JPH0214083B2 - - Google Patents

Info

Publication number
JPH0214083B2
JPH0214083B2 JP56157452A JP15745281A JPH0214083B2 JP H0214083 B2 JPH0214083 B2 JP H0214083B2 JP 56157452 A JP56157452 A JP 56157452A JP 15745281 A JP15745281 A JP 15745281A JP H0214083 B2 JPH0214083 B2 JP H0214083B2
Authority
JP
Japan
Prior art keywords
gas
sulfur
claus reactor
temperature
claus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56157452A
Other languages
Japanese (ja)
Other versions
JPS5858133A (en
Inventor
Osamu Kanda
Tsukasa Nishimura
Shigeru Nozawa
Kozo Obata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP56157452A priority Critical patent/JPS5858133A/en
Publication of JPS5858133A publication Critical patent/JPS5858133A/en
Publication of JPH0214083B2 publication Critical patent/JPH0214083B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は乾式脱硫装置に係り、特にクラウス反
応器を用いて単体硫黄を回収する乾式脱硫装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry desulfurization apparatus, and more particularly to a dry desulfurization apparatus for recovering elemental sulfur using a Claus reactor.

排ガス中の硫黄酸化物を活性炭のような吸着剤
に吸着後脱離させ、さらに該硫黄酸化物を還元し
て得た単体硫黄を凝縮分離し、さらに残りのガス
をクラウス反応に供して単体硫黄を回収する乾式
脱硫装置は、石灰石スラリーなどを用いる湿式脱
硫装置に比較して、多量の用水を必要とせず、ま
た脱硫処理後の排ガスの再加熱が不要であり、か
つ排水が発生しない等の利点があり、注目されて
いる。しかしこのような脱硫装置においては、二
酸化硫黄の脱離塔および還元塔などで高温操作が
必要となり、その熱の有効利用が問題となる。
The sulfur oxides in the exhaust gas are adsorbed onto an adsorbent such as activated carbon and then desorbed, the sulfur oxides are further reduced to condense and separate the elemental sulfur, and the remaining gas is subjected to the Claus reaction to produce elemental sulfur. Compared to wet desulfurization equipment that uses limestone slurry, dry desulfurization equipment that recovers carbon dioxide does not require large amounts of water, does not require reheating of flue gas after desulfurization treatment, and does not generate waste water. It has advantages and is attracting attention. However, in such a desulfurization apparatus, high-temperature operation is required in the sulfur dioxide desorption tower, reduction tower, etc., and effective use of the heat becomes a problem.

すなわち、第1図は、従来の典型的な乾式脱硫
装置の系統図であるが、硫黄酸化物(代表例とし
てSO2)を含む排ガスは、導管8により吸着塔1
に導かれ、活性炭により脱硫される。次いでSO2
を吸着した活性炭は脱離塔2に供給され、ここで
導管13から導入された脱離用加熱用ガスにより
加熱され、SO2分を脱離して活性炭が再生され
る。再生活性炭は、冷却水の流通する導管12に
より冷却され、再び吸着塔1に循環される。脱離
されたSO2ガスはSO2還元塔3により還元剤であ
る炭素分と約500〜800℃で反応し、硫黄ガスおよ
び硫化水素と末反応のSO2ガス、また一部が硫化
カニボニルになり、硫黄ガスは硫黄凝縮器4で
120〜170℃に冷却されて回収され、硫化水素、硫
化カルボニルおよびSO2ガスはクラウス反応器6
で約200〜300℃の温度で硫黄に変換され、硫黄凝
縮器4でさらに硫黄が回収される。
That is, FIG. 1 is a system diagram of a typical conventional dry desulfurization apparatus, in which exhaust gas containing sulfur oxides (typically SO 2 ) is passed through a conduit 8 to an adsorption tower 1.
and is desulfurized using activated carbon. then SO 2
The activated carbon adsorbed is supplied to the desorption tower 2, where it is heated by the desorption heating gas introduced from the conduit 13, and the activated carbon is regenerated by desorbing SO2 . The regenerated activated carbon is cooled by a conduit 12 through which cooling water flows, and then circulated to the adsorption tower 1 again. The desorbed SO 2 gas reacts with carbon, which is a reducing agent, at approximately 500 to 800°C in the SO 2 reduction tower 3, and is converted into sulfur gas, hydrogen sulfide, and final reacted SO 2 gas, and a portion of which is converted to canibonyl sulfide. , the sulfur gas is sent to the sulfur condenser 4.
The hydrogen sulfide, carbonyl sulfide and SO2 gas are cooled to 120-170℃ and collected in the Claus reactor 6.
The sulfur is converted into sulfur at a temperature of about 200 to 300°C, and further sulfur is recovered in the sulfur condenser 4.

ここで、クラウス反応器での反応は一般に次式
で示される。
Here, the reaction in the Claus reactor is generally expressed by the following formula.

COS+H2O→H2S+CO2 2H2S+SO2→3S+2H2O 上式で生成される硫黄は、温度などの条件によ
りS2〜S8などの形態をとるが、クラウス反応器6
を含むそれ以後の部分ではクラウス反応の進行に
ともなつて硫黄ガスの濃度が上昇し、硫黄が一部
凝縮して液体硫黄ミストとなり、クラウス触媒や
装置、配管等に固着し、これらを閉塞させる原因
となる。
COS + H 2 O → H 2 S + CO 2 2H 2 S + SO 2 → 3S + 2H 2 O The sulfur produced in the above equation takes the form of S 2 to S 8 depending on conditions such as temperature,
As the Claus reaction progresses, the concentration of sulfur gas increases in the subsequent part containing the Claus reaction, and some of the sulfur condenses into liquid sulfur mist, which sticks to the Claus catalyst, equipment, piping, etc., and blocks them. Cause.

このため、従来はクラウス反応器6の前段に加
熱器(熱交換器)5を設置し、クラウス反応器出
口の硫黄分の濃度に合つた気体―液体の平衡温度
(平衡組成での温度)の+20〜+60℃以上に加熱
していたが、このような従来装置では、特別な加
熱器が必要であるばかりでなく、そのための外部
熱源を必要とするという欠点がある。
For this reason, conventionally, a heater (heat exchanger) 5 is installed before the Claus reactor 6, and the gas-liquid equilibrium temperature (temperature at equilibrium composition) is adjusted to match the sulfur concentration at the outlet of the Claus reactor. However, such conventional devices have the disadvantage that they not only require a special heater but also an external heat source for this purpose.

本発明の目的は、上記した従来技術の欠点をな
くし、特別な加熱器や熱源を必要とすることな
く、クラウス反応器入口のガス温度を所要範囲に
調整することができる乾式脱硫装置提供すること
にある。
An object of the present invention is to provide a dry desulfurization device that eliminates the drawbacks of the prior art described above and can adjust the gas temperature at the inlet of a Claus reactor to a required range without requiring a special heater or heat source. It is in.

本発明は、クラウス反応器入口の所要温度に見
合うように、SO2還元塔出口ガス(例えば約500
〜800℃)を、直接クラウス反応器入口に供給し、
温度を調整しようとするものである。すなわち、
本発明装置は、クラウス反応器の入口ガスにSO2
還元塔の出口ガスを混入する配管系と、クラウス
反応器の温度が所要範囲になるように前記混合ガ
ス量を調整する制御系統を設けたことを特徴とす
る。
The present invention provides a method for reducing SO 2 reduction column outlet gas (e.g., about 500
~800℃) directly to the inlet of the Claus reactor,
It attempts to regulate the temperature. That is,
The device of the present invention supplies SO 2 to the inlet gas of the Claus reactor.
The present invention is characterized by providing a piping system for mixing the outlet gas of the reduction tower and a control system for adjusting the amount of the mixed gas so that the temperature of the Claus reactor falls within a required range.

以下、本発明を図面により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は、本発明の乾式脱硫装置の一実施例を
示す系統図である。第1図の従来装置と異なる点
は、従来の加熱器5をなくし、SO2還元塔3の出
口ガスを直接クラウス反応器6および6Aに供給
するための導管25および26を設け、かつその
供給量を調節するために弁30および31を設け
たことである。クラウス反応器6入口のガス温度
を調節するには、ガス温度に応じてSO2還元塔3
の出口ガスを導管25または26を介して導管1
8または21に供給すればよいが、具体的には、
クラウス反応器5,5A入口のガス温度を検出
し、これらの温度が所定値になるように弁30,
31の開度を調節する。この場合、温度検出器は
導管18,21またはクラウス反応器5,5A内
のいずれに設けてもよい。なお、硫黄の回収率を
高める観点から、SO2還元塔3出口のガス中の
H2SとSO2の比は2:1に調整されていることが
好ましい。なお、最終段の硫黄凝縮器4を出た残
存硫黄を含む排ガスは酸化物7で酸化された後、
導管24を経て吸着塔1への排ガス供給管8に循
環される。
FIG. 2 is a system diagram showing an embodiment of the dry desulfurization apparatus of the present invention. The difference from the conventional apparatus shown in FIG. 1 is that the conventional heater 5 is eliminated, and conduits 25 and 26 are provided for directly supplying the outlet gas of the SO 2 reduction column 3 to the Claus reactors 6 and 6A, and Valves 30 and 31 are provided to adjust the amount. To adjust the gas temperature at the inlet of the Claus reactor 6, the SO 2 reduction tower 3 is added according to the gas temperature.
The outlet gas is passed through conduit 25 or 26 to conduit 1
8 or 21, specifically,
The gas temperature at the inlet of the Claus reactor 5, 5A is detected, and the valve 30,
Adjust the opening degree of 31. In this case, the temperature detector may be provided either in the conduits 18, 21 or in the Claus reactors 5, 5A. In addition, from the viewpoint of increasing the sulfur recovery rate, the amount of gas in the SO 2 reduction tower 3 outlet is
Preferably, the ratio of H 2 S and SO 2 is adjusted to 2:1. In addition, after the exhaust gas containing residual sulfur that exits the final stage sulfur condenser 4 is oxidized with oxide 7,
It is circulated via the conduit 24 to the exhaust gas supply pipe 8 to the adsorption tower 1 .

以上、本発明によれば、特別な加熱器および外
部熱源を要することなく、従来装置の簡単な変更
により、クラウス反応器の入口ガスを所要の温度
に制御することができる。
As described above, according to the present invention, the temperature of the inlet gas of the Claus reactor can be controlled to a desired temperature by simple modification of the conventional device without requiring a special heater or external heat source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ従来装置およ
び本発明装置の実施例を示す系統図である。 1……吸着塔、2……脱離塔、3……SO2還元
塔、4……硫黄凝縮器、5……加熱器、6,6A
……クラウス反応器、25,26……導管、3
0,31……弁。
FIG. 1 and FIG. 2 are system diagrams showing a conventional device and an embodiment of the present invention device, respectively. 1... Adsorption tower, 2... Desorption tower, 3... SO 2 reduction tower, 4... Sulfur condenser, 5... Heater, 6,6A
... Claus reactor, 25, 26 ... Conduit, 3
0,31...Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化硫黄の還元塔を出た単体硫黄含有ガス
から単体硫黄を凝縮分離した後、クラウス反応器
でガス中の硫化カルボニル、硫化水素および二酸
化硫黄を反応させてさらに単体硫黄を回収する乾
式脱硫装置において、前記クラウス反応器の入口
ガスに前記還元塔の出口ガスを混合する配管系
と、該混合ガス量により前記クラウス反応器の温
度を調整する制御系統とを設けたことを特徴とす
る乾式脱硫装置。
1 A dry desulfurization device that condenses and separates elemental sulfur from the elemental sulfur-containing gas that exits the sulfur dioxide reduction tower, and then reacts carbonyl sulfide, hydrogen sulfide, and sulfur dioxide in the gas in a Claus reactor to recover elemental sulfur. Dry desulfurization, characterized in that it is provided with a piping system for mixing the outlet gas of the reduction tower with the inlet gas of the Claus reactor, and a control system for adjusting the temperature of the Claus reactor according to the amount of the mixed gas. Device.
JP56157452A 1981-10-05 1981-10-05 Dry desulfurization apparatus Granted JPS5858133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56157452A JPS5858133A (en) 1981-10-05 1981-10-05 Dry desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157452A JPS5858133A (en) 1981-10-05 1981-10-05 Dry desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPS5858133A JPS5858133A (en) 1983-04-06
JPH0214083B2 true JPH0214083B2 (en) 1990-04-06

Family

ID=15649962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157452A Granted JPS5858133A (en) 1981-10-05 1981-10-05 Dry desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS5858133A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645743A (en) * 1979-09-20 1981-04-25 Hitachi Ltd Exhaust gas desulfurization equipment using carbonaceous adsorbent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645743A (en) * 1979-09-20 1981-04-25 Hitachi Ltd Exhaust gas desulfurization equipment using carbonaceous adsorbent

Also Published As

Publication number Publication date
JPS5858133A (en) 1983-04-06

Similar Documents

Publication Publication Date Title
RU2142404C1 (en) METHOD OF ALMOST COMPLETE REMOVAL OF SULFUR COMPOUNDS H2S, SO2, cos and/or CS2 FROM OFF GAS FROM SULFUR SET-UP, AND RECOVERY OF THESE COMPOUNDS IN SULFUR FORM
US3284158A (en) Method of and apparatus for removing sulfur compounds from gases
US4001386A (en) Process for H2 S removal employing a regenerable polyalkanolamine adsorbent
JPS6363482B2 (en)
KR100648755B1 (en) A method and plant for treatment of combustible gas streams containing hydrogen sulphide
US3851050A (en) Recovery of sulfur from so2-containing regeneration off-gases
US4579727A (en) Oxidative removal of hydrogen sulfide from gas streams
US3637352A (en) Process of purifying sulfur-containing exhaust gases and of recovering sulfur
US7250149B1 (en) Sulfur gas treatment process
JPS6341845B2 (en)
EP0332373B1 (en) Process for removing sulfur moieties from claus tail-gas
JPH0214083B2 (en)
CA1296508C (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
CA1056126A (en) Process of producing sulfur
JP3244855B2 (en) Prevention of silica scale precipitation from geothermal hot water
JPH0557141A (en) Flue gas desulfurization apparatus
JPH02214523A (en) Process for removing hyurogen sulfide from gas mixture
JPH06293888A (en) Method for recovering sulfur from plant for gasifying coal and device therefor
JP3700073B2 (en) Method and apparatus for burning hydrogen sulfide-containing gas
JPS631088B2 (en)
GB2180848A (en) Removing hydrogen sulphide from a gaseous mixture
CA1290139C (en) Sulfur recovery process including removal of residual sulfur from claus catalyst after regeneration
CA1039476A (en) Purification of hydrogen sulfide
CA1212521A (en) Process for purifying claus tail gas
RU2031696C1 (en) Method for purification of exhaust gas of sulfur production