JPH0214133A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH0214133A
JPH0214133A JP63165222A JP16522288A JPH0214133A JP H0214133 A JPH0214133 A JP H0214133A JP 63165222 A JP63165222 A JP 63165222A JP 16522288 A JP16522288 A JP 16522288A JP H0214133 A JPH0214133 A JP H0214133A
Authority
JP
Japan
Prior art keywords
base plate
fluid material
light
flowable substance
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63165222A
Other languages
Japanese (ja)
Other versions
JPH0479825B2 (en
Inventor
Yoji Marutani
洋二 丸谷
Takashi Nakai
孝 中井
Seiji Hayano
誠治 早野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Osaka Prefecture
Original Assignee
Mitsubishi Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Osaka Prefecture filed Critical Mitsubishi Corp
Priority to JP63165222A priority Critical patent/JPH0214133A/en
Publication of JPH0214133A publication Critical patent/JPH0214133A/en
Publication of JPH0479825B2 publication Critical patent/JPH0479825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To make the use of a reduced quantity of energy possible and to start the formation of a solid within a short time after preparation by forming the solid while the photo-setting flowable substance to be cured on a base plate is heated using a heater. CONSTITUTION:A photo-setting flowable substance A is received in a container 1 and a support rod 3 is allowed to fall to immerse a base plate in the flowable substance A and, after the base plate 2 is positioned so as to be set to a depth capable of the continuous cured part reaching the upper surface of the base plate 12 from the upper surface of the flowable substance A on the basis of the irradiation with light from above, a current is supplied to an electric heater 5 to heat the same. The flowable substance A in the vicinity of the electric heater 5 rises through the piercing holes 7 of the plate main body 2' and the vicinity of the peripheral edge part of the plate main body and the temp. of the flowable substance A in the region from the upper surface of the electric heater 5 to the surface of said substance A rises by a convection. While a current is supplied to the electric heater 5 continuously or intermittently so that the flowable substance A above the base plate 2 holds predetermined temp., the falling of the base plate and the formation of a cured part due to the irradiation with light are repeated to form a solid having a desired shape.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて所望形状の
固体を形成する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical shaping method using light and a photocurable fluid material to form a solid body of a desired shape.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対応する模
型、或いは切削加工の倣い制御用又は形彫放電加工電極
用の模型の製作は、手加工により、或いはNCフライス
盤等を用いたNC切削加工により行なわれていた。しか
しながら、手加工による場合は多くの手間と熟練とを要
するという問題が存し、NC切削加工による場合は、刃
物の刃先形状変更のための交換や磨耗等を考慮した複雑
な工作プログラムを作る必要があると共に、加工面に生
じた段を除くために更に仕上げ加工を必要とする場合が
あるという問題が存していた。
Conventional technology and its problems Traditionally, models corresponding to the product shape required during mold production, or models for tracing control in cutting or die-sinking electrical discharge machining electrodes, have been produced by hand processing or using an NC milling machine. This was done by NC cutting using, etc. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complex machining program that takes into account replacement and wear to change the shape of the cutting edge of the blade. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題を解決するものとして、本発明者は、第
2図に示す光学的造形法を提案している(特開昭60−
247515号、特開昭62−101408号)。該方
法の1実施態様は、光硬化性流動物質(A)を容器(5
1)内に収容し、支持棒(3)に支持されたベースプレ
ート(2)を、上方からの光照射により流動物質(A)
上面からベースプレート(2)上面に及ぶ連続した硬化
部分が得られる深さとなるように流動物質(A)中に沈
め、該流動物質(A)の上方から凸レンズ等の光収束器
(4)を介して選択的に光照射を行い、該流動物質(A
)上面からベースプレート(2)上面に及ぶ硬化部分を
形成し、更に該硬化部分上において前記深さに相当する
深さをなすよう、ベースプレート(2)を流動物質(A
)中に沈降させ、該流動物質(A)の上方から選択的光
照射を行って前記硬化部分から連続して上方へ延びた硬
化部分を形成し、これらベースプレート(2)の沈降及
び硬化部分の形成を繰り返して所望形状の固体を形成す
るものである。第2図に示す硬化部分(B)は、前記所
望形状の固体を形成する途上での段階的硬化が繰り返さ
れているものである。
In order to solve these problems, the present inventor has proposed an optical modeling method as shown in FIG.
No. 247515, JP-A-62-101408). In one embodiment of the method, the photocurable fluid material (A) is placed in a container (5
1) The base plate (2) housed in
It is immersed in the fluid material (A) to a depth that provides a continuous hardened portion extending from the top surface to the top surface of the base plate (2), and is passed through a light converging device (4) such as a convex lens from above the fluid material (A). The fluid material (A
) The base plate (2) is coated with a fluid substance (A
), selectively irradiating the fluid material (A) with light from above to form a hardened portion that extends continuously upward from the hardened portion, and prevent the sedimentation and hardening of these base plates (2) from occurring. A solid having a desired shape is formed by repeating the formation. The cured portion (B) shown in FIG. 2 is one in which stepwise curing is repeated during the formation of a solid having the desired shape.

一般に、光硬化性流動物質は、その温度上昇とともに粘
度が低下する性質を有している。従って、上述の如く、
硬化部分(B)上に連続した硬化部分が得られる深さだ
けベースプレート(2)を下降させて該硬化部分(B)
上に流動物質(A)を流入付加する場合、該ベースプレ
ート(2)の下降距離が極めて僅かであることから、流
動物質(A)を加熱して該流動物質(A)の粘度を低く
しておけば、上記流入付加に要する時間を短縮すること
が出来る。更に、光硬化性流動物質は、その温度上昇と
ともに光感度が良好になるという特性を有している。従
って、上記の如くに流動物質(A)を加熱することによ
り、該流動物質(A)を低エネルギの光照射でもって硬
化させることができ、通常用いるのと同じ光エネルギを
有する光の照射にあっては、流動物質(A)を硬化させ
るに要する時間を短縮させることもできる。
Generally, a photocurable fluid substance has a property that its viscosity decreases as its temperature increases. Therefore, as mentioned above,
The base plate (2) is lowered to a depth that allows a continuous hardened portion to be formed on the hardened portion (B).
When adding the fluid substance (A) to the top, since the descending distance of the base plate (2) is extremely small, the fluid substance (A) is heated to lower the viscosity of the fluid substance (A). By doing so, the time required for adding the inflow can be shortened. Furthermore, the photocurable fluid material has the property that its photosensitivity improves as its temperature increases. Therefore, by heating the fluid material (A) as described above, the fluid material (A) can be cured by irradiation with low-energy light, and can be cured by irradiation with light having the same light energy as normally used. In some cases, the time required to harden the fluid material (A) can also be shortened.

このような光硬化性流動物質の温度上昇に伴う特性を利
用するため、従来は、第3図に示すように容器(51’
)内に電気ヒータ(52)を設置し、該電気ヒータ(5
2)を用いて容器(51’)内光硬化性流動物質(A)
の全体を加熱し、更に温度センサ(53)等を用いて温
度制御を行い、該流動物質(A)を設置温度に保持して
いた。しかしながら、このような流動物質加熱方法にお
いては、容器(51’)内の全流動物質(A)を、先ず
設定温度にまで加熱しなければならず、流動物質(A)
の量が多い場合には、固体形成に適切な温度まで加熱す
るのに特に長時間を要し、これを短縮するには、大電力
及び大容量の電気ヒータを要するという問題があった。
In order to utilize the characteristics of such a photocurable fluid material that accompanies an increase in temperature, conventionally, as shown in FIG. 3, a container (51'
), an electric heater (52) is installed in the electric heater (5
2) using the photocurable fluid material (A) in the container (51')
The fluid material (A) was maintained at the installation temperature by heating the entire body and controlling the temperature using a temperature sensor (53) or the like. However, in such a fluid material heating method, the entire fluid material (A) in the container (51') must first be heated to a set temperature, and the fluid material (A)
When the amount of is large, it takes a particularly long time to heat it to a temperature suitable for forming a solid, and to shorten this time there is a problem in that a large amount of electric power and a large capacity electric heater are required.

例えば、1m’の光硬化性流動物質を20℃から50℃
に昇温させるには、該流動物質の比熱が略1であること
から、10’ X (50−20)=3X10’  [
ca 13の加熱エネルギー要する。3相200ボルト
の電源を用いて上記エネルギを得るには、 0.24×J3 X200 XI XT X3600−
3 Xl07(I :所要電流、T:所要時間) の式から、約100/T [アンペア]の電流Iを要す
る。所要時間Tを1時間とした場合、100アンペアの
電流を要し、34kwもの電力を要することになる。単
相100ボルト電源であれば、所要電流は346アンペ
アにも達する。実際には、外気への放熱を伴うため、よ
り大きい値の電流。
For example, 1 m' of photocurable fluid material is heated at 20°C to 50°C.
Since the specific heat of the fluid substance is approximately 1, in order to raise the temperature to 10'
Requires heating energy of ca 13. To obtain the above energy using a 3-phase 200 volt power supply, 0.24 x J3 X200 XI XT X3600-
3Xl07 (I: required current, T: required time) From the formula, a current I of approximately 100/T [ampere] is required. If the required time T is 1 hour, a current of 100 amperes is required, and a power of 34 kW is required. With a single phase 100 volt power supply, the required current can reach 346 amps. In reality, the current is of a larger value because it involves heat dissipation to the outside air.

電力を必要とし、これを換言すれば、100アンペア以
上もの電流、34kw以上もの電力を印加しても、電源
投入後から固体形成開始までに1時間を要する。また、
この場合、一般の3相200ボルトの電力配線に換えて
、大容量の電力配線を用いなければならない。
In other words, even if a current of 100 amperes or more and a power of 34 kW or more are applied, it takes one hour from the time the power is turned on to the start of solid formation. Also,
In this case, large-capacity power wiring must be used in place of the general three-phase 200-volt power wiring.

本発明の目的は、上記問題点を解決し、少ないエネルギ
の使用で済み、しかも固体形成の準備後、短時間で該固
体形成の開始をすることができる光学的造形法を提供す
ることにある。
An object of the present invention is to provide an optical modeling method that solves the above-mentioned problems, requires less energy, and can start forming a solid in a short time after preparation for forming the solid. .

問題点を解決するための手段 本発明の前記目的は、光により硬化する光硬化性流動物
質を容器内に収容し、上下方向に延びる支持棒に支持さ
れたベースプレートを該流動物質中に浸漬し、前記ベー
スプレートを、光照射により該流動物質上面からベース
プレート上面に及ぶ連続した硬化部分が得られる深さと
なるように位置決めし、該流動物質に光を選択的に照射
して該流動物質上面からベースプレート上面に及ぶ硬化
部分を形成し、更に該硬化部分上において前記深さに相
当する深さをなすように前記ベースプレートを沈降させ
、前記光硬化性流動物質に選択的に光照射を行って前記
硬化部分から連続して延びた硬化部分を形成し、これら
ベースプレートの沈降及び硬化部分の形成を繰り返して
所望形状の固体を形成する光学的造形法であって、前記
ベースプレートとして加熱装置を具備したものを使用し
、該加熱装置を用いて前記ベースプレート上の硬化させ
るべき光硬化性流動物質を加熱しつつ前記固体形成を行
うことを特徴とする光学的造形法により達成される。
Means for Solving the Problems The object of the present invention is to accommodate a photocurable fluid material that is cured by light in a container, and to immerse a base plate supported by a vertically extending support rod into the fluid material. , the base plate is positioned at a depth such that a continuous hardened portion extending from the upper surface of the fluid material to the upper surface of the base plate is obtained by light irradiation, and the light is selectively irradiated to the fluid material to harden the base plate from the upper surface of the fluid material. forming a hardened portion extending to the upper surface, further lowering the base plate to a depth corresponding to the depth above the hardening portion, and selectively irradiating the photocurable fluid material with light to harden the material; An optical modeling method in which a solid part of a desired shape is formed by forming a hardened part continuously extending from the base plate and repeating the settling of the base plate and the formation of the hardened part, the base plate being equipped with a heating device. This is achieved by an optical modeling method characterized in that the solid formation is performed while heating the photocurable fluid material to be cured on the base plate using the heating device.

前記光硬化性流動物質としては、光照射により硬化する
種々の物質を用いることができ、例えば変性ポリウレタ
ンメタクリレート、オリゴエステルアクリレート、ウレ
タンアクリレート、エポキシアクリレート、感光性ポリ
イミド、アミノアルキドを挙げることができる。
As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

該光硬化性流動物質に、予め顔料、セラミックス粉、金
属粉等の改質用材料を混入したものを使用してもよい。
The photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

前記光としては、使用する光硬化性流動物質に応じ、可
視光、紫外光等種々の光を用いることができる。該先は
通常の光としてもよいが、レーザ光とすることにより、
エネルギレベルを高めて造形時間を短縮し、良好な集光
性を利用して造形精度を向上させ得るという利点を得る
ことができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable fluid material used. The tip may be normal light, but by using laser light,
Advantages can be obtained in that the energy level can be increased to shorten the molding time and the molding precision can be improved by taking advantage of good light collection.

実施例 以下に、本発明の実施例を、添付図面を参照しつつ説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明方法を実施するための装置の1例を示
す。該装置は、光硬化性流動物質(A)を収容する容器
(1)と、上下方向に延びる支持棒(3)の下端部に支
持されたベースプレート(2)と、容器(1)上方の光
源から発せられた光を容器(1)中の流動物質(A)上
面近傍で点状に収束させる光収束器(4)とを備え、流
動物質(A)に対し光照射位置を相対的に移動させるよ
うになっている。ベースプレート(2)は、固体形成の
基台となる平板状のプレート本体(2′)と、該プレー
ト本体(2′)の直下に支持された電気ヒータ(5)と
を備えている。プレート本体(2′)には、その上面か
ら下面に達する貫通孔(7)が多数分散形成されており
、電気ヒータ(5)は、プレート本体(2′)と略同じ
拡がりを有している。光源及び光収束器(4)は、容器
(1)外に固定されており、容器(1)に対し、主に水
平方向に移動する。この光学的造形装置における光収束
器(4)は、凸レンズであるが、例えば光を反射し収束
させる凹面鏡であってもよい。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. The device includes a container (1) containing a photocurable fluid material (A), a base plate (2) supported at the lower end of a vertically extending support rod (3), and a light source above the container (1). A light converging device (4) that converges the light emitted from the container (1) into a point near the upper surface of the fluid material (A), and moves the light irradiation position relative to the fluid material (A). It is designed to let you do so. The base plate (2) includes a flat plate body (2') that serves as a base for forming a solid body, and an electric heater (5) supported directly below the plate body (2'). The plate body (2') has a large number of dispersed through holes (7) extending from its upper surface to its lower surface, and the electric heater (5) has approximately the same extent as the plate body (2'). . The light source and light concentrator (4) are fixed outside the container (1) and move mainly in the horizontal direction with respect to the container (1). The light converging device (4) in this optical modeling device is a convex lens, but it may also be a concave mirror that reflects and converges light, for example.

また、ベースプレート(2)を支持する支持棒(3)も
容器(1)外に固定され、該容器(1)に対し垂直方向
に移動する。
A support rod (3) supporting the base plate (2) is also fixed outside the container (1) and moves in a direction perpendicular to the container (1).

上記光源及び光収束器(4)の移動制御、又は支持棒(
3)の移動制御は、NC等の自動制御や人手による制御
等、適宜に行うことができる。
Movement control of the light source and light concentrator (4), or support rod (
The movement control in 3) can be performed as appropriate, such as automatic control such as NC or manual control.

本装置を用いて所望形状の固体の造形を行うには、先ず
容器(1)に光硬化性流動物質(A)を入れ、つぎに支
持棒(3)を降下させてベースプレート(2)を流動物
質(A)中に浸漬し、上方からの光照射に基づき流動物
質(A)上面からベースプレート(2)上面に及ぶ連続
した硬化部分が得られる深さとなるように該ベースプレ
ート(2)を位置決めする。該位置決め後、電気ヒータ
(5)を通電により加熱する。これにより、電気ヒータ
(5)近傍の加熱された流動物質(A)は(プレート本
体(2′)の貫通孔(7)及び該プレート本体周縁部近
傍を通って上昇し、対流によって電気ヒータ(5)上面
から液面までの領域の流動物質(A)が温度上昇する。
To model a solid in a desired shape using this device, first put the photocurable fluid material (A) into the container (1), then lower the support rod (3) to flow the base plate (2). The base plate (2) is immersed in the substance (A), and the base plate (2) is positioned at a depth such that a continuous hardened portion extending from the upper surface of the fluid substance (A) to the upper surface of the base plate (2) is obtained based on light irradiation from above. . After the positioning, the electric heater (5) is heated by electricity. As a result, the heated fluid substance (A) near the electric heater (5) rises through the through hole (7) of the plate body (2') and near the peripheral edge of the plate body, and due to convection, the heated fluid substance (A) 5) The temperature of the fluid material (A) in the region from the top surface to the liquid level increases.

この後は、ベースプレート(2)より上方の流動物質(
A)が所定温度を保つように電気ヒータ(5)を連続的
又は断続的に通電しつつ、前述のように、ベースプレー
ト(2)の沈降と、光照射による硬化部分の形成とを繰
り返して所望形状の固体を形成する。
After this, the fluid material above the base plate (2) (
A) While energizing the electric heater (5) continuously or intermittently so as to maintain a predetermined temperature, the base plate (2) is repeatedly settled and the hardened portion is formed by light irradiation as described above. Form a solid shape.

なお、流動物質(A)は、流動物質上面付近に設置され
た温度センサ(8)の温度検知に基づき、設定温度範囲
内に保持される。
Note that the fluid material (A) is maintained within a set temperature range based on temperature detection by a temperature sensor (8) installed near the top surface of the fluid material.

この造形性実施の過程において、プレート本体(2′)
上面及び電気ヒータ(5)上面は、流動物質上面から極
めて僅かな距離をもって浸漬されているため、容器(1
)内の流動物質(A)の世にかかわらず、該流動物質上
面とベースプレート(2)上面との間の流動物質(A)
は、極めて短時間で設定温度にまで加熱され、有利な湿
炭下での光照射による固体形成が可能となる。また、ベ
ースプレート(2)の沈降速度は、例えば1時間に約1
0mmと極めて遅く、該ベースプレート(2)の1度の
沈降距離は極めて僅かであり、硬化部分上に流入付加さ
れる流動物質(A)は、短時間で設定温度にまで加熱さ
れる。
In the process of implementing this formability, the plate body (2')
The upper surface and the upper surface of the electric heater (5) are immersed at a very small distance from the upper surface of the fluid material, so that the upper surface of the electric heater (5)
), the fluid material (A) between the upper surface of the fluid material and the upper surface of the base plate (2)
is heated to the set temperature in a very short time and enables solid formation by light irradiation under advantageous wet coal conditions. Further, the sedimentation rate of the base plate (2) is, for example, about 1 per hour.
The settling distance of the base plate (2) is extremely small at 0 mm, and the fluid material (A) flowing onto the hardened portion is heated to the set temperature in a short time.

このように、造形初期から造形終了に至るまで、光硬化
性流動物質(A)の初期深さ分及び後の追加分の加熱は
、いずれも極く短時間に行うことができるので、1)流
動物質(A)の粘度低下に基づく硬化部分上への流入付
加時間の短縮、ii)付加された流動物質(A)の硬化
に要する時間の短縮、が各々確実に得られ、新たな硬化
部分の形成に要する時間が速められ、所望形状の造形固
体形成を迅速に行い得る。
In this way, from the beginning of modeling to the end of modeling, both the initial depth of the photocurable fluid material (A) and the subsequent additional heating can be performed in a very short time, so 1) A reduction in the additional time required for the fluid substance (A) to flow onto the hardened part due to the decrease in viscosity, and ii) a reduction in the time required for the added fluid substance (A) to harden can be reliably obtained, and a new hardened part can be reliably obtained. The time required to form the object is shortened, and a shaped solid having a desired shape can be formed rapidly.

以下に、上記方法に基づき行った光硬化性流動物質の加
熱実験を説明する。
Below, a heating experiment of a photocurable fluid material conducted based on the above method will be explained.

光硬化性流動物質として5P1507 (昭和高分子(
株)製の光硬化性流動物質)を用い、該流動物質560
00ccを、幅600mmx奥行き400mmx高さ3
00mmの容器内に入れた。
5P1507 (Showa Kobunshi) as a photocurable fluid material
Co., Ltd.'s photocurable fluid material) was used, and the fluid material 560
00cc, width 600mm x depth 400mm x height 3
It was placed in a 00 mm container.

また、プレート本体として幅550 m m x奥行き
350mmのものを使用し、該プレート本体下面に長さ
500mmの電気ヒータ線を60mmピッチで取付けた
。先ず、該プレート本体上面と流動物質上面との距離が
20mmとなるように、ベースプレートを流動物質中に
浸漬し、1500wの電力を前記電気ヒータに供給した
。20℃であったベースプレート上の光硬化性流動物質
は、通電開始から15分後に、固体形成開始を行い得る
温度にまで上昇した。実際には、ベースプレート上面又
は硬化部分上面と流動物質上面との距離は、上述の如く
極めて僅かであるため、前記電力供給後、固体形成開始
までに要する時間は、極めて短い時間となる。
Further, a plate body having a width of 550 mm and a depth of 350 mm was used, and electric heater wires having a length of 500 mm were attached to the lower surface of the plate body at a pitch of 60 mm. First, the base plate was immersed in the fluid material so that the distance between the top surface of the plate body and the top surface of the fluid material was 20 mm, and 1500 W of power was supplied to the electric heater. The temperature of the photocurable fluid material on the base plate, which was 20° C., rose to a temperature at which solid formation could begin 15 minutes after the start of current application. In reality, since the distance between the top surface of the base plate or the top surface of the hardened portion and the top surface of the fluid material is extremely small as described above, the time required from the power supply to the start of solid formation is extremely short.

なお、上記実施例においては、ベースプレートとして電
気ヒータをプレート本体直下に具備したものを使用した
が、温水等の熱媒体を循環させるものなど、種々の加熱
装置を採用できる。また、プレート本体内に加熱装置を
具備してもよい。
In the above embodiment, a base plate equipped with an electric heater directly below the plate body was used, but various heating devices may be used, such as one that circulates a heat medium such as hot water. Further, a heating device may be provided within the plate body.

発明の効果 以上から明らかなように、本発明によれば、べ−スプレ
ートとして加熱装置を具備したものを使用し、該加熱装
置を用いてベースプレート上の硬化させるべき光硬化性
流動物質を加熱しつつ固体形成を行うので、該加熱に要
するエネルギを少量とすることができ、しかも固体形成
準備完了後、短時間で該固体形成を開始することができ
るという優れた効果を奏する光学的造形法を提供するこ
とができる。
Effects of the Invention As is clear from the above, according to the present invention, a base plate equipped with a heating device is used, and the heating device is used to heat the photocurable fluid material to be cured on the base plate. An optical modeling method that achieves the excellent effect of forming a solid while reducing the amount of energy required for the heating, and also being able to start forming the solid in a short time after the preparation for forming the solid is completed. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、  (b)は本発明の1実施例にかかる
光学的造形法を段階的に示す説明図、第2図は従来の光
学的造形法の1例を示す説明図、第3図は従来の光学的
造形法の他の例を示す説明図である。 (1)・・・・・・容器 (2)・・・・・・ベースプレート (3)・・・・・・支持棒 (4)・・・・・・光収束器 (5)・・・・・・電気ヒータ (10)・・・・・・硬化部分 (A)・・・・・・光硬化性流動物質 (以 上) 一ジシ〉V 第 図 図 (b) 第 図
FIGS. 1(a) and 1(b) are explanatory diagrams showing step-by-step an optical modeling method according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of a conventional optical modeling method, and FIG. FIG. 3 is an explanatory diagram showing another example of the conventional optical modeling method. (1)...Container (2)...Base plate (3)...Support rod (4)...Light concentrator (5)... ...Electric heater (10)...Curing part (A)...Photocurable fluid material (or more) 1〉V Figure (b) Figure

Claims (1)

【特許請求の範囲】[Claims] (1)光により硬化する光硬化性流動物質を容器内に収
容し、上下方向に延びる支持棒に支持されたベースプレ
ートを該流動物質中に浸漬し、前記ベースプレートを、
光照射により該流動物質上面からベースプレート上面に
及ぶ連続した硬化部分が得られる深さとなるように位置
決めし、該流動物質に光を選択的に照射して該流動物質
上面からベースプレート上面に及ぶ硬化部分を形成し、
更に該硬化部分上において前記深さに相当する深さをな
すように前記ベースプレートを沈降させ、前記光硬化性
流動物質に選択的に光照射を行って前記硬化部分から連
続して延びた硬化部分を形成し、これらベースプレート
の沈降及び硬化部分の形成を繰り返して所望形状の固体
を形成する光学的造形法であって、前記ベースプレート
として加熱装置を具備したものを使用し、該加熱装置を
用いて前記ベースプレート上の硬化させるべき光硬化性
流動物質を加熱しつつ前記固体形成を行うことを特徴と
する光学的造形法。
(1) A photocurable fluid material that is hardened by light is placed in a container, a base plate supported by a support rod extending in the vertical direction is immersed in the fluid material, and the base plate is
Positioning the fluid material at a depth such that a continuous hardened portion extending from the upper surface of the fluid material to the upper surface of the base plate is obtained by irradiating light, and selectively irradiating the fluid material with light to obtain a hardened portion extending from the upper surface of the fluid material to the upper surface of the base plate. form,
Further, the base plate is lowered to a depth corresponding to the depth above the cured portion, and the photocurable fluid material is selectively irradiated with light to form a cured portion that extends continuously from the cured portion. This is an optical modeling method in which a solid body having a desired shape is formed by repeating the settling of the base plate and the formation of a hardened portion, the base plate being equipped with a heating device, and the method using the heating device. An optical modeling method characterized in that the solid formation is performed while heating the photocurable fluid material to be cured on the base plate.
JP63165222A 1988-07-01 1988-07-01 Optical shaping method Granted JPH0214133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165222A JPH0214133A (en) 1988-07-01 1988-07-01 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165222A JPH0214133A (en) 1988-07-01 1988-07-01 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH0214133A true JPH0214133A (en) 1990-01-18
JPH0479825B2 JPH0479825B2 (en) 1992-12-17

Family

ID=15808173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165222A Granted JPH0214133A (en) 1988-07-01 1988-07-01 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH0214133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178022A (en) * 1988-12-28 1990-07-11 Sony Corp Forming device of cubic shape
JP2007145021A (en) * 2005-11-29 2007-06-14 Three D Syst Inc Improved prototyping and manufacturing apparatus and method for rapid three-dimension molding
CN108248032A (en) * 2018-01-02 2018-07-06 哈尔滨工业大学 A kind of 3D printing equipment of printing head insertion printing fluid
CN108621416A (en) * 2017-03-20 2018-10-09 台达电子工业股份有限公司 Photocuring three-dimensional modeling system and glue groove heating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178022A (en) * 1988-12-28 1990-07-11 Sony Corp Forming device of cubic shape
JP2007145021A (en) * 2005-11-29 2007-06-14 Three D Syst Inc Improved prototyping and manufacturing apparatus and method for rapid three-dimension molding
CN108621416A (en) * 2017-03-20 2018-10-09 台达电子工业股份有限公司 Photocuring three-dimensional modeling system and glue groove heating device
US11117323B2 (en) 2017-03-20 2021-09-14 Delta Electronics, Inc. Photocuring three-dimensional molding system and vat heating device
CN108248032A (en) * 2018-01-02 2018-07-06 哈尔滨工业大学 A kind of 3D printing equipment of printing head insertion printing fluid
CN108248032B (en) * 2018-01-02 2020-01-31 哈尔滨工业大学 3D printing apparatus for printing liquid by embedding printing spray heads

Also Published As

Publication number Publication date
JPH0479825B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
AU2019201593C1 (en) 3D printing using spiral buildup
CA1338954C (en) Methods for curing partially polymerized parts
US6821473B2 (en) Method and apparatus for forming three-dimensional laminated product from photo-curable liquid
JPS60247515A (en) Optical shaping method
JPH11342542A (en) Device and method for producing three-dimensional object, and device and method for supplying powdery material layer to prescribed face
ATE267079T1 (en) DEVICE FOR SINTERING, ABBING AND/OR MARKING USING ELECTROMAGNETIC FOUNDED RADIATION AND METHOD FOR OPERATING THE DEVICE
CN204196263U (en) A kind of device making 3D product
JPH0214133A (en) Optical shaping method
US5989475A (en) Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
DE3227878A1 (en) METHOD AND DEVICE FOR GALVANIC DEPOSITING A METAL ONTO A WORKPIECE
JPH0479828B2 (en)
CN201070836Y (en) Resin heating system for photo-curing rapid-shaping
JPH01228827A (en) Optical shaping method
CN109590465A (en) Remodeling frame and recoating system
CN108907194A (en) A kind of Multi-functional base plate based on SLM technology
CN102233677B (en) A kind of replaceable resin groove system of photosensitive curing quick-shaping machine
CN203063127U (en) Rapid laser prototyping machine capable of uniformly heating liquid resin
JPH07195529A (en) Optical shaping method and apparatus
CN206085667U (en) 3D synthesizes printing device that circulates
JPH04144737A (en) Device and method for forming resin solid shape
JPH03239531A (en) Manufacture of solid model
CN220112273U (en) Wax dissolving device for wax mould casting
JP2001096629A (en) Stereo lithographic equipment
CN206306454U (en) 3D comprehensively circulates the circulatory system on printing equipment
EP0563782B1 (en) Optical fine processing apparatus