明によって得たジ
ルコニウム微粒子を分散したコロイド溶液を用いて加圧
下で多孔質支持体を通して還流させ、該多孔質支持体表
面に酸化ジルコニウム微粒子の層を形成するようにした
In order to solve the above problem, in the first invention, the zirconium concentration is 10-'moffi/j! ~10-”moj
Prepare a dilute zirconium salt aqueous solution with a ratio of 2/1,
The concentration ratio of zirconium to this aqueous solution is 1:0.5.
1:100, and then the above aqueous solution is aged under predetermined conditions to precipitate zirconium fine particles. A colloidal solution in which fine zirconium particles obtained according to the invention were dispersed was refluxed under pressure through a porous support to form a layer of fine zirconium oxide particles on the surface of the porous support.

本発明においてジルコニウム塩としては水溶性のもので
あれば任意に使用でき、たとえば塩化物オキシ塩化物な
どがある。ジルコニウム塩水溶液中のジルコニウム濃度
が10−4mol / I!未満であると、ジルコニウ
ム微粒子が形成されず、一方10−2mol/lを越え
る濃度で用いると、ジルコニウム微粒子が形成されない
か、もしくは形成されたとしても該微粒子の粒径分布が
著しく大きいものとなり好ましくない。好ましくはジル
コニウム濃度5 X 10−3moI!、/I!、〜I
 X 10−”moffi/ffの範囲で用いる。
In the present invention, any water-soluble zirconium salt can be used, such as chloride and oxychloride. The zirconium concentration in the zirconium salt aqueous solution is 10-4 mol/I! If the concentration is less than 10-2 mol/l, zirconium fine particles will not be formed, and if it is used at a concentration exceeding 10-2 mol/l, zirconium fine particles will not be formed, or even if they are formed, the particle size distribution of the fine particles will be significantly large, which is preferable. do not have. Preferably the zirconium concentration is 5 x 10-3 moI! ,/I! ,~I
It is used in the range of X 10-”moffi/ff.

次に、硫酸イオンを与える化合物としてはHzSOn。Next, HzSOn is a compound that provides sulfate ions.

(NH4)JL SOS、、 KgSO4,NazSO
aなどがあるが、これらのうちH2SO4を用いると、
ジルコニウム微粒子の粒径をコントロールすることがで
きる。
(NH4) JL SOS, KgSO4, NazSO
Among these, when H2SO4 is used,
The particle size of zirconium fine particles can be controlled.

ジルコニウム硫酸イオンとの濃度比は上記した範囲内と
すべきである。この範囲を外れると、目的とするジルコ
ニウム粒子の形成がなされない。
The concentration ratio with zirconium sulfate ion should be within the above range. Outside this range, the desired zirconium particles will not be formed.

好ましくは濃度比が1:0.5〜1:10の範囲で用い
る。なお、該粒子形成を行うための熟成は温度20〜7
5°Cにて1時間以上、通常は50°Cで1〜2時間行
えばよい。
Preferably, the concentration ratio is in the range of 1:0.5 to 1:10. In addition, the aging for forming the particles is carried out at a temperature of 20 to 7
It may be carried out at 5°C for 1 hour or more, usually at 50°C for 1 to 2 hours.

上記方法により得られるジルコニウム微粒子は粒径が0
.3ttm (300nm)以下、通常は0.1μm(
100nm)以下であり、しかも粒径が揃っている。
The zirconium fine particles obtained by the above method have a particle size of 0.
.. 3ttm (300nm) or less, usually 0.1μm (
100 nm) or less, and the particle sizes are uniform.

次に、ジルコニウム微粒子を用いてダイナミック膜を形
成する方法について説明する。
Next, a method for forming a dynamic film using zirconium fine particles will be explained.

第1図はダイナミック膜形成装置の概略図であり、膜形
成装置はポンプ1.タンク2.流量計3゜圧力計4.多
孔質支持体5およびこれらを接続する配管6によって構
成されている。
FIG. 1 is a schematic diagram of a dynamic film forming apparatus, and the film forming apparatus includes a pump 1. Tank 2. Flow meter 3゜Pressure gauge 4. It is composed of a porous support 5 and piping 6 connecting these.

多孔質支持体5はA l zOs質のセラミックス製筒
体とし、その寸法は例えば外径(D+)10mm、内径
(Dz)8mm、長さ(L)550mmで、孔径が約0
.5μmの均質なものを使用する。この多孔質支持体の
表面にダイナミック膜を形成するには、タンク2内に前
記方法によって得たジルコニウム微粒子を分散させたコ
ロイド溶液を入れ、ポンプ1により加圧下に多孔質支持
体5を通して該溶液を還流させ、酸化ジルコニウムを多
孔質支持体の表面に層状に沈着せしめる。なお、コロイ
ド溶液を還流させる際の条件としては、圧力0.05〜
2.OMPa 、好ましくは0.1〜1.0 MPa 
、温度0〜90°C1好ましくは15〜35°C1速度
0.1〜10 m/sec、、好ましくは1〜3 m/
sec、  が適当である。
The porous support 5 is a cylindrical body made of AlzOs ceramics, and its dimensions are, for example, an outer diameter (D+) of 10 mm, an inner diameter (Dz) of 8 mm, a length (L) of 550 mm, and a pore diameter of about 0.
.. Use a homogeneous material with a diameter of 5 μm. To form a dynamic membrane on the surface of this porous support, a colloidal solution in which the zirconium fine particles obtained by the above method are dispersed is placed in a tank 2, and the solution is passed through the porous support 5 under pressure using a pump 1. is refluxed to deposit zirconium oxide in a layer on the surface of the porous support. Note that the conditions for refluxing the colloidal solution include a pressure of 0.05~
2. OMPa, preferably 0.1-1.0 MPa
, temperature 0-90°C, preferably 15-35°C, speed 0.1-10 m/sec, preferably 1-3 m/sec.
sec, is appropriate.

〔実施例〕 次に、本発明を実施例により詳しく説明する。〔Example〕 Next, the present invention will be explained in detail with reference to examples.

実施例1 ジルコニウム濃度が所定量のオキシ塩化ジルコニウム(
ZrOCI!、2)水溶液に対してジルコニウムと硫酸
イオン(SQL−)の濃度比が1:0.1〜1:100
の範囲となるようにH2SO4(特級試薬以上)の所定
量を添加し、50″Cで2時間エージングを行った後、
ジルコニウム微粒子の形成の有無を調べた。結果を第2
図に示す。また、第3図乃至第5図は11□S04を添
加した場合のジルコニウム微粒子の構造を示す電子顕微
鏡写真(20,000倍)であり、第3図はジルコニウ
ム濃度を10−3moff/l、濃度比を1:0.7と
し、第4図はジルコニウム濃度を10−3mol/1、
濃度比を1:1とし、第5図はジルコニウム濃度を10
−3moj2 / j2、濃度比を1=5とした場合を
示す。これらの図から明らかなよう、11゜SO4を用
いた場合には、ジルコニウムと硫酸イオンとの濃度比に
比例して形成されるジルコニウム微粒子の粒径が約30
nm〜0.2μmの範囲で変化することが分かった。
Example 1 Zirconium oxychloride with a predetermined zirconium concentration (
ZrOCI! , 2) The concentration ratio of zirconium and sulfate ions (SQL-) to the aqueous solution is 1:0.1 to 1:100.
After adding a predetermined amount of H2SO4 (special grade reagent or higher) to the range of , and aging at 50"C for 2 hours,
The presence or absence of zirconium fine particle formation was investigated. Second result
As shown in the figure. In addition, Fig. 3 to Fig. 5 are electron micrographs (20,000 times magnification) showing the structure of zirconium fine particles when 11□S04 is added. The ratio is 1:0.7, and in Figure 4, the zirconium concentration is 10-3 mol/1,
The concentration ratio is 1:1, and the zirconium concentration in Figure 5 is 10.
-3moj2/j2, the case where the concentration ratio is 1=5 is shown. As is clear from these figures, when 11° SO4 is used, the particle size of the zirconium fine particles formed is approximately 30° in proportion to the concentration ratio of zirconium and sulfate ions.
It was found that it varies in the range of nm to 0.2 μm.

実施例2 実施例1においてHgSO4の代りに(NH411z 
S04を用いたこと以外は実施例1と同様に行った。結
果を第6図に示す。なお、形成されたジルコニウム微粒
子の粒径は、第7図に示した如く、ジルコニウム濃度と
硫酸イオン濃度の比に関係なく0.1〜0.2μmであ
った。
Example 2 In Example 1, instead of HgSO4 (NH411z
The same procedure as in Example 1 was carried out except that S04 was used. The results are shown in Figure 6. As shown in FIG. 7, the particle size of the formed zirconium fine particles was 0.1 to 0.2 μm regardless of the ratio of zirconium concentration to sulfate ion concentration.

実施例3 実施例1においてH2SO4の代りにに、SO4を用い
たこと以外は実施例1と同様に行った。結果を第8図に
示す。なお、形成されたジルコニウム微粒子の粒径は実
施例2の場合と同じであった。
Example 3 The same procedure as in Example 1 was conducted except that SO4 was used instead of H2SO4. The results are shown in FIG. Note that the particle size of the formed zirconium fine particles was the same as in Example 2.

実施例4 実施例1において1125O4の代りにNazSO,を
用いたこと以外は実施例1と同様に行った。結果を第9
図に示す。なお、形成されたジルコニウム微粒子の粒径
は実施例2の場合と同じであった。
Example 4 The same procedure as in Example 1 was conducted except that NazSO was used instead of 1125O4. 9th result
As shown in the figure. Note that the particle size of the formed zirconium fine particles was the same as in Example 2.

実施例5 第1図に示したダイナミック膜形成装置のタンク2に実
施例1で得たジルコニウム微粒子(粒径30〜50mm
)を分散させたコロイド溶液を入れた。また、多孔質支
持体としてり、 : 10mm、 D、 :溶液を該多
孔質支持体を通して還流せしめた。
Example 5 The zirconium fine particles obtained in Example 1 (particle size 30 to 50 mm) were placed in tank 2 of the dynamic film forming apparatus shown in FIG.
) was added to the colloid solution. In addition, a porous support was used, and the solution was refluxed through the porous support.

圧力 :  0.5 MPa 温度 : 25°C 速度 :  l m/sec。Pressure: 0.5 MPa Temperature: 25°C Speed: lm/sec.

その結果、約2時間で定常透過流速となり、第10図に
示した如く、厚さ20μmの酸化ジルコニウムの膜7が
支持体5の表面に均一に形成された。
As a result, the permeation flow rate reached a steady state in about 2 hours, and a 20 μm thick zirconium oxide film 7 was uniformly formed on the surface of the support 5, as shown in FIG.

このダイナミック膜の阻止性能の実験結果を第11図に
示す。図から明らかなように、この膜の90%阻止の点
が分子量5〜6万であった。なお、実験にはα−サイク
ロデキストリンおよび各種デキストランを使用した。
The experimental results of the blocking performance of this dynamic membrane are shown in FIG. As is clear from the figure, the point at which this membrane achieved 90% inhibition was at a molecular weight of 50,000 to 60,000. Note that α-cyclodextrin and various dextrans were used in the experiment.

実施例6 実施例5において、ジルコニウム微粒子として粒径0.
2〜0.3μmのものを使用したこと以外は実施例5と
同様に行った。その結果、厚さ200μmの膜が支持体
表面に均一に形成された。
Example 6 In Example 5, the zirconium fine particles had a particle size of 0.
The same procedure as in Example 5 was carried out except that one having a diameter of 2 to 0.3 μm was used. As a result, a film with a thickness of 200 μm was uniformly formed on the surface of the support.

このダイナミック膜の阻止性能を実施例5と同様にして
測定したところ、第11図に示した如く、90%阻止の
点が分子量200万であることが分った。
The blocking performance of this dynamic membrane was measured in the same manner as in Example 5, and as shown in FIG. 11, it was found that the point of 90% blocking was at a molecular weight of 2 million.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極めて小径で、且つ粒径が揃ったジル
コニウム微粒子を得ることができ、特に硫酸イオンを添
加するためにH2SO4を添加するようにすれば、粒径
をコントロールすることもできる。そして、上記によっ
て得た微粒子を多孔質支持体表面に付着させることで、
物理的にも化学的にも安定したダイナミック膜を形成す
ることができる。
According to the present invention, zirconium fine particles having an extremely small diameter and uniform particle size can be obtained, and the particle size can also be controlled, especially if H2SO4 is added to add sulfate ions. Then, by attaching the fine particles obtained above to the surface of the porous support,
A physically and chemically stable dynamic film can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は膜形成装置の概略図、第2図、第6図。 第8図および第9図は縦軸にZr濃度を横軸にZrとS
Oエニー濃度比をとったグラフ、第3図乃至第5図およ
び第7図はジルコニウム微粒子構造を示す顕微鏡写真、
第10図は多孔質支持体の拡大断面図、第11図はダイ
ナミック膜の阻止性能を示すグラ(7/l0LL+ )
」Z × 00 X O■ (γ/10IJJ)」Z
FIG. 1 is a schematic diagram of a film forming apparatus, FIG. 2, and FIG. 6. Figures 8 and 9 show Zr concentration on the vertical axis and Zr and S on the horizontal axis.
Graphs showing the O-any concentration ratio, Figures 3 to 5, and 7 are micrographs showing the structure of zirconium fine particles;
Figure 10 is an enlarged cross-sectional view of the porous support, and Figure 11 is a graph showing the blocking performance of the dynamic membrane (7/l0LL+).
"Z × 00 X O■ (γ/10IJJ)"Z

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム(Zr)濃度が10^−^4mol
/l〜10^−^2mol/lのジルコニウム塩水溶液
を調製し、この水溶液にジルコニウムに対する濃度比が
1:0.5〜1:100の範囲で硫酸イオン(SO_4
^2^−)を添加し、次いで上記水溶液を熟成してジル
コニウム微粒子を沈澱させるようにしたジルコニウム微
粒子の製法。
(1) Zirconium (Zr) concentration is 10^-^4 mol
/l ~ 10^-^2 mol/l of zirconium salt aqueous solution is prepared, and sulfate ion (SO_4
A method for producing zirconium fine particles by adding ^2^-) and then aging the above aqueous solution to precipitate zirconium fine particles.
(2)ジルコニウム(Zr)濃度が10^−^4mol
/l〜10^−^2mol/lのジルコニウム塩水溶液
を調製し、この水溶液にジルコニウムに対する濃度比が
1:0.5〜1:100の範囲で硫酸イオン(SO_4
^2^−)を添加し、次いで上記水溶液を熟成してジル
コニウム微粒子を形成せしめ、このジルコニウム微粒子
を分散させたコロイド溶液を加圧下で多孔質支持体を通
して還流させ、該多孔質支持体表面に酸化ジルコニウム
微粒子を層状に沈着せしめるようにしたことを特徴とす
るジルコニウム微粒子を用いたダイナミック膜の製法。
(2) Zirconium (Zr) concentration is 10^-^4 mol
/l ~ 10^-^2 mol/l of zirconium salt aqueous solution is prepared, and sulfate ion (SO_4
^2^-) is added, and then the above aqueous solution is aged to form zirconium fine particles, and the colloidal solution in which the zirconium fine particles are dispersed is refluxed under pressure through a porous support, so that it is coated on the surface of the porous support. A method for producing a dynamic membrane using fine zirconium particles, characterized in that fine particles of zirconium oxide are deposited in a layered manner.
JP29357088A 1988-11-22 1988-11-22 Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle Granted JPH02141424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29357088A JPH02141424A (en) 1988-11-22 1988-11-22 Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29357088A JPH02141424A (en) 1988-11-22 1988-11-22 Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle

Publications (2)

Publication Number Publication Date
JPH02141424A true JPH02141424A (en) 1990-05-30
JPH0476334B2 JPH0476334B2 (en) 1992-12-03

Family

ID=17796451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29357088A Granted JPH02141424A (en) 1988-11-22 1988-11-22 Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle

Country Status (1)

Country Link
JP (1) JPH02141424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681348A (en) * 1994-03-31 1997-10-28 Olympus Optical Co., Ltd. Endoscope-specific therapeutic instrument
JP2006199560A (en) * 2005-01-24 2006-08-03 Tosoh Corp New structure containing sulfated zirconia and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681348A (en) * 1994-03-31 1997-10-28 Olympus Optical Co., Ltd. Endoscope-specific therapeutic instrument
JP2006199560A (en) * 2005-01-24 2006-08-03 Tosoh Corp New structure containing sulfated zirconia and its manufacturing method

Also Published As

Publication number Publication date
JPH0476334B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US5342431A (en) Metal oxide membranes for gas separation
US5269926A (en) Supported microporous ceramic membranes
Marcinkowsky et al. Hyperfiltration studies. IV. Salt rejection by dynamically formed hydrous oxide membranes1
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
EP0692303B1 (en) Process for the production of an inorganic porous composite membrane
CA1264994A (en) Process for the production of porous, permeable mineral membranes
JP3625682B2 (en) Method for producing filter using ceramic porous membrane as separation membrane
JPS61192306A (en) Permeable porous inorganic membrane
Guo et al. Modifications of polyethersulfone membrane by doping sulfated-TiO 2 nanoparticles for improving anti-fouling property in wastewater treatment
JPH02140239A (en) Porous polytetrafluoroethylene membrane and production thereof
US6613384B1 (en) Method for manufacturing a membrane
EP1024886A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
JP2520214B2 (en) Microporous alumina ceramic membrane
JPH04227825A (en) Porous inorganic composite semi-permeable membrane and manufacture thereof
CN103041716A (en) Preparation method of silicon dioxide film with quasi-symmetric film structure
JPH02141424A (en) Production of fine particle of zirconium and production of dynamic film utilizing the fine zirconium particle
Yazawa et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method
JP2000288325A (en) Production of filter having ceramic porous membrane as separation membrane
JPH0321330A (en) Preparation of upper layer of two dimensional membrane
JP3108709B2 (en) Method for producing inorganic ultra-thin film with controlled thickness
US4880544A (en) Crystal growth process for preparing inorganic dynamic membranes
JPH0457373B2 (en)
JPH0571548B2 (en)
JPH0582249B2 (en)
JPH0243928A (en) Inorganic porous membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19930608

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term